Skip to main content
Log in

Extraction of microRNAs from biological matrices with titanium dioxide nanofibers

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are small RNAs that bind to mRNA targets and regulate their translation. A functional study of miRNAs and exploration of their utility as disease markers require miRNA extraction from biological samples, which contain large amounts of interfering compounds for downstream RNA identification and quantification. The most common extraction methods employ silica columns or the TRIzol reagent but give out low recovery for small RNAs probably due to their short strand lengths. Herein, we fabricated the titanium dioxide nanofibers using electrospinning to facilitate miRNA extraction and developed the optimal buffer conditions to improve miRNA recovery from biological matrices of cell lysate and serum. We found that our TiO2 fibers could obtain a recovery of 18.0 ± 3.6% for miRNA fibers while carrying out the extraction in the more complex medium of cell lysate, much higher than the 0.02 ± 0.0001% recovery from the commercial kit. The much improved extraction of miRNAs from our fibers could be originated from the strong coordination between TiO2 and RNA’s phosphate backbone. In addition, the binding, washing, and elution buffers judiciously developed in the present study can achieve selective extraction of small RNA shorter than 500 nucleotides in length. Our results demonstrate that TiO2 nanofibers can work as a valuable tool for extraction of miRNAs from biological samples with high recovery.

Schematic for extraction of small RNAs using TiO2 nanofibers

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Djuranovic S, Nahvi A, Green R. miRNA-mediated gene silencing by translational repression followed by mRNA deadenylation and decay. Science. 2012;336:237–40.

    Article  CAS  Google Scholar 

  2. Storz G. An expanding universe of noncoding RNAs. Science. 2002;296:1260–3.

    Article  CAS  Google Scholar 

  3. Sassen S, Miska EA, Caldas C. MicroRNA: implications for cancer. Virchows Arch. 2008;452:1–10.

    Article  CAS  Google Scholar 

  4. Winter J, Jung S, Keller S, Gregory RI, Diederichs S. Many roads to maturity: microRNA biogenesis pathways and their regulation. Nat Cell Biol. 2009;11:228–34.

    Article  CAS  Google Scholar 

  5. Bekris LM, Leverenz JB. The biomarker and therapeutic potential of miRNA in Alzheimer’s disease. Neurodegener Dis Manag. 2015;5:61–74.

    Article  Google Scholar 

  6. Alipoor SD, Adcock IM, Garssen J, Mortaz E, Varahram M, Mirsaeidi M, et al. The roles of miRNAs as potential biomarkers in lung diseases. Eur J Pharmacol. 2016;791:395–404.

    Article  CAS  Google Scholar 

  7. Zhao Z, Moley KH, Gronowski AM. Diagnostic potential for miRNAs as biomarkers for pregnancy-specific diseases. Clin Biochem. 2013;46:953–60.

    Article  CAS  Google Scholar 

  8. Cao Y, Griffith JF, Weisberg SB. The next-generation PCR-based quantification method for ambient waters: digital PCR. Methods Mol Biol. 2016;1452:113–30.

    Article  CAS  Google Scholar 

  9. Al-Soud WA, Rådström P. Purification and characterization of PCR-inhibitory components in blood cells. J Clin Microbiol. 2001;39:485–93.

    Article  CAS  Google Scholar 

  10. Duy J, Koehler JW, Honko AN, Minogue TD. Optimized microRNA purification from TRIzol-treated plasma. BMC Genomics. 2015;16:95.

    Article  Google Scholar 

  11. Rio DC, Ares M, Hannon GJ, Nilsen TW. Purification of RNA using TRIzol (TRI reagent). Cold Spring Harb Protoc. 2010;2010:pdb.prot5439.

    Article  Google Scholar 

  12. Auffinger P, Bielecki L, Westhof E. Anion binding to nucleic acids. Structure. 2004;12:379–88.

    Article  CAS  Google Scholar 

  13. Simões AES, Pereira DM, Amaral JD, Nunes AF, Gomes SE, Rodrigues PM, et al. Efficient recovery of proteins from multiple source samples after TRIzol(®) or TRIzol(®)LS RNA extraction and long-term storage. BMC Genomics. 2013;14:181.

    Article  Google Scholar 

  14. Zhao X, Johnson JK. Simulation of adsorption of DNA on carbon nanotubes. J Am Chem Soc. 2007;129:10438–45.

    Article  CAS  Google Scholar 

  15. Saha S, Sarkar P. Understanding the interaction of DNA-RNA nucleobases with different ZnO nanomaterials. Phys Chem Chem Phys. 2014;16:15355–66.

    Article  CAS  Google Scholar 

  16. Park JS, Goo N-I, Kim D-E. Mechanism of DNA adsorption and desorption on graphene oxide. Langmuir. 2014;30:12587–95.

    Article  CAS  Google Scholar 

  17. Hashemi E, Akhavan O, Shamsara M, Valimehr S, Rahighi R. DNA and RNA extractions from eukaryotic and prokaryotic cells by graphene nanoplatelets. RSC Adv. 2014;4:60720–8.

    Article  CAS  Google Scholar 

  18. Wang F, Liu B, Huang P-JJ, Liu J. Rationally designed nucleobase and nucleotide coordinated nanoparticles for selective DNA adsorption and detection. Anal Chem. 2013;85:12144–51.

    Article  CAS  Google Scholar 

  19. Madhugiri S, Sun B, Smirniotis PG, Ferraris JP, Balkus KJ. Electrospun mesoporous titanium dioxide fibers. Microporous Mesoporous Mater. 2004;69:77–83.

    Article  CAS  Google Scholar 

  20. Lu C, Liu Y, Ying Y, Liu J. Comparison of mos2, WS2, and graphene oxide for DNA adsorption and sensing. Langmuir. 2017;33:630–7.

