Skip to main content
Log in

The melting limit in sodium clusters

  • Regular Article
  • Published:
Theoretical Chemistry Accounts Aims and scope Submit manuscript

Abstract

Thermodynamic properties of the small sodium clusters \(\hbox {Na}_6,\, \hbox {Na}_8\) and \(\hbox {Na}_{10}\) have been studied by Born–Oppenheimer molecular dynamics (BOMD) simulations. The simulations were performed with auxiliary density functional theory as implemented in the deMon2k code. This approach has already proved accurate for the calculations of thermodynamic properties of larger sodium clusters. The Nosé–Hoover chain thermostat was applied to control the temperature. BOMD simulations were performed in the temperature range from 250 to 1000 K. The obtained trajectories were analyzed using the multiple-histogram method in order to obtain continuous functions for the energies and heat capacities. For the \(\hbox {Na}_6\) and \(\hbox {Na}_8\) clusters, besides the fragmentation of the clusters at higher temperature, no other characteristic features in the heat capacity curves are found. On the other hand, a small peak at low temperature was found in the \(\hbox {Na}_{10}\) heat capacity curve which is characteristic for molecular melting. Our analysis of the \(\hbox {Na}_{10}\) melting shows that electronic structure parameters are better suited than geometrical ones to describe the melting process due to the fluctional nature of the clusters. We find that energetical resorting of the occupied cluster orbitals is characteristic for the \(\hbox {Na}_{10}\) cluster melting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schmidt M, Kusche R, Hippler T, Donges J, Kronmüller W, Issendorff B, Haberland H (2001) Phys Rev Lett 86:1191

    Article  CAS  Google Scholar 

  2. Aguado A, López JM, Alonso JA (1999) J Chem Phys 111:6026

    Article  CAS  Google Scholar 

  3. Calvo F, Spiegelmann F (2000) J Chem Phys 112:2888

    Article  CAS  Google Scholar 

  4. Reyes-Nava JA, Garzón IL, Michaelian K (2003) Phys Rev B 67:165401

    Article  Google Scholar 

  5. Vichare A, Kanhere DG (2001) Phys Rev B 64:045408

    Article  Google Scholar 

  6. Lee M, Chacko S, Kanhere DG (2005) J Chem Phys 123:164310

    Article  Google Scholar 

  7. Labastie P, Whetten RL (1990) Phys Rev Lett 65:1567

    Article  CAS  Google Scholar 

  8. Wales DJ, Doye JPK (1995) J Chem Phys 103:3061

    Article  CAS  Google Scholar 

  9. Imry Y (1980) Phys Rev B 21:2042

    Article  CAS  Google Scholar 

  10. Köster AM, del Campo JM, Reveles JU (2004) J Chem Phys 121:3417

    Article  Google Scholar 

  11. Geudtner G, Janetzko F, Köster AM, Vela A, Calaminici P (2006) J Comput Chem 27:483

    Article  CAS  Google Scholar 

  12. Calaminici P, Dominguez-Soria V, Geudtner G, Hernandez-Marin E, Köster AM (2006) Theor Chem Acc 115:221

    Article  CAS  Google Scholar 

  13. Ferrenberg AM, Swendsen RH (1989) Phys Rev Lett 63:1195

    Article  CAS  Google Scholar 

  14. Köster AM, Geudtner G, Calaminici P, Casida ME, Dominguez VD, Flores-Moreno R, Goursot A, Heine T, Ipatov A, Janetzko F, Martin del Campo J, Reveles JU, Vela A, Zuniga B, Salahub DR (2011) The deMon developers. Cinvestav, México

    Google Scholar 

  15. Gamboa GU, Calaminici P, Geudtner G, Köster AM (2008) J Phys Chem A 112:11969

    Article  CAS  Google Scholar 

  16. Gamboa GU, Vásquez-Pérez JM, Calaminici P, Köster AM (2010) Int J Quantum Chem 110:2172

    Article  CAS  Google Scholar 

  17. Vásquez-Pérez JM, Calaminici P, Köster AM (2013) Comput Theor Chem 1021:229

    Article  Google Scholar 

  18. Vásquez-Pérez JM, Gamboa GU, Mejía-Rodriíguez D, Alvarez-Ibarra A, Geudtner G, Calaminici P, Köster AM (2015) J Phys Chem Lett 6:4646

