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Abstract: Weprove several trace inequalities that extend theGolden–Thompson and the
Araki–Lieb–Thirring inequality to arbitrarilymanymatrices. In particular, we strengthen
Lieb’s triple matrix inequality. As an example application of our four matrix extension
of the Golden–Thompson inequality, we prove remainder terms for the monotonicity of
the quantum relative entropy and strong sub-additivity of the von Neumann entropy in
terms of recoverability. We find the first explicit remainder terms that are tight in the
commutative case. Our proofs rely on complex interpolation theory aswell as asymptotic
spectral pinching, providing a transparent approach to treat generic multivariate trace
inequalities.

1. Introduction

Trace inequalities are mathematical relations between different multivariate trace func-
tionals. Often these relations are straightforward equalities if the involved matrices
commute—and can be difficult to prove for the non-commuting case.

Arguably one of the most powerful trace inequalities is the celebrated Golden–
Thompson (GT) inequality [23,64]. It states that for any two Hermitian matrices H1
and H2 we have

tr exp(H1 + H2) ≤ tr exp(H1) exp(H2). (1)

We note that in case H1 and H2 commute (1) holds with equality. Inequality (1) has been
generalized in various directions (see, e.g., [3,12,32,38,39,42,57,59]). For example, it
has been shown that it remains valid by replacing the trace with any unitarily invariant
norm [41,58,65] and an extension to three non-commuting matrices was suggested
in [44].

The GT inequality has found applications ranging from statistical physics [64] and
random matrix theory [1,67] to quantum information theory [45,46].
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Straightforward extensions of this inequality to three matrices are incorrect, as dis-
cussed in Appendix A. In this work, for any n ∈ N, Hermitian matrices {Hk}n

k=1 and
any p ≥ 1, we show that

log

∥
∥
∥
∥
∥
exp

(
n

∑

k=1

Hk

)∥
∥
∥
∥
∥

p

≤
∫ ∞

−∞
dt β0(t) log

∥
∥
∥
∥
∥

n
∏

k=1

exp
(

(1 + it)Hk
)

∥
∥
∥
∥
∥

p

, (2)

where ‖·‖p denotes the Schatten p-norm and β0 is a fixed probability distribution on R,
independent of the other parameters. An extensive discussion of this result is provided
in Sect. 3.2. The precise statement is given in Corollary 3.3. Note that the expression
exp((1 + it)Hk) decomposes as exp(Hk) exp(it Hk) where the latter is a unitary rotation.
Since the Schatten p-norm is unitarily invariant it follows that the integrand in (2) is
independent of t for n = 2. Inequality (2) thus constitutes an n-matrix extension of the
GT inequality and further simplifies to (1) for n = 2 and p = 2. For n = 3 and p = 2
our result strengthens Lieb’s triple matrix inequality [44], as shown in Lemma 3.4.

The GT inequality can be seen as a limiting case of the more general Araki–Lieb–
Thirring (ALT) inequality [4,43]. The latter states that, for any positive semi-definite
matrices A1 and A2, and q > 0,

tr
(

A
r
2
1 Ar

2A
r
2
1

) q
r ≤ tr

(

A
1
2
1 A2A

1
2
1

)q

if r ∈ (0, 1]. (3)

The inequality holds in the opposite direction for r ≥ 1 by an appropriate substitution.1

The GT inequality for Schatten p-norms is implied by the Lie–Trotter product formula
in the limit r → 0. The ALT inequality has also been extended in various directions
(see, e.g., [2,39,70]).

In this work, we provide an n-matrix extension of the ALT inequality. For any n ∈ N,
positive semi-definite matrices {Ak}n

k=1 and any p ≥ 1, we show that
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p

≤
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∥
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∥

n
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A1+it
k

∥
∥
∥
∥
∥

p

if r ∈ (0, 1] , (4)

where βr are a family of probability distributions on R, independent of the other para-
meters. In this article we use the convention that 0z = 0 for any z ∈ C. We refer to
Theorem 3.2 for a precise statement and discussion. Our extension of the GT inequality
again follows in the limit r → 0 by the Lie–Trotter product formula. We also provide an
extension of the ALT and GT inequality for general square matrices (see Theorem 3.5).

We apply our results to quantum information theory and show how it can be used
to prove strong sub-additivity. This yields remainder terms on the monotonicity of rel-
ative entropy in terms of recoverability, strengthening the Fawzi–Renner bound [21]
and subsequent improvements [9,11,35,62,63,71]. We find that for any positive semi-
definite operator σ , and any trace-preserving completely positive mapN , there exists a
trace-preserving completely positive recovery map Rσ,N that satisfies

D(ρ‖σ) − D
(N (ρ)‖N (σ )

) ≥ DM

(

ρ‖Rσ,N ◦ N (ρ)
)

(5)

for anyquantumstateρ.Here the bound is given in termsof themeasured relative entropy,
DM(·‖·), as in [63]. The recovery map is the explicit universal (i.e., independent of ρ)

1 This can be seen by considering the substitution Ar
i ← Ai for i ∈ {1, 2}, q

r ← q, and 1
r ← r .
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rotated Petz recovery map introduced in [35]. We thus provide the first explicit lower
bound that is tight in the commutative case. A precise statement and further results are
presented in Sect. 4.

We believe that the proof techniques used in this article, based on asymptotic spectral
pinching and complex interpolation theory, yield a transparent method to derive multi-
variate trace inequalities, which should be applicable beyond the extensions of the GT
and ALT inequalities studied here.

Section 2 introduces the method of asymptotic spectral pinching and explains how
it can be used to prove trace inequalities. Section 3 then explains how trace inequalities
can be derived via complex interpolation theory. Readers interested in the proof of (2)
and (4) may directly proceed to Sect. 3.

2. Trace Inequalities via Asymptotic Spectral Pinching

One contribution of this article is the presentation of a transparent method, based on
asymptotic spectral pinching, that can be used to prove several trace inequalities. The
results in this section hold for p-norms with p > 0 and are in this sense slightly more
general than the results mentioned in the introduction. However, the asymptotic spectral
pinching method does not yield an explicit form of the distributions β0 and βr in (2)
and (4), respectively.

2.1. The asymptotic spectral pinching method. Let ‘≥’ denote the Löwner partial order
on positive semi-definite matrices. Any positive semi-definite matrix A has a decom-
position A = ∑

λ λPλ where λ ∈ spec(A) ⊂ R are unique eigenvalues and Pλ are
mutually orthogonal projectors. The spectral pinching map with respect to A is

PA : X �→
∑

λ∈spec(A)

Pλ X Pλ. (6)

Such maps are trace-preserving, completely positive, unital, self-adjoint, and can be
viewed as dephasing operations that remove off-diagonal blocks of a matrix. Moreover,
they satisfy the following properties: (i) PA[X ] commutes with A for any X ≥ 0, (ii)
trPA[X ]A = tr X A for any X ≥ 0, and (iii) we have the pinching inequality [28],

PA[X ]=
∑

λ∈spec(A)

Pλ X Pλ = 1

|spec(A)|
|spec(A)|

∑

y=1

Uy XU †
y ≥ 1

|spec(A)| X for all X ≥0,

(7)

where spec(A) = {λ1, . . . , λ|spec(A)|} and Uy = ∑|spec(A)|
z=1 exp( i2πyz

|spec(A)| )Pλz are uni-
taries. The inequality step in (7) follows form the facts thatUy XUy ≥ 0 andU|spec(A)| =
id. The following observation is crucial. Let A be a positive semi-definite d × d matrix.
The cardinality |spec(A⊗m)| grows polynomially in m due to the fact that the number of
distinct eigenvalues of A⊗m is bounded by the number of different types of sequences of
d symbols of length m, a concept widely used in information theory. More precisely [15,
Lemma II.1] gives

|spec(A⊗m)| ≤
(

m + d − 1
d − 1

)

≤ (m + d − 1)d−1

(d − 1)! = O
(

poly(m)
)

, (8)
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where poly(m) denotes an arbitrary polynomial in m. Another useful property of the
pinching operation is that it exhibits the following integral representation.

