European Food Research and Technology

, Volume 225, Issue 5–6, pp 821–830 | Cite as

The effects of wheat sourdough on glutenin patterns, dough rheology and bread properties

  • Duygu Gocmen
  • Ozan Gurbuz
  • Ayşegul Yıldırım Kumral
  • Adnan Fatih Dagdelen
  • Ismet Sahin
Original Paper


Sourdough was prepared with cellular suspension containing 109 cfu of each strain mL−1 and incubated at 28 °C for 24 h and at 37 °C for 4 h. Two different sourdough levels (20 and 40%) were used in bread dough preparation. The bread doughs were proofed at 30 °C and 85% relative humidity for 60/120/180 min. When glutenin changes that occurred in samples 17, 18, 19, and 20 (40% SD 28) are compared with those that appeared in controls, it is obvious that, the relative intensities of some of the protein bands slightly decreased and a few fainter protein bands appeared (which did not exist in controls). A few fainter protein bands corresponding to the MM ≈ 25 kDa (high-mobility region) and the MM ≈ 66 kDa (low-mobility region) were appeared in the same samples. In the samples prepared with 20% sourdoughs incubated at 28 or 37 °C, the bands were still evident after 180 min of proof. This can be explained that glutenin fractions were not hydrolysed in these applications due to the delay in pH drop. The use of 40% sourdough incubated at 28 °C for 24 h resulted in sticky doughs and breads with lower volume, harder texture, unsatisfactory crumb grain and unpleasant flavour than the rest of the samples. The use of sourdoughs incubated at 37 °C for 4 h caused positive effect on loaf volumes, specific loaf volumes and crumb structure.


Lactic starter Sourdough SDS-PAGE Glutenin 



The authors gratefully acknowledge Uludag University, Scientific Research Commission (Project No: 2003/2) and TUBITAK (The Scientific and Technological Research Council of Turkey) (Project No: Tovag-105O004) for financial support of this research project. We thank to Toru Flour Milling Co. Ltd. (Bandırma, Turkey) for assistance with the flour analysis and bread making. The authors are also grateful to Jossi Loponen for proof reading of the manuscript.


