Skip to main content
Log in

An in-depth study of the volatile variability of chinotto (Citrus myrtifolia Raf.) induced by the extraction procedure

  • OriginalPaper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

A variety of extraction methodologies were applied to chinotto (Citrus myrtifolia) fruits from Sicily, along with sensory and chemical analyses. By gas chromatographic techniques, either in monodimensional (GC-FID, GC–MS) or in multidimensional (MDGC) fashion, it was established how the isolation procedure affected the volatile fingerprint of such fruit. In general, limonene, linalyl acetate, myrcene, β-pinene, α-pinene, (E)-β-ocimene, linalool and geranyl acetate resulted to be the predominant volatiles. However, although revealed at lower levels, other compounds, such as trans-linalool oxide, perilla alcohol, trans-limonene oxide, may be responsible for peculiar olfactory notes. Compounds such as linalool, myrcene, β-pinene, octanal, decanal, and geranyl and perillyl acetates were selectively extracted by blending plus the addition of solvents. (E)-β-Ocimene and nootkatone were considerably expressed in hand-squeezed and solvent-extracted samples, respectively. On the other hand, linalyl acetate was the most abundant compound in samples extracted by solvent. Concerning the sensory evaluations, odor characters varied depending on the oil extraction methodology. Indeed, the flowery and citrus notes were perceived in all samples by the majority of panelists; conversely, the minty attribute was the one least smelled in five out of six samples. Enantio-MDGC analysis highlighted seven chiral pairs, with the following enantiomeric ratios: (−)/(+) limonene (1.8/98.2), (−)/(+) linalyl acetate (99.4/0.6), (+)/(−) β-pinene (99.8/0.2), (−)/(+) linalool (5.5/94.5), (+)/(−) terpinen-4-ol (48.9/51.1), (−)/(+) α-pinene (22.3/77.7) and (−)/(+) α-terpineol (20.5/79.5).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Scordino M, Sabatino L, Belligno A, Gagliano G (2011) Flavonoids and furocoumarins distribution of unripe chinotto (Citrus × myrtifolia Rafinesque) fruit: beverage processing homogenate and juice characterization. Eur Food Res Technol 233:759–767

    Article  CAS  Google Scholar 

  2. Webber HJ, Batchelor LD (1943) In: University of California Press (ed) The citrus industry. vol 1. History, botany and breeding. University of California Press, Berkeley

  3. Chinotto: cronache da un altro bere (2018) http://chinotto.cpenti.it/2015. Accessed 20 July 2018

  4. Cautela D, Pirrello AG, Esposito C, Minasi P (2004) Composition of chinotto (Citrus myrtifolia): part I. Essenze Deriv Agrum 74:49–55

    Google Scholar 

  5. Cautela D, Pirrello AG, Esposito C, Siano F, Castaldo D (2004) Determination of trace levels of heavy metals in citrus juices: chinotto and red orange. Essenze Deriv Agrum 74:11–17

    CAS  Google Scholar 

  6. Barreca D, Bellocco E, Caristi C, Leuzzi U, Gattuso G (2010) Flavonoid composition and antioxidant activity of juices from chinotto (Citrus × myrtifolia Raf.) fruits at different ripening stages. J Agric Food Chem 58:3031–3036

    Article  CAS  PubMed  Google Scholar 

  7. Scordino M, Sabatino L, Belligno A, Gagliano G (2011) Characterization of polyphenolic compounds in unripe chinotto (Citrus × myrtifolia) fruit by HPLC/PDA/ESI/MS-MS. Nat Prod Commun 6:1857–1862

    CAS  PubMed  Google Scholar 

  8. Barreca D, Bellocco E, Caristi C, Leuzzi U, Gattuso G (2011) Elucidation of the flavonoid and furocoumarin composition and radical-scavenging activity of green and ripe chinotto (Citrus × myrtifolia Raf.) fruit tissues, leaves and seeds. Food Chem 129:1504–1512

    Article  CAS  Google Scholar 

  9. Protti M, Valle F, Poli F, Raggi MA, Mercolini L (2015) Bioactive molecules as authenticity markers of Italian chinotto (Citrus × myrtifolia) fruits and beverages. J Pharm Biomed Anal 104:75–80