Lemma 2.1. Let A be positive definite. There exists a probability measure μ on R such
that

PA[X ] =
∫

μ(dt) Ait X A−it for all X ≥ 0. (9)

The proof of Lemma 2.1 is given in Appendix B.More information about pinching maps
can be found in [13, Section 4.4] or [66, Section 2.6.3].

2.2. Illustrative example: intuitive proof of Golden–Thompson inequality. Here we il-
lustrate the technique by proving the original GT inequality (1). Let A and B be two
positive definite matrices. For any m ∈ N we find the following chain of inequalities

log tr exp(log A + log B) = 1

m
log tr exp

(

log A⊗m + log B⊗m)

(10)

≤ 1

m
log tr exp

(

logPB⊗m [A⊗m] + log B⊗m)

+
log poly(m)

m
(11)

= 1

m
log trPB⊗m [A⊗m]B⊗m +

log poly(m)

m
(12)

= log tr AB +
log poly(m)

m
. (13)

The first equality (10) follows because the trace is multiplicative under tensor products.
The sole inequality in (11) follows by the pinching inequality (7), i.e., Property (iii),
together with the fact that the logarithm is operator monotone and tr exp(·) is monotone.
Equality (12) uses Property (i) which ensures that PB⊗m [A⊗m] commutes with B⊗m

and GT thus holds as an equality for these matrices. Equality (13) employs Property (ii)
and again the multiplicativity of the trace under tensor products. Considering the limit
m → ∞ directly implies the GT inequality (1).

As we will see later, this proof already suggests an extension of the GT inequality
to n matrices by iterative pinching. Let us emphasize the high-level intuition of the
proof method presented above. We know that the GT inequality is trivial if the operators
commute, and spectral pinching forces our operators to commute. At the same time the
pinching should hopefully not destroy the operator which it acts on too much. This is
indeed the case (guaranteed by the pinching inequality) if we consider an m-fold tensor
product of our operators and the limit m → ∞.

2.3. A convexity result for Schatten quasi-norms. Let us define the Schatten p-norm of
any matrix L as

‖L‖p := (

tr|L|p)
1
p for p ≥ 1 , (14)

where |L| := √
L†L . We extend this definition to all p > 0, but note that ‖L‖p is not a

norm for p ∈ (0, 1) since it does not satisfy the triangle inequality. In the limit p → ∞
we recover the operator norm and for p = 1 we obtain the trace norm.
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Schatten norms are functions of the singular values and thus unitarily invariant. They
satisfy ‖L‖p = ‖L†‖p and ‖L‖22p = ‖L L†‖p = ‖L†L‖p. They are also multiplicative
under tensor products. We note that the Schatten p-norm with p ≥ 1 is the unique norm
that is unitarily invariant and multiplicative under tensor products [5, Theorem 4.2].2

Due to the triangle inequality p-norms for p ≥ 1 are convex. In particular, for
any probability measure μ on a measurable space (X , �) and a collection {Lx }x∈X of
matrices, we have

∥
∥
∥
∥

∫

μ(dx) Lx

∥
∥
∥
∥

p
≤

∫

μ(dx) ‖Lx‖p . (15)

Quasi-norms with p ∈ (0, 1) are no longer convex. However, we show that these quasi-
norms still satisfy an asymptotic convexity property for tensor products of matrices in
the following sense. We believe that this result may be of independent interest.

Lemma 2.2. Let p ∈ (0, 1), μ be a probability measure on (X , �) and consider a
collection {Ax }x∈X of positive semi-definite matrices. Then

1

m
log

∥
∥
∥
∥

∫

μ(dx) A⊗m
x

∥
∥
∥
∥

p
≤ 1

m
log

∫

μ(dx)
∥
∥A⊗m

x

∥
∥

p +
log poly(m)

m
. (16)

The proof is given in Appendix C. Combining this with (15) shows that for all p > 0
we have the following quasi-convexity property

1

m
log

∥
∥
∥
∥

∫

μ(dx) A⊗m
x

∥
∥
∥
∥

p
≤ log sup

x∈X
‖Ax‖p +

log poly(m)

m
. (17)

2.4. Main results and proofs via pinching. In this sectionwe present two results obtained
via the spectral pinchingmethod, which are extensions of the ALT and theGT inequality,
respectively, for arbitrarily many matrices. We want to emphasize that in addition to the
fact that Theorem 2.3 is valid for Schatten quasi-norms, i.e., p ∈ (0, 1), the proof
technique via pinching has the advantage of being transparent and intuitive.

Theorem 2.3. Let p > 0, r ∈ (0, 1], n ∈ N and consider a collection {Ak}n
k=1 of

positive semi-definite matrices. Then
∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣

n
∏

k=1

Ar
k

∣
∣
∣
∣
∣

1
r

∥
∥
∥
∥
∥
∥

p

≤ sup
t∈Rn

∥
∥
∥
∥
∥

n
∏

k=1

A1+itk
k

∥
∥
∥
∥
∥

p

. (18)

Before we present the proof, let us given an equivalent statement that follows by a
simple substitution p ← 2q and Ak ← √

Ak for q > 0, namely

tr
(

A
r
2
1 A

r
2
2 · · · A

r
2
n−1Ar

n A
r
2
n−1 · · · A

r
2
2 A

r
2
1

) q
r

≤ sup
t∈Rn−2

tr

(

A
1
2
1 A

1+it2
2

2 · · · A
1+itn−1

2
n−1 An A

1−itn−1
2

n−1 · · · A
1−it2
2

2 A
1
2
1

)q

. (19)

For n = 2 the right-hand side of (19) is independent of t and we recover the ALT
inequality in (3).

