Archives of Toxicology

, Volume 91, Issue 6, pp 2353–2363 | Cite as

Polychlorinated biphenyls exposure-induced insulin resistance is mediated by lipid droplet enlargement through Fsp27

  • Hye Young Kim
  • Woo Young Kwon
  • Yeon A. Kim
  • Yoo Jin Oh
  • Seung Hee Yoo
  • Mi Hwa Lee
  • Ju Yong Bae
  • Jong-Min Kim
  • Young Hyun YooEmail author
Molecular Toxicology


Although epidemiological and experimental studies demonstrated that polychlorinated biphenyls (PCBs) lead to insulin resistance, the mechanism underlying PCBs-induced insulin resistance has remained unsolved. In this study, we examined in vitro and in vivo effects of PCB-118 (dioxin-like PCB) and PCB-138 (non-dioxin-like PCB) on adipocyte differentiation, lipid droplet growth, and insulin action. 3T3-L1 adipocytes were incubated with PCB-118 or PCB-138 during adipocyte differentiation. For in vivo studies, C57BL/6 mice were administered PCB-118 or PCB-138 (37.5 mg/kg) by intraperitoneal injection and we examined adiposity and whole-body insulin action. PCB-118 and PCB-138 significantly promoted adipocyte differentiation and increased the lipid droplet (LD) size in 3T3-L1 adipocytes. In mice, both PCBs increased adipose mass and adipocyte size. Furthermore, both PCBs induced insulin resistance in vitro and in vivo. Expression of fat-specific protein 27 (Fsp27), which is localized to LD contact sites, was increased in PCB-treated 3T3-L1 adipocytes and mice. Depletion of Fsp27 by siRNA resulted in the inhibition of LD enlargement and attenuation of insulin resistance in PCB-treated 3T3-L1 adipocytes. An anti-diabetic drug, metformin, attenuated insulin resistance in PCB-treated 3T3-L1 adipocytes through the reduced expression of Fsp27 protein and LD size. This study suggests that PCB exposure-induced insulin resistance is mediated by LD enlargement through Fsp27.


Polychlorinated biphenyls Insulin resistance Lipid droplet enlargement Fat-specific protein 27 



Adipose differentiation-related protein


Adipocyte protein 2


CCAAT/enhancer-binding protein alpha


Epididymal white adipose tissue


Fat-specific protein 27


Glucose tolerance tests


Insulin receptor beta


Insulin receptor substrate 1


Insulin tolerance tests


Lipid droplets


Polychlorinated biphenyls


Phosphoinositide 3-kinase


Peroxisome proliferator-activated receptor gamma



This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korean Government (MISP) (Nos. 2015R1A2A1A10051603, 2016R1C1B2011721, and 2016R1A5A2007009).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The manuscript does not contain clinical studies or participant data.

Supplementary material

204_2016_1889_MOESM1_ESM.pdf (136 kb)
Supplementary material 1 (PDF 135 kb)
204_2016_1889_MOESM2_ESM.pdf (200 kb)
Supplementary material 2 (PDF 199 kb)
204_2016_1889_MOESM3_ESM.pdf (52 kb)
Supplementary material 3 (PDF 52 kb)
204_2016_1889_MOESM4_ESM.pdf (217 kb)
Supplementary material 4 (PDF 217 kb)


