Skip to main content
Log in

Cohesive Fracture in 1D: Quasi-static Evolution and Derivation from Static Phase-Field Models

  • Published:
Archive for Rational Mechanics and Analysis Aims and scope Submit manuscript

Abstract

In this paper we propose a notion of irreversibility for the evolution of cracks in the presence of cohesive forces, which allows for different responses in the loading and unloading processes, motivated by a variational approximation with damage models, and we investigate its applicability to the construction of a quasi-static evolution in a simple one-dimensional model. The cohesive fracture model arises naturally via \(\Gamma \)-convergence from a phase-field model of the generalized Ambrosio-Tortorelli type, which may be used as regularization for numerical simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Alessi, R., Crismale, V., Orlando, G.: Fatigue effects in elastic materials with variational damage models: a vanishing viscosity approach. J. Nonlinear Sci. 29, 1041–1094, 2019

    Article  ADS  MathSciNet  Google Scholar 

  2. Alessi, R., Marigo, J.-J., Vidoli, S.: Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch. Ration. Mech. Anal. 214, 575–615, 2014

    Article  MathSciNet  Google Scholar 

  3. Alessi, R., Marigo, J.-J., Vidoli, S.: Gradient damage models coupled with plasticity: variational formulation and main properties. Mech. Mater. 80, 351–367, 2015

    Article  Google Scholar 

  4. Almi, S.: Energy release rate and quasi-static evolution via vanishing viscosity in a fracture model depending on the crack opening. ESAIM Control Optim. Calc. Var. 23(3), 791–826, 2017

    Article  MathSciNet  Google Scholar 

  5. Almi, S., Lazzaroni, G., Lucardesi, I.: Crack growth by vanishing viscosity in planar elasticity. Math. Eng. 2, 141–173, 2020

    Article  MathSciNet  Google Scholar 

  6. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York 2000

    MATH  Google Scholar 

  7. Ambrosio, L., Tortorelli, V.M.: Approximation of functionals depending on jumps by elliptic functionals via \(\Gamma \)-convergence. Commun. Pure Appl. Math. 43(8), 999–1036, 1990

    Article  MathSciNet  Google Scholar 

  8. Ambrosio, L., Tortorelli, V.M.: On the approximation of free discontinuity problems. Boll. Un. Mat. Ital. B (7) 6(1), 105–123, 1992

    MathSciNet  MATH  Google Scholar 

  9. Artina, M., Cagnetti, F., Fornasier, M., Solombrino, F.: Linearly constrained evolutions of critical points and an application to cohesive fractures. Math. Models Methods Appl. Sci. 27(2), 231–290, 2017

    Article  MathSciNet  Google Scholar 

  10. Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129, 1962

    Article  MathSciNet  Google Scholar 

  11. Bouchitté, G., Buttazzo, G.: New lower semicontinuity results for nonconvex functionals defined on measures. Nonlinear Anal. 15, 679–692, 1990

  12. Bouchitté, G., Braides, A., Buttazzo, G.: Relaxation results for some free discontinuity problems. J. Reine Angew. Math. 458, 1–18, 1995

  13. Bourdin, B., Francfort, G., Marigo, J.-J.: The variational approach to fracture. J. Elast. 91(1–3), 5–148, 2008

    Article  MathSciNet  Google Scholar 

  14. Braides, A.: \(\Gamma \)-Convergence for Beginners. Oxford Lecture Series in Mathematics and Its Applications, vol. 22. Oxford University Press, Oxford 2002

  15. Braides, A., Dal Maso, G., Garroni, A.: Variational formulation of softening phenomena in fracture mechanics: the one-dimensional case. Arch. Ration. Mech. Anal. 146, 23–58, 1999

    Article  MathSciNet  Google Scholar 

  16. Caffarelli, L., Cagnetti, F., Figalli, A.: Optimal regularity and structure of the free boundary for minimizers in cohesive zone models. Arch. Ration. Mech. Anal. 237, 299–345, 2020

