Skip to main content
Log in

The effects of wheat sourdough on glutenin patterns, dough rheology and bread properties

  • Original Paper
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Sourdough was prepared with cellular suspension containing 109 cfu of each strain mL−1 and incubated at 28 °C for 24 h and at 37 °C for 4 h. Two different sourdough levels (20 and 40%) were used in bread dough preparation. The bread doughs were proofed at 30 °C and 85% relative humidity for 60/120/180 min. When glutenin changes that occurred in samples 17, 18, 19, and 20 (40% SD 28) are compared with those that appeared in controls, it is obvious that, the relative intensities of some of the protein bands slightly decreased and a few fainter protein bands appeared (which did not exist in controls). A few fainter protein bands corresponding to the MM ≈ 25 kDa (high-mobility region) and the MM ≈ 66 kDa (low-mobility region) were appeared in the same samples. In the samples prepared with 20% sourdoughs incubated at 28 or 37 °C, the bands were still evident after 180 min of proof. This can be explained that glutenin fractions were not hydrolysed in these applications due to the delay in pH drop. The use of 40% sourdough incubated at 28 °C for 24 h resulted in sticky doughs and breads with lower volume, harder texture, unsatisfactory crumb grain and unpleasant flavour than the rest of the samples. The use of sourdoughs incubated at 37 °C for 4 h caused positive effect on loaf volumes, specific loaf volumes and crumb structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Katina K, Arendt E, Liukkonen K H, Autio K, Flander L, Poutanen L (2005) Trends Food Sci Technol 16:104–112

    Article  CAS  Google Scholar 

  2. Sugihara TF (1985) In: Gilliland SE (ed) Bacterial starter cultures for foods. CRC Press, Florida, pp 119–127

  3. Martinez-Anaya MA (2003) In: Kulp K, Lorenz K (eds) Handbook of dough fermentations. Marcel Dekker, New York, pp 63–95

  4. Leroy F, De Vuyst L (2004) Trends Food Sci Technol 15:67–78

    Article  CAS  Google Scholar 

  5. Gobbetti M, Smacchi E, Corsetti A (1996) Appl Environ Microbiol 62:3220–3226

    CAS  Google Scholar 

  6. Di Cagno R, De Angelis M, Lavermicocca P, De Vincenzi M, Giovannini C, Faccia M, Gobbetti M (2002) Appl Environ Microbiol 68(2):623–633

    Article  CAS  Google Scholar 

  7. Gobbetti M (1998) Trends Food Sci Technol 9:267–274

    Article  CAS  Google Scholar 

  8. Schieberle P (1996) Adv Food Sci 18:237–244

    CAS  Google Scholar 

  9. Spicher G, Schröder R, Stephan H (1980) Z Lebensm-Unters Forsch 171:119–129

    Article  Google Scholar 

  10. Wehrle K, Crowe N, Boeijen IV, Arendt EK (1999) Eur Food Res Technol 209:428–433

    Article  CAS  Google Scholar 

  11. Linko YY, Javanainen P, Linko S (1997) Trends Food Sci Technol 8:339–344

    Article  CAS  Google Scholar 

  12. Gerez CL, Rollan GC, De Valdez GF (2006) Lett Appl Microbiol 42:459–464

    Article  CAS  Google Scholar 

  13. Lorri W, Svanberg U (1995) Ecol Food Nutr 34:65–81

    Article  Google Scholar 

  14. Steinkraus KH (1996) Handbook of indigenous fermented foods. Marcel Dekker, New York

    Google Scholar 

  15. Zotta T, Piraino P, Ricciardi A, Mc Sweeney PLH, Parente E (2006) J Agric Food Chem 54:2567–2574

    Article  CAS  Google Scholar 

  16. Thiele C, Grassi S, Ganzle M (2004) J Agric Food Chem 52:1307–1314

    Article  CAS  Google Scholar 

  17. Shewry PR, Halford NG (2002) J Exp Bot 370:947–958

    Article  Google Scholar 

  18. Maruyama-Funatsuki W, Takata K, Nishio Z, Tabiki T, Yahata E, Kato A, Saito K, Funatsuki H, Saruyama H, Yamauchi H (2004) Plant Breed 123:355–360

    Article  CAS  Google Scholar 

  19. Shewry PR, Tatham AS (1997a) J Sci Food Agric 73:397–406

    Article  CAS  Google Scholar 

  20. Shewry PR, Tatham AS (1997b) J Cereal Sci 25:207–227

    Article  CAS  Google Scholar 

  21. Shewry PR, Popineau Y, Lafiandra D, Belton P (2001) Trends Food Sci Technol 11:433–441

    Article  Google Scholar 

  22. Shewry PR, Tatham AS, Forde J, Kreis M, Miflin BJ (1986) J Cereal Sci 4:97–106

    Article  CAS  Google Scholar 

  23. Wrigley CW, Bietz JA (1988) In: Pomeranz Y (ed) Wheat chemistry and technology, vol 3. AACC, St. Paul, MN, USA, pp 159–275