  1. Alexandre KB, Smit AM, Gray IP, Crowther NJ (2008) Metformin inhibits intracellular lipid accumulation in the murine pre-adipocyte cell line, 3T3-L1. Diabetes Obes Metab 10:688–690CrossRefPubMedGoogle Scholar
  2. Bertazzi PA, Bernucci I, Brambilla G, Consonni D, Pesatori AC (1998) The Seveso studies on early and long-term effects of dioxin exposure: a review. Environ Health Perspect 106(Suppl 2):625–633CrossRefPubMedPubMedCentralGoogle Scholar
  3. Boden G, She P, Mozzoli M, Cheung P, Gumireddy K, Reddy P, Xiang X, Luo Z, Ruderman N (2005) Free fatty acids produce insulin resistance and activate the proinflammatory nuclear factor-kappaB pathway in rat liver. Diabetes 54:3458–3465CrossRefPubMedGoogle Scholar
  4. Brook CG, Lloyd JK (1973) Adipose cell size and glucose tolerance in obese children and effects of diet. Arch Dis Child 48:301–304CrossRefPubMedPubMedCentralGoogle Scholar
  5. Dresner A, Laurent D, Marcucci M, Griffin ME, Dufour S, Cline GW, Slezak LA, Andersen DK, Hundal RS, Rothman DL, Petersen KF, Shulman GI (1999) Effects of free fatty acids on glucose transport and IRS-1-associated phosphatidylinositol 3-kinase activity. J Clin Invest 103:253–259CrossRefPubMedPubMedCentralGoogle Scholar
  6. Faroon O, Ruiz P (2015) Polychlorinated biphenyls: new evidence from the last decade. Toxicol Ind Health. doi:  10.1177/0748233715587849 PubMedPubMedCentralGoogle Scholar
  7. Fierens S, Mairesse H, Heilier JF, De Burbure C, Focant JF, Eppe G, De Pauw E, Bernard A (2003) Dioxin/polychlorinated biphenyl body burden, diabetes and endometriosis: findings in a population-based study in Belgium. Biomarkers 8:529–534CrossRefPubMedGoogle Scholar
  8. Fisher BE (1999) Most unwanted. Environ Health Perspect 107:A18–A23CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gesta S, Tseng Y, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131:242–256CrossRefPubMedGoogle Scholar
  10. Grahn TH, Zhang Y, Lee MJ, Sommer AG, Mostoslavsky G, Fried SK, Greenberg AS, Puri V (2013) FSP27 and PLIN1 interaction promotes the formation of large lipid droplets in human adipocytes. Biochem Biophys Res Commun 432:296–301CrossRefPubMedPubMedCentralGoogle Scholar
  11. Gray SL, Shaw AC, Gagne AX, Chan HM (2013) Chronic exposure to PCBs (Aroclor 1254) exacerbates obesity-induced insulin resistance and hyperinsulinemia in mice. J Toxicol Environ Health A 76:701–715CrossRefPubMedGoogle Scholar
  12. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, Yan QW, Miyoshi H, Mashek DG (2011) The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest 121:2102–2110CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ibrahim MM, Fjaere E, Lock EJ, Naville D, Amlund H, Meugnier E, Le Magueresse BB, Froyland L, Madsen L, Jessen N, Lund S, Vidal H, Ruzzin J (2011) Chronic consumption of farmed salmon containing persistent organic pollutants causes insulin resistance and obesity in mice. PLoS ONE 6:e25170CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jiang C, Qu A, Matsubara T, Chanturiya T, Jou W, Gavrilova O, Shah YM, Gonzalez FJ (2011) Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60:2484–2495CrossRefPubMedPubMedCentralGoogle Scholar
  15. Jursa S, Chovancová J, Petrík J, Lokša J (2006) Dioxin-like and non-dioxin-like PCBs in human serum of Slovak population. Chemosphere 64:686–691CrossRefPubMedGoogle Scholar
  16. Kang S, Tsai LT, Rosen ED (2016) Nuclear mechanisms of insulin resistance. Trends Cell Biol 26:341–351CrossRefPubMedPubMedCentralGoogle Scholar
