Skip to main content
Log in

Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corroborative techniques

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

This work describes the application of several analytical techniques to characterize the development of Bordetella pertussis biofilms and to examine, in particular, the contribution of virulence factors in this development. Growth of surface-attached virulent and avirulent B. pertussis strains was monitored in continuous-flow chambers by techniques such as the crystal violet method, and nondestructive methodologies like fluorescence microscopy and Fourier transform (FT) IR spectroscopy. Additionally, B. pertussis virulent and avirulent strains expressing green fluorescent protein were grown adhered to the base of a glass chamber of 1-μm thickness. Three-dimensional images of mature biofilms, acquired by confocal laser scanning microscopy, were quantitatively analysed by means of the computer program COMSTAT. Our results indicate that only the virulent (Bvg+) phase of B. pertussis is able to attach to surfaces and develop a mature biofilm. In the virulent phase these bacteria are capable of producing a biofilm consisting of microcolonies of approximately 200 μm in diameter and 24 μm in depth. FTIR spectroscopy allowed us not only to follow the dynamics of biofilm growth through specific biomass and biofilm marker absorption bands, but also to monitor the maturation of the biofilm by means of the increase of the carbohydrate-to-protein ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mooi FR, van Loo IH, King AJ (2001) Emerg Infect Dis 7:526–528