2 Two properties that are crucial for the asymptotic spectral pinching method.
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Proof of Theorem 2.3. We prove the result for positive definite matrices and note that
the generalization to positive semi-definite matrices follows by continuity under the
convention that 0z = 0 for any z ∈ C. For convenience of exposition we provide
only the proof of Theorem 2.3 for three matrices (i.e, n = 3). The generalization to n
matrices follows by appropriately iterating the technical steps presented below. Using
the multiplicativity of the trace under tensor products, we write

log tr
(

A
r
2
1 A

r
2
2 Ar

3A
r
2
2 A

r
2
1

) q
r = 1

m
log tr

(

(A
r
2
1 )⊗m(A

r
2
2 )⊗m(Ar

3)
⊗m(A

r
2
2 )⊗m(A

r
2
1 )⊗m

) q
r

(20)

Then, employing the pinching inequality and the monotonicity of tr(·)q/r , we find

log tr
(

A
r
2
1 A

r
2
2 Ar

3A
r
2
2 A

r
2
1

) q
r

≤ 1

m
log tr

(

(A
r
2
1 )⊗m(A

r
2
2 )⊗mPA⊗m

2

[

(Ar
3)

⊗m]

(A
r
2
2 )⊗m(A

r
2
1 )⊗m

) q
r
+ o(1) (21)

≤ 1

m
log tr

(

(A
r
2
1 )⊗m(A

r
2
2 )⊗mPA⊗m

2

[

A⊗m
3

]r
(A

r
2
2 )⊗m(A

r
2
1 )⊗m

) q
r
+ o(1) (22)

= 1

m
log tr

(

(A
r
2
1 )⊗m(

(A
1
2
2 )⊗mPA⊗m

2

[

A⊗m
3

]

(A
1
2
2 )⊗m)r

(A
r
2
1 )⊗m

) q
r

+ o(1) , (23)

where o(1) simply denotes an additive term that vanishes as m → ∞. The second
inequality uses the fact that t �→ tr is operator concave for r ∈ (0, 1]. The final step
uses property (i) of pinching maps. Repeating these steps shows that

log tr
(

A
r
2
1 A

r
2
2 Ar

3A
r
2
2 A

r
2
1

) q
r

≤ 1

m
log tr

(

(A
1
2
1 )⊗mPA⊗m

1

[

(A
1
2
2 )⊗mPA⊗m

2

[

A⊗m
3

]

(A
1
2
2 )⊗m]

(A
1
2
1 )⊗m

)q

+ o(1). (24)

The integral representation of pinching maps (see Lemma 2.1) ensures that there exist
probability measures μ and ν on R such that

log tr

(

A
r
2
1 A

r
2
2 Ar

3A
r
2
2 A

r
2
1

) q
r

≤ 1

m
log tr

(∫

μ(dt1)
∫

ν(dt2)(A
1
2 +it1
1 )⊗m (A

1
2 +it2
2 )⊗m A⊗m

3 (A
1
2−it2
2 )⊗m (A

1
2−it1
1 )⊗m

)q

+ o(1)

(25)

≤ sup
t∈R2

log tr

(

A
1
2 +it1
1 A

1
2 +it2
2 A3A

1
2−it2
2 A

1
2−it1
1

)q

+ o(1) (26)

= sup
t∈R

log tr

(

A
1
2
1 A

1
2 +it
2 A3A

1
2−it
2 A

1
2
1

)q

+ o(1) , (27)

where the second inequality uses Lemma 2.2. The final step follows from the fact that
Schatten (quasi) norms are unitarily invariant.Considering the limitm → ∞ implies (19)
and thus completes the proof. ��
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The multivariate Lie–Trotter product formula (see, e.g., [10, Problem IX.8.5]) states
that

lim
r↘0

(

exp(r L1) exp(r L2) . . . exp(r Ln)
) 1

r = exp

(
n

∑

k=1

Lk

)

(28)

for square matrices {Lk}n
k=1. This allows us to derive a multivariate extension of the

GT inequality as a limit of the above extended ALT inequality in the limit r → 0. In
particular, combining the product formula with Theorem 2.3 implies an extension of the
GT inequality to n matrices.

Corollary 2.4. Let p > 0, n ∈ N and consider a collection {Hk}n
k=1 of Hermitian

matrices. Then
∥
∥
∥
∥
∥
exp

(
n

∑

k=1

Hk

)∥
∥
∥
∥
∥

p

≤ sup
t∈Rn

∥
∥
∥
∥
∥

n
∏

k=1

exp
(

(1 + itk)Hk
)

∥
∥
∥
∥
∥

p

. (29)

For n = 2 the right-hand side term of (29) is independent of t and we recover the GT
inequality (1) for the choice p = 2.

3. Trace Inequalities via Interpolation Theory

For p-norms we can prove a more explicit and also more general version of Theorem 2.3
based on an entirely different technique—complex interpolation theory.

3.1. The complex interpolation method. The main ingredient for most of our proofs in
this section is a complex interpolation result for Schatten norms, commonly attributed
to Stein [60], and based on Hirschman’s improvement of the Hadamard three-lines
theorem [33]. Epstein [20] showed how interpolation theory can be used in matrix
analysis.

Complex interpolation theory has recently garnered attention in quantum information
theory for proving entropy inequalities. Beigi [6] and Dupuis [17] used variations of the
Riesz–Thorin theorem based on Hadamard’s three line theorem to show properties of
sandwiched Rényi divergence and conditional Rényi entropy, respectively. Wilde [71]
first used these techniques to derive remainder terms for the monotonicity of quantum
relative entropy (see Sect. 4 for more details). Extensions and further applications of
this approach are discussed by Dupuis and Wilde [18]. Hirschmann’s refinement was
first studied in this context by Junge et al. [35], where the following theorem essentially
appeared:

Theorem 3.1 (Stein–Hirschman). Let S := {z ∈ C : 0 ≤ Re(z) ≤ 1} and let G be a map
from S to bounded linear operators on a separable Hilbert space that is holomorphic
in the interior of S and continuous on the boundary. Let p0, p1 ∈ [1,∞], θ ∈ (0, 1),
define pθ by

1

pθ

= 1 − θ

p0
+

θ

p1
and βθ (t) := sin(πθ)

2θ
(

cosh(π t) + cos(πθ)
) . (30)
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Fig. 1. This plot depicts the probability densities βθ defined in (30) for θ ∈ {0, 1
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Then, if furthermore z �→ ‖G(z)‖pRe(z) is uniformly bounded on S,3 the following bound
holds:

log ‖G(θ)‖pθ
≤

∫ ∞

−∞
dt

(

β1−θ (t) log ‖G(it)‖1−θ
p0 + βθ (t) log ‖G(1 + it)‖θ

p1

)

. (31)

For the sake of completeness a proof is given in Appendix D. We note that for any
θ ∈ (0, 1) the function βθ is non-negative and

∫ ∞
−∞ dt βθ (t) = 1 so that βθ can be

interpreted as probability density function on R. These distributions are depicted in
Fig. 1. Furthermore, the following limits hold:

lim
θ↘0

βθ (t) = π

2

(

cosh(π t) + 1
)−1 =: β0(t) , and lim

θ↗1
βθ (t) = δ(t) =: β1(t).

(32)
Here β0 is another probability density function on R and δ(t) denotes the Dirac δ-
distribution.

3.2. Main results and proofs via interpolation theory. In this section we prove our
main results which are extensions of the ALT and the GT inequality to arbitrarily many
matrices.