    Article  MathSciNet  Google Scholar 

  17. Cagnetti, F.: A vanishing viscosity approach to fracture growth in a cohesive zone model with prescribed crack path. Math. Models Methods Appl. Sci. 18(7), 1027–1071, 2008

    Article  MathSciNet  Google Scholar 

  18. Cagnetti, F., Toader, R.: Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: a Young measures approach. ESAIM Control Optim. Calc. Var. 17(1), 1–27, 2011

    Article  MathSciNet  Google Scholar 

  19. Chambolle, A.: A density result in two-dimensional linearized elasticity, and applications. Arch. Ration. Mech. Anal. 167(3), 211–233, 2003

    Article  MathSciNet  Google Scholar 

  20. Conti, S., Focardi, M., Iurlano, F.: Phase field approximation of cohesive fracture models. Ann. Inst. H. Poincaré Anal. Non Linéaire 33(4), 1033–1067, 2016

    Article  ADS  MathSciNet  Google Scholar 

  21. Crismale, V., Lazzaroni, G., Orlando, G.: Cohesive fracture with irreversibility: quasistatic evolution for a model subject to fatigue. Math. Models Methods Appl. Sci. 28(7), 1371–1412, 2018

    Article  MathSciNet  Google Scholar 

  22. Dal Maso, G.: An Introduction to \(\Gamma \)-Convergence. Progress in Nonlinear Differential Equations and Their Applications, vol. 8. Birkhäuser Boston Inc., Boston 1993

  23. Dal Maso, G., Francfort, G., Toader, R.: Quasistatic Crack Growth in Finite Elasticity. Preprint 2004. (This paper is the more detailed preprint version of [24].) arXiv:math/0401196 [math]

  24. Dal Maso, G., Francfort, G., Toader, R.: Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176, 165–225, 2005

    Article  MathSciNet  Google Scholar 

  25. Dal Maso, G., Garroni, A.: Gradient bounds for minimizers of free discontinuity problems related to cohesive zone models in fracture mechanics. Calc. Var. Partial Differ. Equ. 31, 137–145, 2008

    Article  MathSciNet  Google Scholar 

  26. Dal Maso, G., Lazzaroni, G.: Quasistatic crack growth in finite elasticity with non-interpenetration. Ann. Inst. H. Poincaré Anal. Non Linéaire 27(1), 257–290, 2010

    Article  ADS  MathSciNet  Google Scholar 

  27. Dal Maso, G., Orlando, G., Toader, R.: Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: the antiplane case. Calc. Var. Partial Differ. Equ. 55(3), 45, 2016

    Article  MathSciNet  Google Scholar 

  28. Dal Maso, G., Toader, R.: A model for the quasi-static growth of brittle fractures: existence and approximation results. Arch. Ration. Mech. Anal. 162(2), 101–135, 2002

    Article  MathSciNet  Google Scholar 

  29. Dal Maso, G., Zanini, C.: Quasi-static crack growth for a cohesive zone model with prescribed crack path. Proc. R. Soc. Edinb. Sect. A 137(2), 253–279, 2007

    Article  MathSciNet  Google Scholar 

  30. del Piero, G., Truskinovsky, L.: A one-dimensional model for localized and distributed failure. J. Phys. IV 8, 95–102, 1998

    Google Scholar 

  31. del Piero, G., Truskinovsky, L.: Macro- and micro-cracking in one-dimensional elasticity. Int. J. Solids Struct. 38, 1135–1148, 2001

    Article  Google Scholar 

  32. Doob, J.L.: Stochastic Processes. Wiley, New York 1953. viii+654 pp.

    MATH  Google Scholar 

  33. Francfort, G., Garroni, A.: A Variational view of partial brittle damage evolution. Arch. Ration. Mech. Anal. 182, 125–152, 2006