  17. Keller P, Petrie JT, De Rose P, Gerin I, Wright WS, Chiang SH, Nielsen AR, Fischer CP, Pedersen BK, MacDougald OA (2008) Fat-specific protein 27 regulates storage of triacylglycerol. J Biol Chem 283:14355–14365CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kim HY, Park SY, Lee MH, Rho JH, Oh YJ, Jung HU, Yoo SH, Jeong NY, Lee HJ, Suh S, Seo SY, Cheong J, Jeong JS, Yoo YH (2015) Hepatic STAMP2 alleviates high fat diet-induced hepatic steatosis and insulin resistance. J Hepatol 63:477–485CrossRefPubMedGoogle Scholar
  19. Kissebah AH, Vydelingum N, Murray R, Evans DJ, Kalkhoff RK, Adams PW (1982) Relation of body fat distribution to metabolic complications of obesity*. J Clin Endocrinol Metab 54:254–260CrossRefPubMedGoogle Scholar
  20. Kiviranta H, Tuomisto JT, Tuomisto J, Tukiainen E, Vartiainen T (2005) Polychlorinated dibenzo-p-dioxins, dibenzofurans, and biphenyls in the general population in Finland. Chemosphere 60:854–869CrossRefPubMedGoogle Scholar
  21. Lee DH (2012) Persistent organic pollutants and obesity-related metabolic dysfunction: focusing on type 2 diabetes. Epidemiol Health 34:e2012002CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lee DH, Lee IK, Song K, Steffes M, Toscano W, Baker BA, Jacobs DR Jr (2006) A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes: results from the National Health and Examination Survey 1999–2002. Diabetes Care 29:1638–1644CrossRefPubMedGoogle Scholar
  23. Lee DH, Lee IK, Porta M, Steffes M, Jacobs DR Jr (2007) Relationship between serum concentrations of persistent organic pollutants and the prevalence of metabolic syndrome among non-diabetic adults: results from the National Health and Nutrition Examination Survey 1999–2002. Diabetologia 50:1841–1851CrossRefPubMedGoogle Scholar
  24. Liang L, Zhao M, Xu Z, Yokoyama KK, Li T (2003) Molecular cloning and characterization of CIDE-3, a novel member of the cell-death-inducing DNA-fragmentation-factor (DFF45)-like effector family. Biochem J 370:195–203CrossRefPubMedPubMedCentralGoogle Scholar
  25. Liu F, Wang C, Zhang L, Xu Y, Jang L, Gu Y, Cao X, Zhao X, Ye J, Li Q (2014) Metformin prevents hepatic steatosis by regulating the expression of adipose differentiation-related protein. Int J Mol Med 33:51–58PubMedGoogle Scholar
  26. Lumeng CN, Saltiel AR (2011) Inflammatory links between obesity and metabolic disease. J Clin Invest 121:2111–2117CrossRefPubMedPubMedCentralGoogle Scholar
  27. Lv Z, Li G, Li Y, Ying C, Chen J, Chen T, Wei J, Lin Y, Jiang Y, Wang Y, Shu B, Xu B, Xu S (2013) Glucose and lipid homeostasis in adult rat is impaired by early-life exposure to perfluorooctane sulfonate. Environ Toxicol 28:532–542CrossRefPubMedGoogle Scholar
  28. Mesnier A, Champion S, Louis L, Sauzet C, May P, Portugal H, Benbrahim K, Abraldes J, Alessi M, Amiot-Carlin M (2015) The transcriptional effects of PCB118 and PCB153 on the liver, adipose tissue, muscle and colon of mice: highlighting of Glut4 and Lipin1 as main target genes for PCB induced metabolic disorders. PLoS ONE 10:e0128847CrossRefPubMedPubMedCentralGoogle Scholar
  29. Miura S, Gan J, Brzostowski J, Parisi MJ, Schultz CJ, Londos C, Oliver B, Kimmel AR (2002) Functional conservation for lipid storage droplet association among Perilipin, ADRP, and TIP47 (PAT)-related proteins in mammals, Drosophila, and Dictyostelium. J Biol Chem 277:32253–32257CrossRefPubMedGoogle Scholar
  30. Mullerova D, Kopecky J (2007) White adipose tissue: storage and effector site for environmental pollutants. Physiol Res 56:375–381PubMedGoogle Scholar