    Article  Google Scholar 

  19. Manzoor D, Pal S, Krishnamurty S (2013) J Phys Chem C 117:20982

    Article  CAS  Google Scholar 

  20. Geudtner G, Calaminici P, Carmona-Espindola J, del Campo J, Dominguez-Soria VD, Flores-Moreno R, Gamboa GU, Goursot A, Köster AM, Reveles JU, Mineva T, Vasquez-Perez JM, Vela A, Zuniga-Gutierrez B, Salahub DR (2012) WIREs Comput Mol Sci 2:548

    Article  CAS  Google Scholar 

  21. Hammer B, Hansen LP, Norskov JK (1999) Phys Rev B 59:7413

    Article  Google Scholar 

  22. Dunlap BI, Connolly JWD, Sabin JR (1979) J Chem Phys 71:4993

    Article  CAS  Google Scholar 

  23. Mintmire W, Dunlap BI (1982) Phys Rev A 25:88

    Article  CAS  Google Scholar 

  24. Godbout N, Salahub DR, Andzelm J, Wimmer E (1992) Can J Chem 70:560

    Article  CAS  Google Scholar 

  25. Calaminici P, Flores-Moreno R, Köster AM (2005) Comput Lett (COLE) 1:164

    Article  CAS  Google Scholar 

  26. Calaminici P, Janetzko F, Köster AM, Mejia-Olvera R, Zuñiga-Gutierrez B (2007) J Chem Phys 126:044108

    Article  Google Scholar 

  27. Nosé S (1984) J Chem Phys 81:511

    Article  Google Scholar 

  28. Hoover WG (1985) Phys Rev A 31:1695

    Article  CAS  Google Scholar 

  29. Martyna GJ, Klein ML, Tuckerman M (1992) J Chem Phys 97:2635

    Article  Google Scholar 

  30. See http://www.invisu.ca/en/products/vuchem.html

  31. Verna KK, Bahus JT, Rajaci-Rizi AR, Stwalley WC (1983) J Chem Phys 78:3599

    Article  Google Scholar 

  32. Martin S, Chevaleyre J, Salignat S, Perrot JP, Broyer M, Cabaud B, Hoareau A (1982) Chem Phys Lett 87:235

    Article  CAS  Google Scholar 

  33. Hilpert K (1984) Ber Bunsenges Phys Chem 88:260

    Article  CAS  Google Scholar 

  34. Herrmann A, Schumacher E, Wöste L (1978) J Chem Phys 68:2327

    Article  CAS  Google Scholar 

  35. McHugh KM, Eaton JG, Lee GH, Sarkas HW, Kidder LH, Snodgrass JT, Manaa MR, Bowen KB (1989) J Chem Phys 91:3793

    Article  Google Scholar 

  36. Schmidt M, Kusche R, von Issendorff B, Haberland H (1998) Nature 393:238

    Article  CAS  Google Scholar 

  37. Schmidt M, Haberland H (2002) C R Phys 3:327

    Article  Google Scholar 

  38. Haberland H, Hippler T, Donges J, Kostko O, Schmidt M, von Issendorff B (2005) Phys Rev Lett 94:035701

    Article  Google Scholar 

  39. Zamith S, Chirot F, L’Hermite J-M (2010) Eur Phys Lett 92:13004

    Article  Google Scholar 

  40. Jug K, Zimmermann B, Köster AM (2002) Int J Quantum Chem 90:594

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the CONACyT Project CB-252658 and by the infrastructure Project GIC-268251. Computer time on the WestGrid (Canada) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andreas M. Köster or Patrizia Calaminici.

Additional information

Published as part of the special collection of articles “In Memoriam of Claudio Zicovich”.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vásquez-Pérez, J.M., Köster, A.M. & Calaminici, P. The melting limit in sodium clusters. Theor Chem Acc 137, 45 (2018). https://doi.org/10.1007/s00214-018-2210-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00214-018-2210-7

Keywords

Navigation