    Article  CAS  PubMed  Google Scholar 

  10. Costa R, Salvo A, Rotondo A, Bartolomeo G, Pellizzeri V, Saija E, Arrigo S, Interdonato M, Trozzi A, Dugo G (2018) Combination of separation and spectroscopic analytical techniques: application to compositional analysis of a minor citrus species. Nat Prod Res. https://doi.org/10.1080/14786419.2018.1428597

    Article  PubMed  Google Scholar 

  11. Chialva F, Doglia G (1990) Essential oil constituents of chinotto (Citrus aurantium L. var. myrtifolia Guill.). J Essent Oil Res 2:33–35

    Article  CAS  Google Scholar 

  12. Verzera A, Stagno d’Alcontres I, Trozzi A, Saitta M (1991) On the genuineness of citrus essential oils. Part XXXVIII. The composition of the volatile fraction of chinotto essential oil. Essenze Deriv Agrum 61:323–330

    CAS  Google Scholar 

  13. Salvo A, Bruno M, La Torre GL, Vadalà R, Mottese AF, Saija E, Mangano V, Casale KE, Cicero N, Dugo G (2016) Interdonato lemon from Nizza di Sicilia (Italy): chemical composition of hexane extract of lemon peel and histochemical investigation. Nat Prod Res 30:1517–1525

    Article  CAS  PubMed  Google Scholar 

  14. Adams RP (2007) In: Allured Publishing Corporation (ed) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, Carol Stream

  15. Mondello L (2011) FFNSC 2: Flavors and fragrances of natural and synthetic compounds, mass spectral database. Wiley, Hoboken

    Google Scholar 

  16. Nist WebBook (2018) National Institute of Standard and Technology. https://webbook.nist.gov/chemistry. Accessed 10 July 2018

  17. Deterre S, Rega B, Delarue J, Decloux M, Lebrun M, Giampaoli P (2012) Identification of key aroma compounds from bitter orange (Citrus aurantium L.) products: essential oil and macerate–distillate extract. Flavour Fragr J 27:77–88

    Article  CAS  Google Scholar 

  18. Mastello RB, Capobiango M, Chin ST, Monteiro M, Marriott PJ (2015) Identification of odour-active compounds of pasteurised orange juice using multidimensional gas chromatography techniques. Food Res Int 75:281–288

    Article  CAS  PubMed  Google Scholar 

  19. Minh Tu NT, Onishi Y, Choi HS, Kondo Y, Bassore SM, Ukeda H, Sawamura M (2002) Characteristic odor components of Citrus sphaerocarpa Tanaka (Kabosu) cold-pressed peel oil. J Agric Food Chem 50:2908–2913

    Article  CAS  PubMed  Google Scholar 

  20. Costa R, Albergamo A, Bua GD, Saija E, Dugo G (2017) Determination of flavor constituents in particular types of flour and derived pasta by heart-cutting multidimensional gas chromatography coupled with mass spectrometry and multiple headspace solid-phase microextraction. LWT Food Sci Technol 86:99–107

    Article  CAS  Google Scholar 

  21. Bua GD, Albergamo A, Annuario G, Zammuto V, Costa R, Dugo G (2017) High-throughput ICP-MS and chemometrics for exploring the major and trace element profile of the Mediterranean sepia ink. Food Anal Methods 10:1181–1190

    Article  Google Scholar 

  22. Albergamo A, Mottese AF, Bua GD, Caridi F, Sabatino G, Barrega L, Costa R, Dugo G (2018) Discrimination of the Sicilian prickly pear (Opuntia ficus-indica L., CV. Muscaredda) according to the provenance by testing unsupervised and supervised chemometrics. J Food Sci. https://doi.org/10.1111/1750-3841.14382

    Article  PubMed  Google Scholar 

  23. Albergamo A, Bua GD, Rotondo A, Bartolomeo G, Annuario G, Costa R, Dugo G (2018) Transfer of major and trace elements along the “farm-to-fork” chain of different whole grain products. J Food Comp Anal 66:212–220

    Article  CAS  Google Scholar 

  24. Mottese AF, Albergamo A, Bartolomeo G, Bua GD, Rando R, De Pasquale P, Saija E, Donato D, Dugo G (2018) Evaluation of fatty acids and inorganic elements by multivariate statistics for the traceability of the Sicilian Capparis spinosa L. J Food Comp Anal 72:64–66