  1. 1.
    Katina K, Arendt E, Liukkonen K H, Autio K, Flander L, Poutanen L (2005) Trends Food Sci Technol 16:104–112CrossRefGoogle Scholar
  2. 2.
    Sugihara TF (1985) In: Gilliland SE (ed) Bacterial starter cultures for foods. CRC Press, Florida, pp 119–127Google Scholar
  3. 3.
    Martinez-Anaya MA (2003) In: Kulp K, Lorenz K (eds) Handbook of dough fermentations. Marcel Dekker, New York, pp 63–95Google Scholar
  4. 4.
    Leroy F, De Vuyst L (2004) Trends Food Sci Technol 15:67–78CrossRefGoogle Scholar
  5. 5.
    Gobbetti M, Smacchi E, Corsetti A (1996) Appl Environ Microbiol 62:3220–3226Google Scholar
  6. 6.
    Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Appl Environ Microbiol 68(2):623–633CrossRefGoogle Scholar
  7. 7.
    Gobbetti M (1998) Trends Food Sci Technol 9:267–274CrossRefGoogle Scholar
  8. 8.
    Schieberle P (1996) Adv Food Sci 18:237–244Google Scholar
  9. 9.
    Spicher G, Schröder R, Stephan H (1980) Z Lebensm-Unters Forsch 171:119–129CrossRefGoogle Scholar
  10. 10.
    Wehrle K, Crowe N, Boeijen IV, Arendt EK (1999) Eur Food Res Technol 209:428–433CrossRefGoogle Scholar
  11. 11.
    Linko YY, Javanainen P, Linko S (1997) Trends Food Sci Technol 8:339–344CrossRefGoogle Scholar
  12. 12.
    Gerez CL, Rollan GC, De Valdez GF (2006) Lett Appl Microbiol 42:459–464CrossRefGoogle Scholar
  13. 13.
    Lorri W, Svanberg U (1995) Ecol Food Nutr 34:65–81CrossRefGoogle Scholar
  14. 14.
    Steinkraus KH (1996) Handbook of indigenous fermented foods. Marcel Dekker, New YorkGoogle Scholar
  15. 15.
    Zotta T, Piraino P, Ricciardi A, Mc Sweeney PLH, Parente E (2006) J Agric Food Chem 54:2567–2574CrossRefGoogle Scholar
  16. 16.
    Thiele C, Grassi S, Ganzle M (2004) J Agric Food Chem 52:1307–1314CrossRefGoogle Scholar
  17. 17.
    Shewry PR, Halford NG (2002) J Exp Bot 370:947–958CrossRefGoogle Scholar
  18. 18.
    Maruyama-Funatsuki W, Takata K, Nishio Z, Tabiki T, Yahata E, Kato A, Saito K, Funatsuki H, Saruyama H, Yamauchi H (2004) Plant Breed 123:355–360CrossRefGoogle Scholar
  19. 19.
    Shewry PR, Tatham AS (1997a) J Sci Food Agric 73:397–406CrossRefGoogle Scholar
  20. 20.
    Shewry PR, Tatham AS (1997b) J Cereal Sci 25:207–227CrossRefGoogle Scholar
  21. 21.
    Shewry PR, Popineau Y, Lafiandra D, Belton P (2001) Trends Food Sci Technol 11:433–441CrossRefGoogle Scholar
  22. 22.
    Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) J Cereal Sci 4:97–106CrossRefGoogle Scholar
  23. 23.
    Wrigley CW, Bietz JA (1988) In: Pomeranz Y (ed) Wheat chemistry and technology, vol 3. AACC, St. Paul, MN, USA, pp 159–275Google Scholar
  24. 24.
    Khatkar BS, Bell AE, Schofield JD (1996) J Sci Food Agric 72:71–85CrossRefGoogle Scholar
  25. 25.
    Gupta RB, Paul JG, Cornish GB, Palmer GA, Bekes F, Rathjen AJ (1994) J Cereal Sci 19:9–17CrossRefGoogle Scholar
  26. 26.
    Payne PI, Holt LM, Jackson EA, Law CN (1984) Philos Trans R Soc Lond B Biol Sci 304:359–371CrossRefGoogle Scholar
  27. 27.
    Ng PKW, Bushuk W (1988) Cereal Chem 65:408–413Google Scholar
  28. 28.
    Bean SR, Lookhart GL (2000) J Chrom A 881:23–36CrossRefGoogle Scholar
  29. 29.
    Khan K, Nygard G, Pogna NE, Redaelli R, Ng PKW, Fido RJ, Shewry PR (2003) In: Shewry PR, Lookhart GL (eds) Wheat gluten protein analysis. AACC Inc, St. Paul, MN, USA, pp 31–48Google Scholar
  30. 30.
    ICC (1976) Int Assoc for Cereal Sci and Tech. ICC Standard No: 110/1 (revised)Google Scholar
  31. 31.
    ICC (1990) Int Assoc for Cereal Sci and Tech. ICC Standard No: 104/1 (revised)Google Scholar