    Article  CAS  Google Scholar 

  2. Qiushui H, Makinen J, Berbers G, Mooi FR, Viljanesn MK, Arvilommi H, Mertsola J (2003) J Infect Dis 187:1200–1205

    Article  Google Scholar 

  3. Cotter PA, Yuk MH, Mattoo S, Akerley BJ, Boschwitz J, Relman DA, Miller JF (1998) Infect Immun 69:5921–5929

    Google Scholar 

  4. Mattoo S, Miller JF, Cotter PA (2000) Infect Immun 68:2024–2033

    Article  CAS  Google Scholar 

  5. Stibitz S, Aaronson W, Monack D, Falkow S (1989) Nature 338:266–269

    Article  CAS  Google Scholar 

  6. Arico B, Scarlato V, Monack DM, Falkow S, Rappuoli R (1991) Mol Microbiol 5:2481–2491

    Article  CAS  Google Scholar 

  7. Lacey BW (1960) J Hyg 58:57–93

    Article  CAS  Google Scholar 

  8. Cherry JD, Grimprel E, Guiso N, Heininger U, Mertsola J (2005) J Pediatr Infect Dis 24:S25–S34

    Article  Google Scholar 

  9. Mattoo S, Cherry JD (2005) Clin Microbiol Rev 18:326–382

    Article  CAS  Google Scholar 

  10. Bosch A, Massa NE, Donolo AS, Yantorno O (2000) Phys Status Solidi B220:635–640

    Article  Google Scholar 

  11. Bosch A, Serra D, Prieto C, Schmitt J, Naumann D, Yantorno O (2006) Appl Microbiol Biotechnol 71:736–742

    Article  CAS  Google Scholar 

  12. Irie Y, Mattoo S, Yuk MH (2004) J Bacteriol 186:5692–5698

    Article  CAS  Google Scholar 

  13. Mishra M, Parise G, Jackson KD, Wozniak DJ, Deora R (2005) J Bacteriol 187:1474–1484

    Article  CAS  Google Scholar 

  14. Donlan RM (2002) Emerg Infect Dis 8:881–890

    Google Scholar 

  15. Costerton JW, Montanaro L, Arciola CR (2005) Int J Artif Organs 28:1062–1068

    CAS  Google Scholar 

  16. Fux CA, Costerton JW, Stewart PS, Stoodley P (2005) Trends Microbiol 13:34–40

    Article  CAS  Google Scholar 

  17. Danilatos GD (1993) Microsc Res Tech 25:354–361

    Article  CAS  Google Scholar 

  18. Koval SF, Beveridge TJ (1999) In: Lederberg J (ed) Encyclopedia of microbiology. Academic, San Diego, pp 276–287

    Google Scholar 

  19. Geesey GG, Richardson WT, Yeomans HG, Irvin RT, Costerton, JW (1977) Can J Microbiol 23:1733–1736

    Article  CAS  Google Scholar 

  20. Bloemberg GV, O’Toole GA, Lugtenberg BJJ, Kolter R (1997) Appl Environ Microbiol 63:4543–4551

    CAS  Google Scholar 

  21. Lawrence JR, Korber DR, Hoyle BD, Costerton JW, Caldwell DE (1991) J Bacteriol 173:6558–6567

    CAS  Google Scholar 

  22. Nancharaiah YV, Venugopalan VP, Wuertz S, Wilderer PA, Hausner M (2005) J Microbiol Methods 60:179–187

    Article  CAS  Google Scholar 

  23. Heydorn A, Nielsen AT, Hentzer M, Sternberg C, Givskov M, Ersbøll, BK, Molin S (2000) Microbiology 146:2395–2407

    CAS  Google Scholar 

  24. Naumann D, Helm D, Labischinski H (1991) Nature 351:81–82

    Article  CAS  Google Scholar 

  25. Nichols P, Henson J, Guckert J, Nivens D, White D (1985) J Microbiol Methods 4:79–94

    Article  CAS  Google Scholar 

  26. Schmitt J, Nivens D, White DC, Flemming HC (1995) Water Sci Technol 32:149–155

    Article  CAS  Google Scholar 

  27. Donlan RM, Piede JA, Heyes CD, Sanii L, Murga R, Edmonds P, El Sayed I, El Sayed MA (2004) Appl Environ Microbiol 70:4980–4988

    Article  CAS  Google Scholar 

  28. Nivens DE, Ohman DE, Williams J, Franklin MJ (2001) J Bacteriol 183:1047–1057

    Article  CAS  Google Scholar 

  29. Suci PA, Mittelman MW, Yu FP, Geesey GG (1994) Antimicrob Agents Chemother 38:2125–2133

    CAS  Google Scholar 

  30. Nivens D, Chambers JQ, Anderson TR, Tunllid A, Shmitt J, White DC (1993) J Microbiol Methods 17:199–213

    Article  Google Scholar 

  31. Relman D, Tuomanen E, Falkow S, Golenbock, DT, Saukkonen K, Wright SD (1990) Cell 61:1375–1382

    Article  CAS  Google Scholar 

  32. Weingart CL, Broitman-Maduro G, Dean G, Newman S, Peppler M, Weiss AA (1999) Infect Immun 67:4264–4273

    CAS  Google Scholar 

  33. Stainer DW, Scholte MJ (1971) J Gen Microbiol 63:211–220

    Google Scholar 

  34. Genevaux P, Muller S, Bauda P (1996) FEMS Microbiol Lett 142:27–30

    Article  CAS  Google Scholar 

  35. Helm D, Labischinski H, Schallehn G, Naumann D (1991) J Gen Microbiol 137:9–79

    Google Scholar 

  36. Naumann D (2000) Infrared spectroscopy in microbiology. Wiley, Chichester, pp 1–29

    Google Scholar 

  37. Costerton JW, Stewart PS, Greenberg EP (1999) Science 284:1318–1322

    Article  CAS  Google Scholar 

  38. Donlan RM, Costerton JW (2002) Clin Microbiol Rev 15:167–193

    Article  CAS  Google Scholar 

  39. Sauer K, Camper AK, Ehrlich GD, Costerton JW, Davies DG (2002) J Bacteriol 184:1140–1154

    Article  CAS  Google Scholar 

  40. Allegrucci M, Hu FZ, Shen K, Hayes J, Ehrlich GD, Post JC, Sauer K (2006) J Bacteriol 188:2325–2335

    Article  CAS  Google Scholar 

  41. Synytsya A, Copíková J, Matejka P, Machovic V (2003) Carbohydr Polym 54:97–106

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from Secretaría de Ciencia y Técnica, Argentina, PICT 98-06-03824. O.Y. is Professor of UNLP; M.E.R. and A.Z. are members of the Scientific Career of CONICET; A.B. is a member of the CIC PBA; D.S. and D.M.R. are doctoral fellows of CONICET and Fundación Antorchas, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Osvaldo Yantorno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, D., Bosch, A., Russo, D.M. et al. Continuous nondestructive monitoring of Bordetella pertussis biofilms by Fourier transform infrared spectroscopy and other corroborative techniques. Anal Bioanal Chem 387, 1759–1767 (2007). https://doi.org/10.1007/s00216-006-1079-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-006-1079-9

Keywords

Navigation