    Article  Google Scholar 

  21. Kim J, Park S-J, Min D-H. Emerging approaches for graphene oxide biosensor. Anal Chem. 2017;89:232–48.

    Article  CAS  Google Scholar 

  22. Pihlasalo S, Mariani L, Härmä H. Quantitative and discriminative analysis of nucleic acid samples using luminometric nonspecific nanoparticle methods. Nano. 2016;8:5902–11.

    CAS  Google Scholar 

  23. Jena PV, Safaee MM, Heller DA, Roxbury D. DNA-carbon nanotube complexation affinity and photoluminescence modulation are independent. ACS Appl Mater Interfaces. 2017;9:21397–405.

    Article  CAS  Google Scholar 

  24. Vilela P, El-Sagheer A, Millar TM, Brown T, Muskens OL, Kanaras AG. Graphene oxide-upconversion nanoparticle based optical sensors for targeted detection of mRNA biomarkers present in Alzheimer’s disease and prostate cancer. ACS Sens. 2017;2:52–6.

    Article  CAS  Google Scholar 

  25. Li F, Liu X, Zhao B, Yan J, Li Q, Aldalbahi A, et al. Graphene nanoprobes for real-time monitoring of isothermal nucleic acid amplification. ACS Appl Mater Interfaces. 2017;9:15245–53.

    Article  CAS  Google Scholar 

  26. Bielicka-Daszkiewicz K, Voelkel A. Theoretical and experimental methods of determination of the breakthrough volume of SPE sorbents. Talanta. 2009;80:614–21.

    Article  CAS  Google Scholar 

  27. Thingholm TE, Larsen MR. The use of titanium dioxide for selective enrichment of phosphorylated peptides. Methods Mol Biol. 2016;1355:135–46.

    Article  CAS  Google Scholar 

  28. Eriksson AIK, Bartsch M, Bergquist J, Edwards K, Lind SB, Agmo Hernández V. On-target titanium dioxide-based enrichment for characterization of phosphorylations in the Adenovirus pIIIa protein. J Chromatogr A. 2013;1317:105–9.

    Article  CAS  Google Scholar 

  29. Wakabayashi M, Kyono Y, Sugiyama N, Ishihama Y. Extended coverage of singly and multiply phosphorylated peptides from a single titanium dioxide microcolumn. Anal Chem. 2015;87:10213–21.

    Article  CAS  Google Scholar 

  30. Piovesana S, Capriotti AL, Cavaliere C, Ferraris F, Iglesias D, Marchesan S, et al. New magnetic graphitized carbon black TiO2 composite for phosphopeptide selective enrichment in shotgun phosphoproteomics. Anal Chem. 2016;88:12043–50.

    Article  CAS  Google Scholar 

  31. Li Q, Ning Z, Tang J, Nie S, Zeng R. Effect of peptide-to-TiO2 beads ratio on phosphopeptide enrichment selectivity. J Proteome Res. 2009;8:5375–81.

    Article  CAS  Google Scholar 

  32. Zhang X, Wang F, Liu B, Kelly EY, Servos MR, Liu J. Adsorption of DNA oligonucleotides by titanium dioxide nanoparticles. Langmuir. 2014;30:839–45.

    Article  CAS  Google Scholar 

  33. Mondal K, Ali MA, Agrawal VV, Malhotra BD, Sharma A. Highly sensitive biofunctionalized mesoporous electrospun TiO(2) nanofiber based interface for biosensing. ACS Appl Mater Interfaces. 2014;6:2516–27.

    Article  CAS  Google Scholar 

  34. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891–959.

    Article  CAS  Google Scholar 

  35. Vandeventer PE, Mejia J, Nadim A, Johal MS, Niemz A. DNA adsorption to and elution from silica surfaces: influence of amino acid buffers. J Phys Chem B. 2013;117:10742–9.

    Article  CAS  Google Scholar 

  36. Li D, Xia Y. Fabrication of titania nanofibers by electrospinning. Nano Lett. 2003;3:555–60.

    Article  CAS  Google Scholar 

  37. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA. Hybrid silica-PVA nanofibers via sol-gel electrospinning. Langmuir. 2012;28:5834–44.

    Article  CAS  Google Scholar 

  38. Baglio SR, Rooijers K, Koppers-Lalic D, Verweij FJ, Pérez Lanzón M, Zini N, et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res Ther. 2015;6:127.

    Article  Google Scholar 

  39. Masotti A, Preckel T. Analysis of small RNAs with the Agilent 2100 Bioanalyzer. Nat Methods. 2006;3:iii–v.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the kind assistance from Mr. Joshua Belardes on the early stage of buffer optimization for DNA extraction with SiO2 fibers.

Funding

The authors acknowledge the support by the National Cancer Institute of the National Institutes of Health under Award Number R01CA188991 to WZ. This award also provided support (3R01CA188991-02S1) under the Research Supplements to Promote Diversity in Health-Related Research Program for LAJ. MAG was supported by MARCU-STAR training grant from NIH. SS and YM were supported by the Research in Science and Engineering (RISE) undergraduate summer research program at UC Riverside. JGC was supported by UC Riverside’s office of Undergraduate Education (UE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenwan Zhong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Informed consent

The serum samples were obtained from commercial sources with the individual information unknown to the researchers.

Additional information

Published in the topical collection celebrating ABCs 16th Anniversary.

Electronic supplementary material

ESM 1

(PDF 156 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jimenez, L.A., Gionet-Gonzales, M.A., Sedano, S. et al. Extraction of microRNAs from biological matrices with titanium dioxide nanofibers. Anal Bioanal Chem 410, 1053–1060 (2018). https://doi.org/10.1007/s00216-017-0649-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0649-3

Keywords

Navigation