Skip to main content
Log in

Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We prove Lieb-Robinson bounds for systems defined on infinite dimensional Hilbert spaces and described by unbounded Hamiltonians. In particular, we consider harmonic and certain anharmonic lattice systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Al-Saidi W.A., Stroud D.: Phase phonon spectrum and melting in a quantum rotor model with diagonal disorder. Phys Rev B 67, 024511 (2003)

    Article  ADS  Google Scholar 

  2. Aoki K., Lukkarinen J., Spohn H.: Energy Transport in Weakly Anharmonic Chains. J. Stat. Phys. 124, 1105 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  3. Bonetto F., Lebowitz J.L., Rey-Bellet L. et al.: Fourier’s Law: a Challenge to Theorists. In: Fokas, A. (eds) Mathematical Physics 2000., pp. 128–150. Imperial College Press, London (2000)

    Google Scholar 

  4. Bratteli O., Robinson D.: Operator Algebras and Quantum Statistical Mechanics 1. Second Edition. Springer Verlag, Berlin-Heidelberg-New York (1987)

    MATH  Google Scholar 

  5. Bratteli O., Robinson D.: Operator Algebras and Quantum Statistical Mechanics 2. Second Edition. Springer Verlag, Berlin-Heidelberg-New York (1997)

    MATH  Google Scholar 

  6. Bravyi S., Hastings M.B., Verstraete F.: Lieb-Robinson bounds and the generation of correlations and topological quantum order. Phys. Rev. Lett. 97, 050401 (2006)

    Article  ADS  Google Scholar 

  7. Buerschaper, O.: Dynamics of correlations and quantum phase transitions in bosonic lattice systems. Diploma Thesis, Ludwig-Maximilians University, Munich, 2007

  8. Buttà P., Caglioti E., Di Ruzza S., Marchioro C.: On the propagation of a perturbation in an anharmonic system. J. Stat. Phys. 127(2), 313–325 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Cramer M., Eisert J.: Correlations, spectral gap, and entanglement in harmonic quantum systems on generic lattices. New J. Phys. 8, 71 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  10. Eisert J., Osborne T.J.: General entanglement scaling laws from time evolution. Phys. Rev. Lett. 97, 150404 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Gregor K., Huse D.A., Sondhi S.L.: Spin-nematic order in the frustrated pyrochlore-lattice quantum rotor model. Phys. Rev. B 74, 024425 (2006)

    Article  ADS  Google Scholar 

  12. Hastings M.B.: Lieb-Schultz-Mattis in higher dimensions. Phys. Rev. B 69, 104431 (2004)

    Article  ADS  Google Scholar 

  13. Hastings, M.B.: An Area Law for One Dimensional Quantum Systems. J. Stat. Mech. P08024 (2007)

  14. Hastings M.B., Koma T.: Spectral gap and exponential decay of correlations. Commun. Math. Phys. 265(3), 781–804 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Lanford O.E., Lebowitz J., Lieb E.H.: Time evolution of infinite anharmonic systems. J. Stat. Phys. 16(6), 453–461 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  16. Lieb E.H., Robinson D.W.: The finite group velocity of quantum spin systems. Commun. Math. Phys. 28, 251–257 (1972)

    Article  ADS  MathSciNet  Google Scholar 

  17. Marchioro C., Pellegrinotti A., Pulvirenti M., Triolo L.: Velocity of a perturbation in infinite lattice systems. J. Stat. Phys. 19(5), 499–510 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  18. Nachtergaele B., Sims R.: Lieb-Robinson bounds and the exponential clustering theorem. Commun. Math. Phys. 265, 119–130 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Nachtergaele B., Ogata Y., Sims R.: Propagation of Correlations in Quantum Lattice Systems. J. Stat. Phys. 124(1), 1–13 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Nachtergaele B., Sims R.: A multi-dimensional Lieb-Schultz-Mattis Theorem. Commun. Math. Phys. 276, 437–472 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  21. Nachtergaele, B., Sims, R.: Locality in Quantum Spin Systems. 0712.3318VI[math-ph], 2007, to appear in Proc. of ICMPXV, Rio de Janeiro, 2006

  22. Polak T.P., Kopeć T.K.: Quantum rotor description of the Mott-insulator transition in the Bose-Hubbard model. Phys. Rev. B 76, 094503 (2007)

    Article  ADS  Google Scholar 

  23. Schuch N., Cirac J.I., Wolf M.M.: Quantum states on Harmonic lattices. Commun. Math. Phys. 267, 65 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  24. Spohn H.: The Phonon Boltzmann Equation, Properties and Link to Weakly Anharmonic Lattice Dynamics. J. Stat. Phys. 124, 1041–1104 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Nachtergaele.

Additional information

Communicated by M. B. Ruskai

Copyright © 2008 by the authors. This article may be reproduced in its entirety for non-commercial purposes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nachtergaele, B., Raz, H., Schlein, B. et al. Lieb-Robinson Bounds for Harmonic and Anharmonic Lattice Systems. Commun. Math. Phys. 286, 1073–1098 (2009). https://doi.org/10.1007/s00220-008-0630-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-008-0630-2

Keywords

Navigation