Theorem 3.2. Let p ≥ 1, r ∈ (0, 1], βr as defined in (30), n ∈ N, and consider a
collection {Ak}n

k=1 of positive semi-definite matrices. Then

log

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣

n
∏

k=1

Ar
k

∣
∣
∣
∣
∣

1
r

∥
∥
∥
∥
∥
∥

p

≤
∫ ∞

−∞
dt βr (t) log

∥
∥
∥
∥
∥

n
∏

k=1

A1+it
k

∥
∥
∥
∥
∥

p

. (33)

Proof. The case r = 1 holds trivially with equality, so suppose r ∈ (0, 1). We prove
the result for positive definite matrices and note that the generalization to positive semi-
definite matrices follows by continuity. We define the function G(z) := ∏n

k=1 Az
k =

3 In fact, we only need that supz∈S exp(−a|Im(z)|) log ‖G(z)‖pRe(z) ≤ A for some constants A < ∞ and
a < π .
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∏n
k=1 exp(z log Ak) which satisfies the regularity assumptions of Theorem 3.1. Further-

more we pick θ = r , p0 = ∞ and p1 = p such that pθ = p
r . We find

log ‖G(1 + it)‖θ
p1 = r log

∥
∥
∥
∥
∥

n
∏

k=1

A1+it
k

∥
∥
∥
∥
∥

p

and

log ‖G(it)‖1−θ
p0 = (1 − r) log

∥
∥
∥
∥
∥

n
∏

k=1

Ait
k

∥
∥
∥
∥
∥

∞
= 0 , (34)

since the matrices Ait
k are unitary. Moreover, we have

log ‖G(θ)‖pθ
= log

∥
∥
∥
∥
∥

n
∏

k=1

Ar
k

∥
∥
∥
∥
∥

p
r

= r log

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣

n
∏

k=1

Ar
k

∣
∣
∣
∣
∣

1
r

∥
∥
∥
∥
∥
∥

p

. (35)

Plugging this into Theorem 3.1 yields the desired inequality. ��
Let us now remark on several aspects of this inequality. First, we note that the sub-

stitution p ← 2q and Ak ← √
Ak allows to rewrite (33) in a more suggestive form. For

q ≥ 1
2 and r ∈ (0, 1], we have

log tr
(

A
r
2
1 A

r
2
2 · · · A

r
2
n−1Ar

n A
r
2
n−1 · · · A

r
2
2 A

r
2
1

) q
r

≤
∫ ∞

−∞
dt βr (t) log tr

(

A
1
2
1 A

1+it
2

2 · · · A
1+it
2

n−1An A
1−it
2

n−1 · · · A
1−it
2

2 A
1
2
1

)q

. (36)

For n = 2 the term on the right-hand side is independent of t and we recover the
ALT inequality in (3). However, we only recover the result for q ≥ 1

2 using complex
interpolation theory. This can be fixed by proving a multivariate extension of the ALT
inequality based on pinching (see Theorem 2.3).

Also note that we can always remove the logarithm in the above inequalities by
using its concavity and Jensen’s inequality. Moreover, for q ∈ [ 12 , 1] we may pull the
integration inside the quasi-norm (by employing the fact that X �→ log ‖X‖p is concave
for p ∈ [0, 1] on the positive definite cone), which yields the following relaxation

∥
∥
∥
∥
∥

(

A
r
2
1 A

r
2
2 · · · A

r
2
n−1Ar

n A
r
2
n−1 · · · A

r
2
2 A

r
2
1

) 1
r

∥
∥
∥
∥
∥

q

≤
∥
∥
∥
∥

∫ ∞

−∞
dt βr (t) A

1
2
1 A

1+it
2

2 · · · A
1+it
2

n−1An A
1−it
2

n−1 · · · A
1−it
2

2 A
1
2
1

∥
∥
∥
∥

q
. (37)

Next, recall the multivariate Lie–Trotter product formula in (28). Again, this allows
us to derive an extension of the GT inequality to arbitrarily many matrices by taking the
limit r → 0 of (36).

Corollary 3.3. Let p ≥ 1, β0 as defined in (32), n ∈ N and consider a collection
{Hk}n

k=1 of Hermitian matrices. Then

log

∥
∥
∥
∥
∥
exp

(
n

∑

k=1

Hk

)∥
∥
∥
∥
∥

p

≤
∫ ∞

−∞
dt β0(t) log

∥
∥
∥
∥
∥

n
∏

k=1

exp
(

(1 + it)Hk
)

∥
∥
∥
∥
∥

p

. (38)
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Let us take a closer look at the case n = 3 and p = 2. Substituting Hk ← 1
2 Hk and

using the concavity of the logarithm and Jensen’s inequality, we relax Corollary 3.3 to

tr exp (H1 + H2 + H3) ≤
∫ ∞

−∞
dt β0(t) tr exp(H1) exp

( 1+it
2 H2

)

exp(H3) exp
( 1−it

2 H2
)

.

(39)

This is to be contrasted with Lieb’s triple matrix inequality [44], which asserts that

tr exp(H1 + H2 + H3) ≤
∫ ∞

0
dλ tr exp(H1)

(

exp(−H2) + λ id
)−1

× exp(H3)
(

exp(−H2) + λ id
)−1

. (40)

As the next lemma shows, it turns out that these two expressions are in fact equivalent.
We believe that this result might be of independent interest as it allows us to write the
Fréchet derivative of the operator logarithm using an integration over rotations.

Lemma 3.4. The following two expressions for the Fréchet derivative of the logarithm
are equivalent. For any positive definite operator A and Hermitian operator H on a
separable Hilbert space, we have

D log(A)[H ] =
∫ ∞

0
dλ (A + λ id)−1H(A + λ id)−1 =

∫ ∞

−∞
dt β0(t) A− 1

2− it
2 H A− 1

2 +
it
2 .

(41)

The proof is given in Appendix E. The above lemma also gives a further means to under-
stand the probability distribution β0 which we obtained from Hirschman’s interpolation
theorem.4 Whereas Lieb’s triple matrix inequality in (40) has not been extended to more
than three matrices, the alternative representation obtained in (39) through Corollary 3.3
naturally extends to arbitrarily many matrices. Finally, it should be noted that Lieb’s
triple matrix inequality has been shown to be equivalent to many other interesting state-
ments (such as Lieb’s concavity theorem [44]), and hence it is valuable to have an entirely
different proof of these results.

Corollary 3.3 is valid for Hermitian matrices, but we can extend its scope to general
square matrices using the same techniques.

