Skip to main content
Log in

Analysis of honeybush tea (Cyclopia spp.) volatiles by comprehensive two-dimensional gas chromatography using a single-stage thermal modulator

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The applicability of comprehensive two-dimensional gas chromatography (GC×GC) using a single-stage thermal modulator was explored for the analysis of honeybush tea (Cyclopia spp.) volatile compounds. Headspace solid phase micro-extraction (HS-SPME) was used in combination with GC×GC separation on a non-polar × polar column set with flame ionisation (FID) detection for the analysis of fermented Cyclopia maculata, Cyclopia subternata and Cyclopia genistoides tea infusions of a single harvest season. Method optimisation entailed evaluation of the effects of several experimental parameters on the performance of the modulator, the choice of columns in both dimensions, as well as the HS-SPME extraction fibre. Eighty-four volatile compounds were identified by co-injection of reference standards. Principal component analysis (PCA) showed clear differentiation between the species based on their volatile profiles. Due to the highly reproducible separations obtained using the single-stage thermal modulator, multivariate data analysis was simplified. The results demonstrate both the complexity of honeybush volatile profiles and the potential of GC×GC separation in combination with suitable data analysis techniques for the investigation of the relationship between sensory properties and volatile composition of these products. The developed method therefore offers a fast and inexpensive methodology for the profiling of honeybush tea volatiles.

Surface plot obtained for the GC×GC-FID analysis of honeybush tea volatiles

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Dallüge J, Beens J, Brinkman UAT. Comprehensive two-dimensional gas chromatography: a powerful and versatile analytical tool. J Chromatogr A. 2003;1000:69–108.

    Article  Google Scholar 

  2. Adahchour M, Beens J, Brinkman UAT. Recent developments in the application of comprehensive two-dimensional gas chromatography. J Chromatogr A. 2008;1186:67–108.

    Article  CAS  Google Scholar 

  3. Bertsch W. Two-dimensional gas chromatography. Concepts, instrumentation, and applications—part 1: fundamentals, conventional two-dimensional gas chromatography, selected applications. J High Resolut Chromatogr. 1999;22:647–65.

    Article  CAS  Google Scholar 

  4. Bertsch W. Two-dimensional gas chromatography. Concepts, instrumentation, and applications—part 2: comprehensive two-dimensional gas chromatography. J High Resolut Chromatogr. 2000;23:167–81.

    Article  CAS  Google Scholar 

  5. Górecki T, Harynuk J, Panić O. The evolution of comprehensive two-dimensional gas chromatography (GC×GC). J Sep Sci. 2004;27:359–79.

    Article  Google Scholar 

  6. Mostafa AM, Górecki T. Sensitivity of comprehensive two-dimensional gas chromatography (GC×GC) versus one-dimensional gas chromatography (1D GC). LC-GC Europe. 2013;26:672–9.

    CAS  Google Scholar 

  7. Adahchour M, Beens J, Vreuls RJJ, Brinkman UAT. Recent developments in comprehensive two-dimensional gas chromatography (GC×GC). II. Modulation and detection. TrAC-Trends Anal Chem. 2006;25:540–53.

    Article  CAS  Google Scholar 

  8. Mostafa A, Gorecki T, Tranchida PQ, Mondello L. History, evolution, and optimization aspects of comprehensive two-dimensional gas chromatography. In: Mondello L, editor. Comprehensive chromatography in combination with mass spectrometry. New Jersey: Wiley; 2011. p. 93–144.

    Chapter  Google Scholar 

  9. McNeish C. Development of a single-stage modulator for comprehensive two-dimensional gas chromatography (GC×GC). MSc thesis, University of Waterloo, Canada. 2011. https://uwspace.uwaterloo.ca/handle/10012/5803

  10. Edwards M, Górecki T. Inlet backflushing device for the improvement of comprehensive two dimensional gas chromatographic separations. J Chromatogr A. 2015;1402:110–23.

    Article  CAS  Google Scholar 

  11. Muscalu AM, Edwards M, Górecki T, Reiner EJ. Evaluation of a single-stage consumable-free modulator for comprehensive two-dimensional gas chromatography: analysis of polychlorinated biphenyls, organochlorine pesticides and chlorobenzenes. J Chromatogr A. 2015;1391:93–101.

    Article  CAS  Google Scholar 

  12. Joubert E, Joubert ME, Bester C, De Beer D, De Lange JH. Honeybush (Cyclopia spp.): from local cottage industry to global markets—the catalytic and supporting role of research. South African J Bot. 2011;77:887–907.

    Article  Google Scholar 

  13. Theron KA, Muller M, Van Der Rijst M, Cronje JC, Le Roux M, Joubert E. Sensory profiling of honeybush tea (Cyclopia species) and the development of a honeybush sensory wheel. Food Res Int. 2014;66:12–22.

    Article  Google Scholar 

  14. Joubert E, Gelderblom WCA, Louw A, De Beer D. South African herbal teas: Aspalathus linearis, Cyclopia spp. and Athrixia phylicoides—a review. J Ethnopharmacol. 2008;199:376–41.