    Article  MathSciNet  Google Scholar 

  34. Francfort, G., Marigo, J.-J.: Revisiting brittle fracture as an energy minimization problem. J. Mech. Phys. Solids 46(8), 1319–1342, 1998

    Article  ADS  MathSciNet  Google Scholar 

  35. Francfort, G., Larsen, C.: Existence and convergence for quasi-static evolution in brittle fracture. Commun. Pure Appl. Math. 56(10), 1465–1500, 2003

    Article  MathSciNet  Google Scholar 

  36. Freddi, F., Iurlano, F.: Numerical insight of a variational smeared approach to cohesive fracture. J. Mech. Phys. Solids 98, 156–171, 2017

    Article  ADS  MathSciNet  Google Scholar 

  37. Garroni, A., Larsen, C.J.: Threshold-based quasi-static brittle damage evolution. Arch. Ration. Mech. Anal. 194, 585–609, 2009

    Article  MathSciNet  Google Scholar 

  38. Giacomini, A.: Ambrosio–Tortorelli approximation of quasi-static evolution of brittle fractures. Calc. Var. Partial Differ. Equ. 22(2), 129–172, 2005

    Article  MathSciNet  Google Scholar 

  39. Giacomini, A.: Size effects on quasi-static growth of cracks. SIAM J. Math. Anal. 36(6), 1887–1928, 2005

    Article  MathSciNet  Google Scholar 

  40. Griffith, A.: The phenomena of rupture and flow in solids. Philos. Trans. R. Soc. Lond. Ser. A 221, 163–198, 1920

    ADS  Google Scholar 

  41. Helmstädter, L.: Relaxation and Approximation of Free-discontinuity Functionals. Master’s Degree thesis, University of Bonn 2019

  42. Knees, D., Mielke, A., Zanini, C.: On the inviscid limit of a model for crack propagation. Math. Models Methods Appl. Sci. 18(9), 1529–1569, 2008

    Article  MathSciNet  Google Scholar 

  43. Lazzaroni, G.: Quasistatic crack growth in finite elasticity with Lipschitz data. Ann. Mat. Pura Appl. (4) 190(1), 165–194, 2011

    Article  MathSciNet  Google Scholar 

  44. Mielke, A., Roubíček, T.: Rate-Independent Systems. Applied Mathematical Sciences, vol. 193. Springer, New York 2015

  45. Negri, M., Scala, R.: A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal. Real Word Appl. 38(7), 271–305, 2017

    Article  MathSciNet  Google Scholar 

  46. Negri, M., Vitali, E.: Approximation and characterization of quasi-static \(H^1\)-evolutions for a cohesive interface with different loading-unloading regimes. Interfaces Free Bound. 20(1), 25–67, 2018

    Article  MathSciNet  Google Scholar 

  47. Thomas, M., Zanini, C.: Cohesive zone-type delamination in visco-elasticity. Discrete Contin. Dyn. Syst. Ser. S 10(6), 1487–1517, 2017

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) through Project 211504053 – CRC 1060 The mathematics of emergent effects at the University of Bonn. MB is member of the 2019 INdAM - GNAMPA project Analysis and optimisation of thin structures. FI wishes to thank the warm hospitality of the Institute for Applied Mathematics at the University of Bonn where part of this work has been carried out. FI has been a recipient of scholarships from the Fondation Sciences Mathématiques de Paris, Emergence Sorbonne Université, and the Séphora-Berrebi Foundation, and gratefully acknowledges their support. FI acknowledges support through the PEPS CNRS 2019 Évolution quasi-statique de la rupture cohésive à travers une approche de champ de phase.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Bonacini.

Additional information

Communicated by G. Dal Maso.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonacini, M., Conti, S. & Iurlano, F. Cohesive Fracture in 1D: Quasi-static Evolution and Derivation from Static Phase-Field Models. Arch Rational Mech Anal 239, 1501–1576 (2021). https://doi.org/10.1007/s00205-020-01597-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00205-020-01597-1

Navigation