    Article  CAS  Google Scholar 

  25. Murase T, Misawa K, Haramisu S, Minegishi Y, Hase T (2010) Nootkatone, a characteristic constituent of grapefruit, stimulates energy metabolism and prevents diet-induced obesity by activating AMPK. Am J Physiol Endocrinol Metab 299:E266–E275

    Article  CAS  PubMed  Google Scholar 

  26. Haro-Guzmán L (2011) In: CRC Press (ed) Citrus oils—composition, advanced analytical techniques, contaminants, and biological activity. CRC Press, Boca Raton

  27. Guenter Berger R (2007) Berger RG (ed) Flavours and fragrances. Chemistry, bioprocessing and sustainability. Springer, Berlin Heidelberg

    Chapter  Google Scholar 

  28. Choi HS (2003) Character impact odorants of Citrus Hallabong [(C. unshiu Marcov × C. sinensis Osbeck) × C. reticulata Blanco] cold-pressed peel oil. J Agric Food Chem 51:2687–2692

    Article  CAS  PubMed  Google Scholar 

  29. Sciarrone D, Costa R, Ragonese C, Tranchida PQ, Santi L, Dugo P, Dugo G, Mondello L (2011) Application of a multidimensional gc system with simultaneous mass spectrometric and FID detection to the analysis of sandalwood oil. J Chromatogr A 1218:137–142

    Article  CAS  PubMed  Google Scholar 

  30. Dugo G, Mondello L (2011) In: CRC Press (ed) Citrus oils—composition, advanced analytical techniques, contaminants, and biological activity. CRC Press, Boca Raton

  31. Lo Presti M, Sciarrone D, Crupi ML, Costa R, Ragusa S, Dugo G, Mondello L (2008) Evaluation of the volatile and chiral composition in Pistacia lentiscus L. essential oil. Flavour Fragr J 23:249–257

    Article  CAS  Google Scholar 

  32. Costa R, Zellner B, Crupi ML, De Fina MR, Valentino MR, Dugo P, Dugo G, Mondello L (2008) Gas chromatography-mass spectrometry (GC–MS), gas chromatography-olfactometry (GC-O) and enantio-GC investigation on the essential oil of Tarchonanthus camphoratus L. Flavour Fragr J 23:40–48

    Article  CAS  Google Scholar 

  33. Liberto E, Cagliero C, Sgorbini B, Bicchi C, Sciarrone D, D’Acampora Zellner B, Mondello L, Rubiolo P (2008) Enantiomer identification in the flavour and fragrance field by “interactive” combination of linear retention indices from enantioselective gas chromatography and mass spectrometry. J Chromatogr A 1195:117–126

    Article  CAS  PubMed  Google Scholar 

  34. Di Bella G, Naccari C, Bua GD, Rastrelli L, Lo Turco V, Potortì AG, Dugo G (2016) Mineral composition of some varieties of beans from mediterranean and tropical areas. Int J Food Sci Nutr 67:239–248

    Article  CAS  PubMed  Google Scholar 

  35. Potortì AG, Lo Turco V, Saitta M, Bua GD, Tropea A, Dugo G, Di Bella G (2017) Chemometric analysis of minerals and trace elements in Sicilian wines from two different grape cultivars. Nat Prod Res 31:1000–1005

    Article  CAS  Google Scholar 

  36. Potortì AG, Di Bella G, Mottese AF, Bua GD, Fede MR, Sabatino G, Salvo A, Somma R, Dugo G, Lo Turco V (2018) Traceability of Protected Geographical Indication (PGI) Interdonato lemon pulps by chemometric analysis of the mineral composition. J Food Compos Anal 69:122–128

    Article  CAS  Google Scholar 

  37. Albergamo A, Rotondo A, Salvo A, Pellizzeri V, Bua GD, Maggio A, Dugo G (2017) Metabolite and mineral profiling of “Violetto di Niscemi” and “Spinoso di Menfi” globe artichokes by 1H-NMR and ICP-MS. Nat Prod Res 31:990–999

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rosaria Costa or Ambrogina Albergamo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salvo, A., Costa, R., Albergamo, A. et al. An in-depth study of the volatile variability of chinotto (Citrus myrtifolia Raf.) induced by the extraction procedure. Eur Food Res Technol 245, 873–883 (2019). https://doi.org/10.1007/s00217-019-03232-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-019-03232-0

Keywords

Navigation