Theoretical Chemistry Accounts

, Volume 115, Issue 2–3, pp 77–85 | Cite as

Ab initio quantum mechanical charge field (QMCF) molecular dynamics: a QM/MM – MD procedure for accurate simulations of ions and complexes

  • Bernd M. RodeEmail author
  • Thomas S. Hofer
  • Bernhard R. Randolf
  • Christian F. Schwenk
  • Demetrios Xenides
  • Viwat Vchirawongkwin
Regular Article


A new formalism for quantum mechanical / molecular mechanical (QM/MM) dynamics of chemical species in solution has been developed, which does not require the construction of any other potential functions except those for solvent–solvent interactions, maintains all the advantages of large simulation boxes and ensures the accuracy of ab initio quantum mechanics for all forces acting in the chemically most relevant region. Interactions between solute and more distant solvent molecules are incorporated by a dynamically adjusted force field corresponding to the actual molecular configuration of the simulated system and charges derived from the electron distribution in the solvate. The new formalism has been tested with some examples of hydrated ions, for which accurate conventional ab initio QM/MM simulations have been previously performed, and the comparison shows equivalence and in some aspects superiority of the new method. As this simulation procedure does not require any tedious construction of two-and three-body interaction potentials inherent to conventional QM/MM approaches, it opens the straightforward access to ab initio molecular dynamics simulations of any kind of solutes, such as metal complexes and other composite species in solution.


Molecular Dynamic Simulation Chem Phys Radial Distribution Function Smoothing Function Average Coordination Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    da Silva JJRF, Williams RJP (1991) The biological chemistry of life. Clarendon Press, OxfordGoogle Scholar
  2. 2.
    Richens DT (1997). The chemistry of aqua ions: synthesis, structure and reactivity: a tour through the periodic table of the elements 1st edn. Wiley, New YorkGoogle Scholar
  3. 3.
    Ohtaki H (2001). Chemical monthly 132:1237–1268Google Scholar
  4. 4.
    Ohtaki H, Radnai T (1993). Chem Rev 93(3):1157–1204CrossRefGoogle Scholar
  5. 5.
    Helm L, Merbach AE (1999). Coord Chem Rev 187:151–181CrossRefGoogle Scholar
  6. 6.
    Rode BM, Schwenk CF, Tongraar A (2004). J Mol Liq 110:105–122CrossRefGoogle Scholar
  7. 7.
    Dapprich S, Komàromi I, Byun KS, Morokuma K, Frisch MJ (1999). J Mol Struct (Theochem). 461–462:1–21CrossRefGoogle Scholar
  8. 8.
    Frisch MJ et al (1998). Gaussian 98, Revision A.9. Gaussian, Inc., Pittsburgh PAGoogle Scholar
  9. 9.
    Car R, Parinello M (1985). Phys Rev Lett 55(22):2471–2474PubMedCrossRefGoogle Scholar
  10. 10.
    Warshel A, Levitt M (1976). J Mol Biol 103:227PubMedCrossRefGoogle Scholar
  11. 11.
    Field MJ, Bash PA, Karplus M (1990). J Comput Chem 11(6):700–733CrossRefGoogle Scholar
  12. 12.
    Gao J (1993). J Am Chem Soc 115:2930–2935CrossRefGoogle Scholar
  13. 13.
    Bakowies D, Thiel W (1996). J Phys Chem 100(25):10580–10594CrossRefGoogle Scholar
  14. 14.
    Kritayakornupong C, Plankensteiner K, Rode BM (2004). Chem Phys Chem 5:1499–1506PubMedGoogle Scholar
  15. 15.
    Schwenk CF, Rode BM (2003). J Chem Phys 119(18): 9523– 9531CrossRefGoogle Scholar
  16. 16.
    Schwenk CF, Hofer TS, Randolf BR, Rode BM (2005). Phys Chem Chem Phys 7:1382CrossRefGoogle Scholar
  17. 17.
    Xenides D, Randolf BR, Rode BM (2005). J Chem Phys (in press)Google Scholar
  18. 18.
    Stillinger FH, Rahman A (1978). J Chem Phys 68(2):666–670CrossRefGoogle Scholar
  19. 19.
    Bopp P, Janscó G, Heinzinger K (1983). Chem Phys Lett 98(2):129–133CrossRefGoogle Scholar
  20. 20.
    Møller C, Plesset MS (1934). Phys Rev 46:618–622CrossRefGoogle Scholar
  21. 21.
    Becke AD (1993). J Chem Phys 98:5648–5652CrossRefGoogle Scholar
  22. 22.
    Rode BM, Reibnegger GJ (1979). J Chem Soc Faraday Trans II 75:178CrossRefGoogle Scholar
  23. 23.
    Röhrig UF, Frank I, Hutter J, Laio A, VandeVondele J, Röthlisberger U (2003). Chem Phys Chem 4:1177PubMedGoogle Scholar
  24. 24.
    Ahlrichs R, Bär M, Häser M, Horn H, Kölmel C (1989). Chem Phys Lett 162(3):165–169CrossRefGoogle Scholar
  25. 25.
    Brode S, Horn H, Ehrig M, Moldrup D, Rice JE, Ahlrichs R (1993). J Comput Chem 14(10):1142–1148CrossRefGoogle Scholar
  26. 26.
    Ahlrichs R, von Arnim M (1995). In: Clementi E, Corongiu G (eds) Methods and techniques in computational chemistry: METECC-95, STEF: Cagliari, chapter 13, pp 509–554Google Scholar
  27. 27.
    von Arnim M, Ahlrichs R (1998). J Comput Chem 19(15):1746–1757CrossRefGoogle Scholar
  28. 28.
    Berendsen HJC, Postma JPM, van Gunsteren WF, DiNola A, Haak JR (1984). J Phys Chem 81:3684–3690CrossRefGoogle Scholar
  29. 29.
    Schwenk CF, Loeffler HH, Rode BM (2003). J Am Chem Soc 125:1618–1624PubMedCrossRefGoogle Scholar
  30. 30.
    Mulliken RS (1962). J Chem Phys 36:3428CrossRefGoogle Scholar
  31. 31.
    Schwenk CF, Rode BM (2004). J Am Chem Soc 126:12786–12787PubMedCrossRefGoogle Scholar
  32. 32.
    Lincoln SF, Merbach A (1995). In: Advances in inorganic chemistry, vol 42. Academic Press, New York, pp 1–88Google Scholar
  33. 33.
    Powell DH, Merbach AE, Fábián I, Schindler S, van Eldik R (1994). Inorg Chem 33(20):4468–4473CrossRefGoogle Scholar
  34. 34.
    Schwenk CF, Rode BM (2003). Chem Phys Chem 4:931–943PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • Bernd M. Rode
    • 1
    Email author
  • Thomas S. Hofer
    • 1
  • Bernhard R. Randolf
    • 1
  • Christian F. Schwenk
    • 1
  • Demetrios Xenides
    • 1
  • Viwat Vchirawongkwin
    • 1
  1. 1.Theoretical Chemistry Division, Institute of General, Inorganic and Theoretical ChemistryUniversity of InnsbruckInnsbruckAustria

Personalised recommendations