Skip to main content
Log in

Nature of two-dimensional melting in simple atomic systems

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

We investigate the characteristics of two-dimensional melting in simple atomic systems via isobaric-isothermal (NPT) and isochoric-isothermal (NV T) molecular dynamics simulations with a special focus on the effect of the range of the potential on the melting. We find that the system with an interatomic potential of longer range clearly exhibits a region (in the PT plane) with a (thermodynamically) stable hexatic phase. On the other hand, the system with a shorter-range potential exhibits a first-order melting transition both in the NPT and the NV T ensembles. Melting of the system with an intermediate range potential shows a hexatic-like feature near the melting transition in the NV T ensemble, but it undergoes an unstable hexatic-like phase during melting process in the NPT ensemble, which implies the existence of a weakly first-order transition. The overall features represent a crossover from a continuous melting transition in the cases of longer-ranged potentials to a discontinuous (first-order) one in the systems with shorter and intermediate ranged potentials. We also calculate the Binder cumulants, as well as the susceptibility, of the bond-orientational order parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Nelson, Defects and Geometry in Condensed Matter Physics (Cambridge University Press, Cambridge, 2002).

    Google Scholar 

  2. B. I. Halperin and D. R. Nelson, Phys. Rev. Lett. 41, 121 (1978).

    Article  MathSciNet  ADS  Google Scholar 

  3. D. R. Nelson and B. I. Halperin, Phys. Rev. B 19, 2457 (1979).

    Article  ADS  Google Scholar 

  4. A. P. Young, Phys. Rev. B. 19, 1855 (1979).

    Article  ADS  Google Scholar 

  5. J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181 (1973).

    Article  ADS  Google Scholar 

  6. K. J. Strandburg, Rev. Mod. Phys. 60, 161 (1988).

    Article  ADS  Google Scholar 

  7. C. A. Murray and D. H. van Winkle, Phys. Rev. Lett. 58, 1200 (1987).

    Article  ADS  Google Scholar 

  8. R. E. Kusner, J. A. Mann, J. Kerins and A. J. Dahm, Phys. Rev. Lett. 73, 3113 (1994).

    Article  ADS  Google Scholar 

  9. A. H. Marcus and Stuart A. Rice, Phys. Rev. Lett. 77, 2577 (1996).

    Article  ADS  Google Scholar 

  10. K. Zahn, R. Lenke and G. Maret, Phys. Rev. Lett. 82, 2721 (1999).

    Article  ADS  Google Scholar 

  11. R. Pindak, D. E. Moncton, S. C. Davey and J. W. Goodby, Phys. Rev. Lett. 46, 1135 (1981).

    Article  ADS  Google Scholar 

  12. J. D. Brock, A. Aharony, R. J. Birgeneau, K. W. Evans-Lutterodt, J. D. Litster, P. M. Horn, G. B. Stephenson and A. R. Tajbakhsh, Phys. Rev. Lett. 57, 98 (1986).

    Article  ADS  Google Scholar 

  13. M. Cheng, J. T. Ho, S. W. Hui and R. Pindak, Phys. Rev. Lett. 61, 550 (1988).

    Article  ADS  Google Scholar 

  14. C. F. Chou, A. J. Jin, S. W. Hui, C. C. Huang and J. T. Ho, Science 280, 1424 (1998).

    Article  ADS  Google Scholar 

  15. D. E. Angelescu, C. K. Harrison, M. L. Trawick, R. A. Register and P. M. Chaikin, Phys. Rev. Lett. 95, 025702 (2005).