Theorem 3.5. Let p ≥ 1, β0 as defined in (32), n ∈ N and consider a collection {Lk}n
k=1

of square matrices. Define �(Lk) := 1
2 (Lk + L†

k). Then

log

∥
∥
∥
∥
∥
exp

(
n

∑

k=1

Lk

)∥
∥
∥
∥
∥

p

≤
∫ ∞

−∞
dt β0(t) log

∥
∥
∥
∥
∥

n
∏

k=1

exp
(

(1 + it)�(Lk)
)

∥
∥
∥
∥
∥

p

. (42)

Proof. We write Lk = �(Lk)+ i�(Lk) where �(Lk) = 1
2i (Lk − L†

k), and note that both�(Lk) and �(Lk) are Hermitian. Now define

G(z) :=
n

∏

k=1

exp
(

z�(Lk) + iθ�(Lk)
)

, (43)

4 In Appendix A we also give numerical evidence that the exact form of the distribution β0 is crucial. Our
results indicate that if the distribution is more narrow or more flat then Corollary 3.3 is no longer valid.
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which satisfies the regularity assumption of Theorem 3.1. We note that G(it) is unitary,
and thus log ‖G(it)‖∞ vanishes. We again pick θ = r ∈ (0, 1), p0 = ∞ and p1 = p
such that pθ = p

r , and find

r log

∥
∥
∥
∥
∥
∥

∣
∣
∣
∣
∣
exp

(

r
n

∑

k=1

Lk

)∣
∣
∣
∣
∣

1
r

∥
∥
∥
∥
∥
∥

p

= log ‖G(θ)‖pθ (44)

≤
∫ ∞

−∞
dt βr (t) log ‖G(1 + it)‖r

p (45)

= r
∫ ∞

−∞
dt βr (t) log

∥
∥
∥
∥
∥

n
∏

k=1

exp
(

(1 + it)�(Lk) + r�(Lk)
)

∥
∥
∥
∥
∥

p

.

(46)

Dividing by r and taking the limit r → 0 then yields the desired result via the Lie–Trotter
product formula. ��

We note that for the case of normal matrices N , the matrices �(N ) and �(N ) com-
mute, which allows us to slightly simplify the above formula by employing the fact that
exp(�(N )) = ∣

∣ exp(N )
∣
∣. For two normal matrices the result then reads

‖exp (N1 + N2)‖p ≤ ∥
∥
∣
∣ exp(N1)

∣
∣
∣
∣ exp(N2)

∣
∣
∥
∥

p , (47)

generalizing an inequality by Li and Zhao [42]. Finally, we note that (46) can be viewed
as an ALT inequality for general square matrices.

4. An Application: Entropy Inequalities

In this section we show that the multivariate extension of the GT inequality derived in
Corollary 3.3 can be used to derive remainder terms in terms of recoverability for certain
entropy inequalities.

For positive semi-definite matrices ρ, σ with tr ρ = 1, Umegaki’s quantum relative
entropy [69] is defined as D(ρ‖σ) := trρ(log ρ − log σ) if ρ � σ and as +∞ if ρ �� σ .
Here, ρ � σ denotes that the support of ρ is contained in the support of σ . We recall
the following variational formula for the relative entropy [53] (see also [7]):

D(ρ‖σ) = sup
ω>0

trρ logω + 1 − tr exp(log σ + logω). (48)

The measured relative entropy is given as DM(ρ‖σ) := sup(X ,M) D
(

Pρ,M
∥
∥Pσ,M

)

[7,
16,31,52],where the optimization is over positive operator valuedmeasures (POVMs) M
on the power-set of a finite setX , the probability mass functions are given by Pρ,M (x) =
trρM(x), and D(P‖Q) is theKullback–Leibler divergence [40].We recall the following
variational formula [7,54]:

DM(ρ‖σ) = sup
ω>0

trρ logω + 1 − trσω. (49)

A fundamental entropy inequality [46,47] states that the quantum relative entropy is
monotone under trace-preserving and completely positive maps N , i.e.,5

D(ρ‖σ) − D
(N (ρ)‖N (σ )

) ≥ 0. (50)

5 We note that this monotonicity statement remains valid for more general mapsN [29,30,49,50,68].
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This is closely related to the celebrated strong sub-additivity of quantum entropy [45,46]
stating that

I (A : C |B)ρ := H(ρAB) + H(ρBC ) − H(ρB) − H(ρABC ) ≥ 0 (51)

for any positive semi-definite matrix ρABC on a composite Hilbert spaceHA ⊗HB ⊗HC
with tr ρABC = 1. Here ρAB , ρBC , and ρB are marginals of ρABC obtained via the partial
trace, and H(ρ) = −trρ log ρ denotes the von Neumann entropy.

Motivated by recoverability questions in quantum information theory, (50) and (51)
have been refined in a series of recent works [9,11,21,35,62,63,71], making use of
complex interpolation theory as well as asymptotic spectral pinching. With the four
matrix extension of the GT inequality given by Corollary 3.3, we find the following
statement which answers an open question stated in [35].

Theorem 4.1 (Strengthenedmonotonicity for partial trace). Let ρAB and σAB be positive
semi-definite matrices on HA ⊗ HB such that ρAB � σAB and tr ρAB = 1. Then

D(ρAB‖σAB) − D(ρA‖σA) ≥ DM

(

ρAB‖RσAB ,trB (ρA)
)

, (52)

with the rotated Petz recovery map given by

RσAB ,trB (·) :=
∫ ∞

−∞
dt β0(t)R[t]

σAB ,trB
(·) and

R[t]
σAB ,trB

(·) := σ
1+it
2

AB

(

σ
− 1+it

2
A (·)σ− 1−it

2
A ⊗ idB

)

σ
1−it
2

AB . (53)

Proof. Let us recall Corollary 3.3 applied for n = 4 and p = 2. Using the concavity of
the logarithm and Jensen’s inequality, it yields

tr exp(H1 + H2 + H3 + H4)

≤
∫ ∞

−∞
dtβ0(t) tr exp(H1) exp

(
1+it

2
H2

)

exp

(
1+it

2
H3

)

exp(H4)

× exp

(
1−it

2
H3

)

exp

(
1−it

2
H2

)

(54)

for Hermitian matrices {Hi }4i=1. Moreover, by definition of the relative entropy for
positive definite operators ρAB and σAB , we have

D(ρAB‖σAB) − D(ρA‖σA) = D
(

ρAB‖ exp(log σAB + log ρA ⊗ idB − log σA ⊗ idB)
)

.

(55)

For positive semi-definite operators ρAB and σAB , the Hermitian operators log σAB ,
log ρA and log σA are well-defined under the convention log 0 = 0. Under this con-
vention, the above equality (55) also holds for positive semi-definite operators as long
as ρAB � σAB , which is required by the theorem. By the variational formula for the
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relative entropy (48) we thus find

D(ρAB‖σAB) − D(ρA‖σA) = sup
ωAB>0

tr ρAB logωAB

+ 1 − tr exp(log σAB + log ρA ⊗ idB − log σA ⊗ idB + logωAB) (56)

≥ sup
ωAB>0

tr ρAB logωAB + 1 −
∫ ∞

−∞
dt β0(t) tr σ

1+it
2

AB

×
(

σ
− 1+it

2
A ρAσ

− 1−it
2

A ⊗ idB

)

σ
1−it
2

AB ωAB (57)

= DM

(

ρAB

∥
∥
∥
∥

∫ ∞

−∞
dtβ0(t) σ

1+it
2

AB

(

σ
− 1+it

2
A ρAσ

− 1−it
2

A ⊗ idB

)

σ
1−it
2

AB

)

, (58)

where the single inequality follows by the four matrix extension of the GT inequal-
ity in (54). The final step uses the variational formula (49) for the measured relative
entropy. ��

We note that the four matrix extension of the GT inequality is the only inequality
used in the proof of Theorem 4.1. More properties of the recovery map RσAB ,trB given
by (53) are discussed in [35].