  32. 32.
    ICC (1994) Int Assoc for Cereal Sci and Tech. ICC Standard No: 105/2 (revised)Google Scholar
  33. 33.
    ICC (1984) Int Assoc for Cereal Sci and Tech. ICC Standard No: 106/2 (revised)Google Scholar
  34. 34.
    ICC (1992a) Int Assoc for Cereal Sci and Tech. ICC Standard No: 115/1 (revised)Google Scholar
  35. 35.
    ICC (1992b) Int Assoc for Cereal Sci and Tech. ICC Standard No: 114/1 (revised)Google Scholar
  36. 36.
    Crowley P, Schober TJ, Clarke CI, Arendt EK (2002) Eur Food Res Technol 214:489–496CrossRefGoogle Scholar
  37. 37.
    Di Cagno R, De Angelis M, Corsetti A, Lavermicocca P, Arnault P, Tossut P, Gallo G, Gobbetti M (2003) Food Microbiol 20:67–75CrossRefGoogle Scholar
  38. 38.
    Pelshenke PF, Boilling H, Hampel G, Kempw W, Manger A, Rotsch A, Schulb S, Spincher G, Tekg G (1964) Standard methoden für getraide mehlund brot. 4. Anflage. Iverlag Meritz Scheafer, Detmold, p 159Google Scholar
  39. 39.
    Paramithiotis S, Chouliaras Y, Tsakalidou E, Kalantzopoulos G (2005) Process Biochem 40:2813–2819CrossRefGoogle Scholar
  40. 40.
    Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H (2004) Cereal Chem 81(1):87–93CrossRefGoogle Scholar
  41. 41.
    Laemmli UK (1970) Nature 227:680–685CrossRefGoogle Scholar
  42. 42.
    Shi Q, Jackowski G (1998) In: Hames BD (ed) Gel electrophoresis of proteins: a practical approach, 3rd edn. Oxford University Press, Oxford, UK, pp 1–52Google Scholar
  43. 43.
    Ng PKW, Bushuk W (1987) Cereal Chem 64:324–327Google Scholar
  44. 44.
    Minitab (1998) Minitab reference manual (12.1). Minitab Inc., State University of MichiganGoogle Scholar
  45. 45.
    MSTAT (1980) MSTAT user's guide: statistics, version 5. State University of MichiganGoogle Scholar
  46. 46.
    Sivri D, Köksel H, Bushuk W (1998) New Zeland J Crop Horticult Sci 26:117–125Google Scholar
  47. 47.
    Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Trends Food Sci Technol 16:57–69CrossRefGoogle Scholar
  48. 48.
    Collar Esteve C, De Barber CB, Martinez-Anaya MA (1994) J Food Sci 59(3):629–633CrossRefGoogle Scholar
  49. 49.
    Spicher G, Nierle W (1988) Appl Microbiol Biotechnol 28:487–492CrossRefGoogle Scholar
  50. 50.
    Thiele C, Ganzle MG, Vogel RF (2002) Cereal Chem 79:45–51CrossRefGoogle Scholar
  51. 51.
    Gobetti M, Smacchi E, Fox P, Stepaniak L, Corsetti A (1996) Lebensm Wiss Technol 29:561–569CrossRefGoogle Scholar
  52. 52.
    Corsetti A, Gobetti M, Balestrieri F, Paoletti F, Russi L, Rossi J (1998) J Food Sci 63:347–351CrossRefGoogle Scholar
  53. 53.
    Kawamura Y, Yonezawa D (1982) Agric Biol Chem 46:767–773Google Scholar
  54. 54.
    Pizzinatto A, Hoseney RC (1980) Cereal Chem 57:185–188Google Scholar
  55. 55.
    Clarke CI, Schober TJ, Dockery P, Sullivan KO, Arendt EK (2004) Cereal Chem 81(3):409–417CrossRefGoogle Scholar
  56. 56.
    Pepe O, Villani F, Oliviero D, Greco T, Coppola S (2003) Int J Food Microbiol 84:319–326CrossRefGoogle Scholar
  57. 57.
    Tsen CC (1966) Cereal Chem 43:456–460Google Scholar
  58. 58.
    Tanaka K, Frukawa K, Matsumoto H (1967) Cereal Chem 44:675–680Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Duygu Gocmen
    • 1
  • Ozan Gurbuz
    • 1
  • Ayşegul Yıldırım Kumral
    • 1
  • Adnan Fatih Dagdelen
    • 2
  • Ismet Sahin
    • 1
  1. 1.Department of Food EngineeringUludag University, Faculty of AgricultureBursaTurkey
  2. 2.Food Control and Research InstituteRepublic of Turkey Agriculture and Rural AffairsHurriyet-BursaTurkey

Personalised recommendations