    Article  Google Scholar 

  15. Lin J, Dai Y, Guo Y, Xu H, Wang X. Volatile profile analysis and quality prediction of Longjing tea (Camellia sinensis) by HS-SPME/GC-MS. J Zhejiang Univ Sci B. 2012;13:972–80.

    Article  CAS  Google Scholar 

  16. Drake MA, Civille GV. Flavor lexicons. Compr Rev Food Sci Food Saf. 2003;2:33–40.

    Article  Google Scholar 

  17. Le Roux M, Cronje JC, Joubert E, Burger BV. Chemical characterization of the constituents of the aroma of honeybush, Cyclopia genistoides. South African J Bot. 2008;74:139–43.

    Article  CAS  Google Scholar 

  18. Le Roux M, Cronje JC, Burger BV, Joubert E. Characterization of volatiles and aroma-active compounds in honeybush (Cyclopia subternata) by GC-MS and GC-O analysis. J Agric Food Chem. 2012;60:2657–64.

    Article  CAS  Google Scholar 

  19. Cronje JC. Chemical characterisation of the aroma of honeybush (Cyclopia) species. PhD dissertation, Stellenbosch University, South Africa. 2010. https://scholar.sun.ac.za/handle/10019.1/5157

  20. Erasmus LM, Theron KA, Muller M, Van Der Rijst M, Joubert E. Optimising high-temperature oxidation of Cyclopia species for maximum development of characteristic aroma notes of honeybush herbal tea infusions. South African J Bot. 2017;110:144–51.

    Article  CAS  Google Scholar 

  21. Eilers PHC, Boelens HFM. Baseline correction with asymmetric least squares smoothing. Report (Leiden University Medical Centre). 2005.

  22. Aguilera V, Adrian C. extrema.m, extrema2.m MATLAB Central File Exchange. 2014. http://www.mathworks.com/matlabcentral/fileexchange/122275. Accessed 2 Nov 2014.

  23. Weldegergis BT, De Villiers A, McNeish C, Seethapathy S, Mostafa A, Górecki T, Crouch AM. Characterisation of volatile components of Pinotage wines using comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC–TOF MS). Food Chem. 2011;129:188–99.

    Article  CAS  Google Scholar 

  24. Zhang L, Zeng Z, Zhao C, Kong H, Lu X, Xu G. A comparative study of volatile components in green, oolong and black teas by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry and multivariate data analysis. J Chromatogr A. 2013;1313:245–52.

    Article  CAS  Google Scholar 

  25. Pawliszyn J. Solid phase micro-extraction: theory and practice. New York: Wiley; 1997.

    Google Scholar 

  26. Kim TH, Lee SM, Kim Y, Kim KH, Oh S, Lee HJ. Aroma dilution method using GC injector split ratio for volatile compounds extracted by headspace solid phase micro-extraction. Food Chem. 2003;83:151–8.

    Article  CAS  Google Scholar 

  27. Van Der Westhuizen R, Crous R, De Villiers A, Sandra P. Comprehensive two-dimensional gas chromatography for the analysis of Fischer–Tropsch oil products. J Chromatogr A. 2010;1217:8334–9.

    Article  CAS  Google Scholar 

  28. Dallüge J, Beens J, Brinkman UAT. Optimization and characterization of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometric detection (GC×GC–TOF MS). J Sep Sci. 2002;25:201–14.

    Article  Google Scholar 

  29. Murphy RE, Schure MR, Foley JP. Effect of sampling rate on resolution in comprehensive two-dimensional liquid chromatography. Anal Chem. 1998;70:1585–94.

    Article  CAS  Google Scholar 

  30. Mostafa A, Edwards M, Górecki T. Optimization aspects of comprehensive two-dimensional gas chromatography. J Chromatogr A. 2012;1255:38–55.

    Article  CAS  Google Scholar 

  31. Shellie R, Marriott P, Morrison P, Mondello L. Effects of pressure drop on absolute retention matching in comprehensive two-dimensional gas chromatography. J Sep Sci. 2004;27:504–12.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Restek (RASP grant to AdV), Sasol (collaborative grant to AdV and SASOL-STELL 2000 grant to GEN) and the National Research Foundation (NRF, grants 81830 to AdV, 91436 to AGJT and 97769 and 86211 to GEN) for financial support, as well as Prof. B.V. Burger and Dr. M. le Roux for the kind donation of standards and their helpful comments. TG and ME gratefully acknowledge the financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André de Villiers.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

ESM 1

(PDF 3216 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ntlhokwe, G., Tredoux, A.G.J., Górecki, T. et al. Analysis of honeybush tea (Cyclopia spp.) volatiles by comprehensive two-dimensional gas chromatography using a single-stage thermal modulator. Anal Bioanal Chem 409, 4127–4138 (2017). https://doi.org/10.1007/s00216-017-0360-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-017-0360-4

Keywords

Navigation