Theorem 4.1 implies two other interesting statements. If we substitute ρAB ← ρABC ,
ρA ← ρAB , σAB ← idA ⊗ ρBC , and σA ← idA ⊗ ρB we immediately find a remainder
term for the conditional quantum mutual information, namely

I (A : C |B)ρ ≥ DM

(

ρABC
∥
∥RρBC ,trC ⊗ IA(ρAB)

)

, (59)

where IA is the identity map and RρBC ,trC is defined in (53). Moreover, using the
Stinespring dilation theorem [61] and the fact that the relative entropy is invariant under
isometries, Theorem 4.1 generalizes to the following result.

Corollary 4.2 (Strengthened monotonicity). Let ρ, σ be positive semi-definite matrices
such that ρ � σ , tr ρ = 1, and N be a trace-preserving completely positive map acting
on these matrices. Then

D(ρ‖σ) − D (N (ρ)‖N (σ )) ≥ DM

(

ρ
∥
∥Rσ,N ◦ N (ρ)

)

, (60)

with the rotated Petz recovery map given by

Rσ,N (·) :=
∫ ∞

−∞
dt β0(t)R[t]

σ,N (·) and

R[t]
σ,N (·) := σ

1+it
2 N †

(

N (σ )−
1+it
2 (·)N (σ )−

1−it
2

)

σ
1−it
2 . (61)

Proof. Let us introduce the Stinespring dilation ofN , denoted U , and the states ρAB =
UρU †, σAB = UσU † such that N (ρ) = ρA and N (σ ) = σB . Then, using the fact
that the relative entropy is invariant under isometries, we have

D(ρ‖σ) − D (N (ρ)‖N (σ )) = D(ρAB‖σAB) − D(ρA‖σA) (62)

≥ DM

(

ρAB‖RσAB ,trB (ρA)
) = DM

(

ρ
∥
∥Rσ,N ◦ N (ρ)

)

,

(63)
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where the inequality is due to Theorem 4.1 and the last equality uses again invariance
under isometries and the fact that

U †R[t]
σAB ,trB

(·)U = U †Uσ
1+it
2 U †

(

N (σ )−
1+it
2 (·)N (σ )−

1−it
2 ⊗ idB

)

Uσ
1−it
2 U †U

(64)

= σ
1+it
2 N †

(

N (σ )−
1+it
2 (·)N (σ )−

1−it
2

)

σ
1−it
2 = R[t]

σ,N (·). (65)

��
We note that Corollary 4.2 is no longer valid if we replace the measured relative

entropy in (60) with a relative entropy. This leads us to believe that (60) cannot be
further improved.

The right-hand side of (60) can be relaxed using Uhlmann’s fidelity, F(ρ, σ ) :=
∥
∥
√

ρ
√

σ
∥
∥
2
1. It is well known that DM(ρ‖σ) ≥ − log F(ρ, σ ).6 Therefore, Corollary 4.2

implies

D(ρ‖σ) − D
(N (ρ)‖N (σ )

) ≥ − log F
(

ρ,Rσ,N ◦ N (ρ)
)

. (66)

Moreover, Corollary 4.2 can be transformed into universal remainder terms (in terms of
recoverability with the measured relative entropy) for other entropy inequalities, such
as concavity of the conditional entropy and joint convexity of the relative entropy [8].
We refer to [35, Section 5] for a more detailed discussion of these bounds.

We also want to refer the reader to Appendix F where we give a different derivation
that yields lower and upper bounds on the difference of relative entropies in Theo-
rem 4.1. This derivation follows the structure of Lieb and Ruskai’s original proof of
strong sub-additivity [45,46], i.e., it uses the Peierls–Bogoliubov inequality followed by
an extension of the GT inequality (see also [14]). However, whereas Lieb and Ruskai
use the three matrix extension of the GT inequality (Lieb’s triple matrix inequality) we
use the four matrix extension of the GT inequality, leading us to a stronger statement.

5. Discussion

We discussed two techniques to prove trace inequalities. One is based on asymptotic
pinching and the other one uses complex interpolation theory. Both methods lead to
transparent and direct proofs of generalized multivariate extensions of the GT and also
the more general ALT inequalities. We believe that these methods can be used to prove
trace inequalities beyond the extensions of the GT and ALT inequalities studied in this
article. For example in [2,32], complementaryGT andALT inequalities have been shown
in terms of matrix means. It is left for future research to investigate if these inequalities
can be obtained (and possibly be extended to the multivariate case) via pinching or
interpolation theory.

Hansen gave an alternative multivariate extension of the GT inequality [25] that can
be considered an interpolation between the original GT inequality (1) and the operator
Jensen inequality [26,27]. It would be interesting to unify his and our result.

Moreover, Lieb showed that his triple matrix inequality (40) is equivalent to many
other interesting statements such as several concavity results [44]. As Corollary 3.3

6 This follows by the monotonicity of quantum Rényi divergence in the order parameter [51] and of the fact
that for any two states there exists an optimalmeasurement that does not increase their fidelity [22, Section 3.3].
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generalizes the triple matrix inequality, it is natural to ask if it can be used to prove more
general concavity results.

Ahlswede andWinter noticed that the GT inequality can be used to prove tail bounds
for sums of randommatrices via the Laplace transformmethod [1]. As the (original) GT
inequality is only valid for two matrices it has to be applied sequentially. Later, Tropp
realized that sharper tail bounds can be obtained by using Lieb’s concavity theorem
instead of the GT inequality [67]. An interesting question is whether the multivariate
extension of the GT inequality derived in this article (see Corollary 3.3) can be used to
prove tail bounds for random matrices.
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A. About the Probability Distribution in Corollary 3.3

As observed in [64], we have tr exp(H1 + H2 + H3) � tr exp(H1) exp(H2) exp(H3) in general. Also a more
symmetric conjecture does not hold in general [48], i.e.,

tr exp(H1 + H2 + H3) � tr exp (H1) exp

(
1

2
H2

)

exp (H3) exp

(
1

2
H2

)

. (67)

For the following discussion, let us define

γ (t) := tr A
1
2
3 A

1
2 +

it
2

2 A1A
1
2− it

2
2 A

1
2
3 and κ := tr exp(log A1 + log A2 + log A3) , (68)

for three positive definite matrices A1, A2, and A3. As discussed in (39), Corollary 3.3 implies that

κ ≤
∫ ∞
−∞

dt β0(t)γ (t) =: ξ. (69)

It is a natural question to investigate howmuch freedomwehave in choosing a probability distribution (different
than β0) such that (69) remains valid, where the distribution should be independent of the matrices A1, A2,
and A3. The following two examples indicate that it might be difficult to find a distribution different than β0
that satisfies (69) since it cannot be too narrow (around t = 0) but also not too flat, either. Let us consider the
positive semi-definite matrices [48]:

A1 = 1

4

(

5 2
2 1

)

, A2 = 1

4

(

1 −2
−2 2

)

, and A3 = 1

4

(

8 −2
−2 1

)

. (70)

http://creativecommons.org/licenses/by/4.0/
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−1 0 1

0.35

0.3

0.25

0.2

t

κ for (70)
γ(t) for (70)
ξ for (70)

(a) Example (70)

−1 0 1

0.16

0.15

0.14

t

κ for (71)
γ(t) for (71)
ξ for (71)

(b) Example (71)

Fig. 2. This plot compare γ (t) with κ for the matrices defined in (70) and (71). If we want κ ≤ ∫

μ(dt)γ (t)
to hold for some probability measure μ on R that does not depend on A1, A2 and A3, these two example show
that μ cannot be too narrow (around t = 0) but also not too flat, either

As a second example we consider the positive semi-definite matrices

A1 = 1

8

(

4 2 − i
2 + i 3

)

, A2 = 1

60

(

15 −5 − 3i
−5 + 3i 12

)

, and

A3 = 1

20

(

15 10 − 5i
10 + 5i 11

)

. (71)

Figure 2 compares κ with γ (t). We note that the matrices (70) also show that κ > γ (0) is possible, i.e., a three
matrix extension of the GT inequality without any phases does not hold in general [48].