  31. Nishino N, Tamori Y, Tateya S, Kawaguchi T, Shibakusa T, Mizunoya W, Inoue K, Kitazawa R, Kitazawa S, Matsuki Y, Hiramatsu R, Masubuchi S, Omachi A, Kimura K, Saito M, Amo T, Ohta S, Yamaguchi T, Osumi T, Cheng J, Fujimoto T, Nakao H, Nakao K, Aiba A, Okamura H, Fushiki T, Kasuga M (2008) FSP27 contributes to efficient energy storage in murine white adipocytes by promoting the formation of unilocular lipid droplets. J Clin Invest 118:2808–2821PubMedPubMedCentralGoogle Scholar
  32. Pirola L, Johnston AM, Van Obberghen E (2004) Modulation of insulin action. Diabetologia 47:170–184CrossRefPubMedGoogle Scholar
  33. Puri V, Virbasius J, Guilherme A, Czech M (2008) RNAi screens reveal novel metabolic regulators: RIP140, MAP4k4 and the lipid droplet associated fat specific protein (FSP) 27. Acta Physiol 192:103–115CrossRefGoogle Scholar
  34. Rizzatti V, Boschi F, Pedrotti M, Zoico E, Sbarbati A, Zamboni M (2013) Lipid droplets characterization in adipocyte differentiated 3T3-L1 cells: size and optical density distribution. Eur J Histochem 57:e24CrossRefPubMedPubMedCentralGoogle Scholar
  35. Ruzzin J, Petersen R, Meugnier E, Madsen L, Lock EJ, Lillefosse H, Ma T, Pesenti S, Sonne SB, Marstrand TT, Malde MK, Du ZY, Chavey C, Fajas L, Lundebye AK, Brand CL, Vidal H, Kristiansen K, Froyland L (2010) Persistent organic pollutant exposure leads to insulin resistance syndrome. Environ Health Perspect 118:465–471CrossRefPubMedGoogle Scholar
  36. Rylander L, Rignell-Hydbom A, Hagmar L (2005) A cross-sectional study of the association between persistent organochlorine pollutants and diabetes. Environ Health 4:28CrossRefPubMedPubMedCentralGoogle Scholar
  37. Salans LB, Knittle JL, Hirsch J (1968) The role of adipose cell size and adipose tissue insulin sensitivity in the carbohydrate intolerance of human obesity. J Clin Invest 47:153–165CrossRefPubMedPubMedCentralGoogle Scholar
  38. Shen K, Shen C, Yu J, Yu C, Chen L, Shi D, Chen Y (2011) PCB congeners induced mitochondrial dysfunction in Vero cells. J Hazard Mater 185:24–28CrossRefPubMedGoogle Scholar
  39. Tanaka N, Takahashi S, Matsubara T, Jiang C, Sakamoto W, Chanturiya T, Teng R, Gavrilova O, Gonzalez FJ (2015) Adipocyte-specific disruption of fat-specific protein 27 causes hepatosteatosis and insulin resistance in high-fat diet-fed mice. J Biol Chem 290:3092–3105CrossRefPubMedGoogle Scholar
  40. Toh SY, Gong J, Du G, Li JZ, Yang S, Ye J, Yao H, Zhang Y, Xue B, Li Q, Yang H, Wen Z, Li P (2008) Up-regulation of mitochondrial activity and acquirement of brown adipose tissue-like property in the white adipose tissue of fsp27 deficient mice. PLoS ONE 3:e2890CrossRefPubMedPubMedCentralGoogle Scholar
  41. Wolins NE, Brasaemle DL, Bickel PE (2006) A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett 580:5484–5491CrossRefPubMedGoogle Scholar
  42. Yang H, Galea A, Sytnyk V, Crossley M (2012) Controlling the size of lipid droplets: lipid and protein factors. Curr Opin Cell Biol 24:509–516CrossRefPubMedGoogle Scholar
  43. Yu GW, Laseter J, Mylander C (2011) Persistent organic pollutants in serum and several different fat compartments in humans. J Environ Public Health 2011:417980CrossRefPubMedPubMedCentralGoogle Scholar
  44. Zhai W, Xu C, Ling Y, Liu S, Deng J, Qi Y, Londos C, Xu G (2010) Increased lipolysis in adipose tissues is associated with elevation of systemic free fatty acids and insulin resistance in perilipin null mice. Horm Metab Res 42:247–253CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Hye Young Kim
    • 1
  • Woo Young Kwon
    • 1
  • Yeon A. Kim
    • 1
  • Yoo Jin Oh
    • 1
  • Seung Hee Yoo
    • 1
  • Mi Hwa Lee
    • 1
  • Ju Yong Bae
    • 1
  • Jong-Min Kim
    • 1
  • Young Hyun Yoo
    • 1
    Email author
  1. 1.Department of Anatomy and Cell BiologyDong-A University College of MedicineBusanRepublic of Korea

Personalised recommendations