  24. Khatkar BS, Bell AE, Schofield JD (1996) J Sci Food Agric 72:71–85

    Article  CAS  Google Scholar 

  25. Gupta RB, Paul JG, Cornish GB, Palmer GA, Bekes F, Rathjen AJ (1994) J Cereal Sci 19:9–17

    Article  CAS  Google Scholar 

  26. Payne PI, Holt LM, Jackson EA, Law CN (1984) Philos Trans R Soc Lond B Biol Sci 304:359–371

    Article  CAS  Google Scholar 

  27. Ng PKW, Bushuk W (1988) Cereal Chem 65:408–413

    CAS  Google Scholar 

  28. Bean SR, Lookhart GL (2000) J Chrom A 881:23–36

    Article  CAS  Google Scholar 

  29. Khan K, Nygard G, Pogna NE, Redaelli R, Ng PKW, Fido RJ, Shewry PR (2003) In: Shewry PR, Lookhart GL (eds) Wheat gluten protein analysis. AACC Inc, St. Paul, MN, USA, pp 31–48

  30. ICC (1976) Int Assoc for Cereal Sci and Tech. ICC Standard No: 110/1 (revised)

  31. ICC (1990) Int Assoc for Cereal Sci and Tech. ICC Standard No: 104/1 (revised)

  32. ICC (1994) Int Assoc for Cereal Sci and Tech. ICC Standard No: 105/2 (revised)

  33. ICC (1984) Int Assoc for Cereal Sci and Tech. ICC Standard No: 106/2 (revised)

  34. ICC (1992a) Int Assoc for Cereal Sci and Tech. ICC Standard No: 115/1 (revised)

  35. ICC (1992b) Int Assoc for Cereal Sci and Tech. ICC Standard No: 114/1 (revised)

  36. Crowley P, Schober TJ, Clarke CI, Arendt EK (2002) Eur Food Res Technol 214:489–496

    Article  CAS  Google Scholar 

  37. Di Cagno R, De Angelis M, Corsetti A, Lavermicocca P, Arnault P, Tossut P, Gallo G, Gobbetti M (2003) Food Microbiol 20:67–75

    Article  CAS  Google Scholar 

  38. Pelshenke PF, Boilling H, Hampel G, Kempw W, Manger A, Rotsch A, Schulb S, Spincher G, Tekg G (1964) Standard methoden für getraide mehlund brot. 4. Anflage. Iverlag Meritz Scheafer, Detmold, p 159

  39. Paramithiotis S, Chouliaras Y, Tsakalidou E, Kalantzopoulos G (2005) Process Biochem 40:2813–2819

    Article  CAS  Google Scholar 

  40. Loponen J, Mikola M, Katina K, Sontag-Strohm T, Salovaara H (2004) Cereal Chem 81(1):87–93

    Article  CAS  Google Scholar 

  41. Laemmli UK (1970) Nature 227:680–685

    Article  CAS  Google Scholar 

  42. Shi Q, Jackowski G (1998) In: Hames BD (ed) Gel electrophoresis of proteins: a practical approach, 3rd edn. Oxford University Press, Oxford, UK, pp 1–52

  43. Ng PKW, Bushuk W (1987) Cereal Chem 64:324–327

    CAS  Google Scholar 

  44. Minitab (1998) Minitab reference manual (12.1). Minitab Inc., State University of Michigan

  45. MSTAT (1980) MSTAT user's guide: statistics, version 5. State University of Michigan

  46. Sivri D, Köksel H, Bushuk W (1998) New Zeland J Crop Horticult Sci 26:117–125

    CAS  Google Scholar 

  47. Gobbetti M, De Angelis M, Corsetti A, Di Cagno R (2005) Trends Food Sci Technol 16:57–69

    Article  CAS  Google Scholar 

  48. Collar Esteve C, De Barber CB, Martinez-Anaya MA (1994) J Food Sci 59(3):629–633

    Article  Google Scholar 

  49. Spicher G, Nierle W (1988) Appl Microbiol Biotechnol 28:487–492

    Article  Google Scholar 

  50. Thiele C, Ganzle MG, Vogel RF (2002) Cereal Chem 79:45–51

    Article  CAS  Google Scholar 

  51. Gobetti M, Smacchi E, Fox P, Stepaniak L, Corsetti A (1996) Lebensm Wiss Technol 29:561–569

    Article  Google Scholar 

  52. Corsetti A, Gobetti M, Balestrieri F, Paoletti F, Russi L, Rossi J (1998) J Food Sci 63:347–351

    Article  CAS  Google Scholar 

  53. Kawamura Y, Yonezawa D (1982) Agric Biol Chem 46:767–773

    CAS  Google Scholar 

  54. Pizzinatto A, Hoseney RC (1980) Cereal Chem 57:185–188

    Google Scholar 

  55. Clarke CI, Schober TJ, Dockery P, Sullivan KO, Arendt EK (2004) Cereal Chem 81(3):409–417

    Article  CAS  Google Scholar 

  56. Pepe O, Villani F, Oliviero D, Greco T, Coppola S (2003) Int J Food Microbiol 84:319–326

    Article  CAS  Google Scholar 

  57. Tsen CC (1966) Cereal Chem 43:456–460

    Google Scholar 

  58. Tanaka K, Frukawa K, Matsumoto H (1967) Cereal Chem 44:675–680

    CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Uludag University, Scientific Research Commission (Project No: 2003/2) and TUBITAK (The Scientific and Technological Research Council of Turkey) (Project No: Tovag-105O004) for financial support of this research project. We thank to Toru Flour Milling Co. Ltd. (Bandırma, Turkey) for assistance with the flour analysis and bread making. The authors are also grateful to Jossi Loponen for proof reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duygu Gocmen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gocmen, D., Gurbuz, O., Kumral, A.Y. et al. The effects of wheat sourdough on glutenin patterns, dough rheology and bread properties. Eur Food Res Technol 225, 821–830 (2007). https://doi.org/10.1007/s00217-006-0487-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-006-0487-6

Keywords

Navigation