B. Proof of Lemma 2.1

We want to write PA[X ] = ∑

λ∈spec(A) Pλ X Pλ in the from PA[X ] = ∫

μ(dt)Ait X A−it , where μ is a
probability measure on R. Recalling that A = ∑

λ∈spec(A) λPλ and the fact that the eigenvectors to distinct
eigenvalues of positive semi-definite matrices are orthogonal we find

Ait =
∑

λ∈spec(A)

λit Pλ . (72)

and thus

Ait X A−it =
∑

λ,λ′∈spec(A)

λit (λ′)−it Pλ X Pλ′ . (73)

Defining λ̃ = log λ and λ̃′ = log λ′ we thus require

μ̂(λ̃′ − λ̃) =
∫

μ(dt) exp
( − it (λ̃′ − λ̃)

)

=
∫

μ(dt)λit (λ′)−it = δ{λ = λ′} = δ{λ̃ = λ̃′} , (74)

where μ̂ denotes the Fourier transform of μ. We thus require that (i) μ̂(0) = 1 and (ii) μ̂(λ̃ − λ̃′) = 0 for all
exp(λ̃), exp(λ̃′) ∈ spec(A). Let us define

� := min{|λ̃ − λ̃′| : exp(λ̃), exp(λ̃′) ∈ spec(A), λ̃ �= λ̃′}. (75)

Furthermore for a fixed τ > 0 we define the triangular function

rτ (t) =
{

1 − |t |
τ , if |t | < τ

0 otherwise.
(76)
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We next pick μ̂(ξ) = r �
2

(ξ) which clearly satisfies the requirements (i) and (ii) mentioned above. Its inverse

Fourier transform can be computed as

μ(t) = 1

2π

∫ ∞
−∞

dξ r �
2

(ξ) exp(itξ) = 1 − cos(� t/2)

π� t2/2
. (77)

It is immediate to verify that μ as given in (77) is a probability distribution on R (i.e., μ(t) ≥ 0 for all t ∈ R

and
∫

R
dt μ(t) = 1). This is the distribution that satisfies the assertion of Lemma 2.1 and thus completes the

proof.

C. Proof of Lemma 2.2

LetH denote the Hilbert space of dimension d where the matrices Ax act on. For any x , consider the spectral
decomposition Ax = ∑

k λk |k〉〈k| in Dirac bra-ket notation. Introducing an isometric spaceH′, we define the
vector |vx 〉 ∈ H⊗H′ by |vx 〉 = ∑

k
√

λk |k〉 ⊗ |k〉—i.e., the purification of Ax . Now note that the projectors
(|vx 〉〈vx |)⊗m lie in the symmetric subspace of (H⊗H′)⊗m whose dimension grows as poly(m).7 Moreover,
we have

∫

μ(dx)A⊗m
k =

∫

μ(dx)trH′⊗m (|vx 〉〈vx |)⊗m . (78)

Then by Carathéodory’s theorem (see, e.g., [19, Theorem 18]) there exists a discrete probability measure P
on ∈ I ⊂ X with |I| = poly(m) such that

∫

μ(dx)A⊗m
x =

∑

x∈I
P(x)A⊗m

x and
∫

μ(dx)
∥
∥A⊗m

x
∥
∥

p =
∑

x∈I
P(x)

∥
∥A⊗m

x
∥
∥

p . (79)

If p ∈ (0, 1) the Schatten p-norms only satisfy a weakened version of the triangle inequality (see, e.g., [36,
Equation 20]), which states that

∥
∥
∥
∥
∥

n
∑

x=1

Ax

∥
∥
∥
∥
∥

p

p

≤
n

∑

x=1

‖Ax ‖p
p . (80)

Hence, we find the following chain of inequalities

1

m
log

∥
∥
∥
∥

∫

μ(dx)A⊗m
x

∥
∥
∥
∥

p
= 1

m
log

∥
∥
∥
∥
∥
∥

∑

x∈I
P(x)A⊗m

x

∥
∥
∥
∥
∥
∥

p

(81)

≤ 1

m
log

⎛

⎝
∑

x∈I

∥
∥P(x)A⊗m

x
∥
∥

p
p

⎞

⎠

1
p

(82)

= 1

m
log

⎛

⎝|I| 1p
( 1

|I |
∑

x∈I

∥
∥P(x)A⊗m

x
∥
∥

p
p

) 1
p

⎞

⎠ (83)

≤ 1

m
log

⎛

⎝|I| 1p −1 ∑

x∈I

∥
∥P(x)A⊗m

x
∥
∥

p

⎞

⎠ (84)

= 1

m
log

⎛

⎝
∑

x∈I
P(x)

∥
∥A⊗m

x
∥
∥

p

⎞

⎠ +
1

m

1 − p

p
log |I| (85)

= 1

m
log

(∫

μ(dx)
∥
∥A⊗m

x
∥
∥

p

)

+
log poly(m)

m
, (86)

where the second inequality uses that the map t �→ t
1
p is convex for p ∈ (0, 1). The final step follows from

the fact that |I| = poly(m).

7 This follows from the fact that the dimension of the symmetric subspace ofH⊗m is equal to the number
of types of sequences of d symbols of length m, which is polynomial in m (as shown in (8)).



54 D. Sutter, M. Berta, M. Tomamichel

D. Proof of Theorem 3.1

We follow the argument given in [35, Appendix A], and take care of the explicit conditions on the Schatten
norms of G(z). We recall Hirschman’s strengthening [33] (see also [24, Lemma 1.3.8]) of Hadamard’s three
line theorem.

Lemma D.1 (Hirschman). Let S := {z ∈ C : 0 ≤ Re(z) ≤ 1} and let g(z) be uniformly bounded on S, holo-
morphic on the interior of S and continuous on the boundary. Then for θ ∈ (0, 1), we have

log |g(θ)| ≤
∫ ∞
−∞

dt β1−θ (t) log |g(it)|1−θ + βθ (t) log |g(1 + it)|θ . (87)

Moreover, the assumption that the function is uniformly bounded can be relaxed to

sup
z∈S

exp
( − a|Im(z)|) log |g(z)| ≤ A for some constants A < ∞ and a < π. (88)

We are now prepared to prove Theorem 3.1.