    Article  ADS  Google Scholar 

  16. J. S. Olafsen and J. S. Urbach, Phys. Rev. Lett. 95, 098002 (2005).

    Article  ADS  Google Scholar 

  17. P. M. Reis, R. A. Ingale and M. D. Shattuck, Phys. Rev. Lett. 96, 258001 (2006).

    Article  ADS  Google Scholar 

  18. For earlier works, see Ref. 6 and REFERENCES therein.

  19. S. T. Chui, Phys. Rev. Lett. 48, 933 (1983).

    Article  ADS  Google Scholar 

  20. S. T. Chui, Phys. Rev. B 28, 178 (1983).

    Article  ADS  Google Scholar 

  21. Y. Saito, Phys. Rev. Lett. 48, 1114 (1982).

    Article  ADS  Google Scholar 

  22. Y. Saito, Phys. Rev. B 26, 6239 (1982).

    Article  ADS  Google Scholar 

  23. H. Kleinert, Phys. Lett. A 130, 443 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  24. W. Janke and H. Kleinert, Phys. Rev. Lett. 61, 2344 (1988).

    Article  ADS  Google Scholar 

  25. H. Kleinert, Phys. Lett. A 136, 468 (1989).

    Article  ADS  Google Scholar 

  26. S. I. Lee and S. J. Lee, Phys. Rev. E 78, 041504 (2008).

    Article  ADS  Google Scholar 

  27. K. J. Strandburg, J. A. Zollweg, and G. V. Chester, Phys. Rev. B. 30, 2755 (1989).

    Article  ADS  Google Scholar 

  28. J. Lee and K. J. Strandburg, Phys. Rev. B 46, 11190 (1992).

    Article  ADS  Google Scholar 

  29. M. J. Bates and D. Frenkel, Phys. Rev. E 61, 5223 (2000).

    Article  ADS  Google Scholar 

  30. C. H. Mak, Phys. Rev. E 73, 065104 (2006).

    Article  ADS  Google Scholar 

  31. M. Parrinello and A. Rahman, Phys. Rev. Lett. 45, 1196 (1980).

    Article  ADS  Google Scholar 

  32. M. Li, and W. L. Johnson, Phys. Rev. B. 46, 5237 (1992).

    Article  ADS  Google Scholar 

  33. S. Nose, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  34. K. Bagchi and H. C. Andersen,, Phys. Rev. Lett. 76, 255 (1996).

    Article  ADS  Google Scholar 

  35. J. Lee and J. M. Kosterlitz, Phys. Rev. Lett. 65, 137 (1990).

    Article  MathSciNet  MATH  ADS  Google Scholar 

  36. H. Weber, D. Marx and K. Binder, Phys. Rev. B 51, 14636 (1995).

    Article  ADS  Google Scholar 

  37. N. M. Oliveira-Neto, S. G. Alves, R. L. Silva, A. R. Pereira and W. A. Moura-Melo, J. Phys. A:Math. Theor. 42, 385002 (2009).

    Article  MathSciNet  ADS  Google Scholar 

  38. T. C. Lim, Z. Naturforsch. 58a, 615 (2003).

    Google Scholar 

  39. K. Chen, T. Kaplan and M. Mostoller, Phys. Rev. Lett. 74, 4019 (1995).

    Article  ADS  Google Scholar 

  40. F. L. Somer, T. Kaplan, K. Chen and M. Mostoller, Phys. Rev. Lett. 79, 3431 (1997).

    Article  ADS  Google Scholar 

  41. F. L. Somer, Jr., G. S. Canright and T. Kaplan, Phys. Rev. E 58, 5748 (1998).

    Article  ADS  Google Scholar 

  42. E. Domany, M. Schick and R. H. Swendsen, Phys. Rev. Lett. 52, 1535 (1984).

    Article  ADS  Google Scholar 

  43. J. E. van Himbergen, Phys. Rev. Lett. 53, 5 (1984).

    Article  ADS  Google Scholar 

  44. J. E. van Himbergen, Phys. Rev. B 29, 6387 (1984).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Jong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, S.I., Lee, S.J. Nature of two-dimensional melting in simple atomic systems. Journal of the Korean Physical Society 65, 1040–1048 (2014). https://doi.org/10.3938/jkps.65.1040

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.65.1040

Keywords

Navigation