Proof of Theorem 3.1. For x ∈ [0, 1], define qx as the Hölder conjugate of px such that p−1
x + q−1

x = 1.
Hence, using the definition of px in (30), we have

1

qx
= 1 − x

q0
+

x

q1
. (89)

Now for our fixed θ ∈ (0, 1) the operator G(θ) is bounded by assumption and thus allows a polar decom-
position, G(θ) = U�, where � is positive semi-definite and U is a partial isometry [55, Theorem VI.10]
satisfying �U†U = U†U� = �. Then define X (z) via

X (z)† = C
−pθ

(
1−z
q0

+ z
q1

)

�
pθ

(
1−z
q0

+ z
q1

)

U† with C := ‖�‖pθ
= ‖G(θ)‖pθ

< ∞. (90)

We find that z �→ X (z) is anti-holomorphic on S and

‖X (x + iy)‖qx
qx = tr

(

C−1�
)pθ qx

(
1−x
q0

+ x
q1

)

= tr
(

C−1�
)pθ = 1. (91)

Consequently, the Hilbert-Schmidt inner product g(z) := tr X (z)†G(z) is holomorphic and bounded on S
because the Hölder inequality (see, e.g., [34, Theorem 7.8]) yields

|g(x + iy)| ≤ ‖X (x + iy)‖qx ‖G(x + iy)‖px ≤ ‖G(x + iy)‖px , . (92)

Hence, our assumptions on G(z) imply that g(z) satisfies the assumptions of Lemma D.1.
It remains to verify the following relations using the Hölder inequality in (92):

g(θ) = tr X (θ)G(θ) = C
−pθ

1
qθ tr�pθ −1U†U� = C1−pθ tr�pθ = ‖G(θ)‖pθ

, (93)
|g(it)| ≤ ‖G(it)‖p0 , and |g(1 + it)| ≤ ‖G(1 + it)‖p1 . (94)

Substituting this into Lemma D.1 yields the desired result. ��

E. Proof of Lemma 3.4

The first expression for the derivative given in (41) is well known and can be derived using integral represen-
tations of the operator logarithm (see, e.g., [13]). Now let A = ∑

k μk |k〉〈k| for an orthonormal eigenbasis
{|k〉}k of A. The claim is thus equivalent to

∫ ∞
−∞

dt β0(t) μ
− 1

2− it
2

i μ
− 1

2 +
it
2

j 〈k|H |�〉 =
∫ ∞
0

dλ (μi + λ)−1 (

μ j + λ
)−1 〈k|H |�〉 ∀ k, �. (95)
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Thus, it suffices to show that

1√
xy

∫ ∞
−∞

dt β0(t)
( y

x

) it
2 =

∫ ∞
0

dλ (x + λ)−1 (y + λ)−1 ∀ x, y > 0. (96)

Since β0(t) is symmetric in t , we have

1√
xy

∫ ∞
−∞

dt β0(t)
( y

x

) it
2 = 1√

xy

∫ ∞
−∞

dt β0(t) cos

(
t

2
log

( y

x

))

= 1

y − x
log

( y

x

)

, (97)

and the claim follows because we also have
∫ ∞
0

dλ (x + λ)−1 (y + λ)−1 = 1

y − x
log

( y

x

)

. (98)

F. Additional Recoverability Bounds

Thepurpose of this section is to present twoadditional entropy inequalities that also follow from themultivariate
extension of the GT inequality given by Corollary 3.3. These two bounds have been proven before [18,35].

Proposition 1. Let ρAB and σAB be positive semi-definite matrices on HA ⊗ HB such that ρAB � σAB

and tr ρAB = 1 and let R[t]
σAB ,trB

be as defined in (53). Then

−
∫ ∞
−∞

dt β0(t) log F
(

ρAB ,R[t]
σAB ,trB

(ρA)
) ≤ D(ρAB‖σAB ) − D(ρA‖σA) (99)

≤
∫ ∞
−∞

dt β0(t)D2
(

ρAB
∥
∥R[t]

σAB ,trB
(ρA)

)

, (100)

where D2(ρ‖σ) := log trρ2σ−1 is Petz’ Rényi relative entropy of order 2.

Proof. Klein’s inequality [37] states that for any Hermitian matrices H1, H2 and for any differentiable convex
function f : R → R, we have tr

(

f (H1) − f (H2) − (H1 − H2) f ′(H2)
) ≥ 0. If we apply Klein’s inequality

with f (·) = exp(·), H1 = G1 + G2 and H2 = G1 + id tr G2 exp(G1) we obtain the Peierls–Bogoliubov
inequality (see, e.g., [56]) which tells us that for Hermitian matrices G1 and G2, we have

−tr G2 exp(G1) ≥ − log tr exp(G1 + G2). (101)

We first prove (99). Let ρAB and σAB be positive semi-definite matrices onHA ⊗HB such that ρAB � σAB
and trρAB = 1. For G1 = log ρAB and G2 = 1

2 (log ρA ⊗ idB + log σAB − log σA ⊗ idB − log ρAB ), this
gives

D(ρAB‖σAB ) − D(ρA‖σA) (102)

≥ −2 log tr exp

(
1

2
(log ρA ⊗ idB + log σAB − log σA ⊗ idB + log ρAB )

)

(103)

≥ −2
∫ ∞
−∞

dt β0(t) log

∥
∥
∥
∥
ρ

1+it
2

AB σ
1+it
2

AB

(

σ
− 1+it

2
A ρ

1+it
2

A ⊗ idB

)
∥
∥
∥
∥
1

(104)

= −
∫ ∞
−∞

dt β0(t) log F

(

ρAB , σ
1+it
2

AB

(

σ
− 1+it

2
A ρAσ

− 1−it
2

A ⊗ idB

)

σ
1−it
2

AB

)

, (105)

where the penultimate step uses the extension of the GT inequality from Corollary 3.3 for n = 4 and p = 1.
It remains to prove (100). Applying the Peierls–Bogoliubov inequality (101) for G1 = log ρAB and

G2 = log σA ⊗ idB + log ρAB − log ρA ⊗ idB − log σAB , we find

D(ρAB‖σAB ) − D(ρA‖σA)

≤ log tr exp(2 log ρAB + log σA − log ρA − log σAB ) (106)

≤
∫ ∞
−∞

dt β0(t) log trρ
2
ABσ

− 1+it
2

AB

(

σ
1+it
2

A ρ−1
A σ

1−it
2

A ⊗ idB

)

σ
− 1−it

2
AB (107)

=
∫ ∞
−∞

dt β0(t) D2

(

ρAB

∥
∥
∥
∥
σ

1+it
2

AB

(

σ
− 1+it

2
A ρAσ

1−it
2

A ⊗ idB

)

σ
1−it
2

AB

)

, (108)

where the second inequality follows by Corollary 3.3 applied for n = 4 and p = 2. ��
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Following the same line of arguments as in the proof in the proof of Corollary 4.2, (99) can be extended to the
case of arbitrary trace-preserving completely positive maps. This then reproduces a result in [35, Section 3].
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