Skip to main content
Log in

Expression of basolateral organic anion and cation transporters in experimental cadmium nephrotoxicity in rat kidney

  • Inorganic Compounds
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Cadmium (Cd)-intoxicated experimental animals exhibit impaired renal secretion of organic anions (OA) and cations (OC), indicating their transporters (Oats and Octs) in the proximal tubule (PT) basolateral membrane as possible targets of Cd. To correlate transport data from the literature with the expression of relevant transporters, we performed immunochemical and RT-PCR studies of renal Oats and Octs in the subchronic (treatment with CdCl2; 2 mg Cd/kg b.m./day, for 2 weeks) and acute (treatment with Cd-metallothionein (CdMT); 0.4 mg Cd/kg b.m., 6 or 12 h before killing) models of Cd nephrotoxicity. In the subchronic model, PT exhibited a minor loss of basolateral invaginations and overall unchanged expression of Na+/K+-ATPase and GAPDH proteins and mRNAs, while the expression of Oat and Oct proteins and their mRNAs was strongly downregulated. In the acute model, a time-related redistribution of basolateral transporters to the intracellular vesicular compartment was a major finding. However, 6 h following CdMT treatment, the total abundance of Oat and Oct proteins in the renal tissue remained unchanged, the expression of mRNAs decreased only for Oats, while a limited Oat1 and Na+/K+-ATPase immunoreactivity in the PT apical membrane indicated loss of cell polarity. As tested in rats treated with colchicine, the observed loss/redistribution of basolateral transporters in both models may be independent on microtubules. Therefore, the diminished renal secretion of OA and OC via PT in Cd nephrotoxicity may result from (a) limited loss of secretory surface (basolateral invaginations), (b) selective loss of Oats and Octs, and (c) loss of cell polarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

BBM:

Brush border membrane

BLM:

Basolateral membrane

Cd:

Cadmium

Cd-NTX:

Cadmium-induced nephrotoxicity

CdMT:

Cadmium-metallothionein complex

Na+/K+-ATPase:

Sodium-potassium ATPase

OA:

Organic anion

OAT/Oat:

Organic anion transporter

OC:

Organic cation

OCT/Oct:

Organic cation transporter

PAH:

p-Aminohippurate

PT:

Proximal tubule

Sglt1 and Sglt2:

Sodium-d-glucose cotransporters 1 and 2

TALH:

Thick ascending limb of Henle

TCM:

Total cell membranes

TEA:

Tetraethylammonium

WB:

Western blotting

References

  • Balen D, Ljubojevic M, Breljak D, Brzica H, Zlender V, Koepsell H, Sabolic I (2008) Revised immunolocalization of the Na+-d-glucose cotransporter SGLT1 in rat organs with an improved antibody. Am J Physiol Cell Physiol 295:C475–C489

    Article  PubMed  CAS  Google Scholar 

  • Bernard A, Lauwerys R (1986) Effects of cadmium exposure in humans. Handb Exp Pharmacol 80:135–177

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Breljak D, Ljubojevic M, Balen D, Zlender V, Brzica H, Micek V, Kusan M, Anzai N, Sabolic I (2010) Renal expression of organic anion transporter Oat5 in rats and mice exhibits the female-dominant sex differences. Histol Histopathol 25:1385–1402

    PubMed  CAS  Google Scholar 

  • Bridges CC, Zalups RK (2005) Molecular and ionic mimicry and the transport of toxic metals. Toxicol Appl Pharmacol 204:274–308

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Brzica H, Breljak D, Ljubojevic M, Balen D, Micek V, Anzai N, Sabolic I (2009) Optimal methods of antigen retrieval for organic anion transporters in cryosections of the rat kidney. Arh Hig Rada Toxicol 60:7–17

    Google Scholar 

  • Brzica H, Breljak D, Vrhovac I, Sabolić I (2011) Role of microwave heating in antigen retrieval in cryosections of formalin-fixed tissues. In: Chandra U (ed) microwave heating. Intech open, Rijeka, Croatia, pp 41–62

    Google Scholar 

  • Burckhardt G, Rizwan AN (2007) Organic anion transporters of the SLC22 family: biopharmaceutical, physiological, and pathological roles. Pharmac Res 24:450–470

    Article  CAS  Google Scholar 

  • Chargui A, Zekri S, Jacquillet G, Rubera I, Ilie M, Belaid A, Duranton C, Tauc M, Hofman P, Poujeol P, El May MV, Mograbi B (2011) Cadmium-induced autophagy in rat kidney: an early biomarker of subtoxic exposure. Toxicol Sci 121:31–42

    Article  PubMed  CAS  Google Scholar 

  • Cheng QQ, Aleksunes LM, Manautou JE, Cherrington NJ, Scheffer GL, Yamasaki H, Slitt AL (2008) Drug-metabolizing enzyme and transporter expression in a mouse model of diabetes and obesity. Mol Pharmaceut 5:77–91

    Article  CAS  Google Scholar 

  • Cherian MG, Goyer RA, Delaquerriere-Richardson L (1976) Cadmium-metallothionein-induced nephropathy. Toxicol Appl Pharmacol 38:399–408

    Article  PubMed  CAS  Google Scholar 

  • Crljen V, Sabolic I, Susac J, Appenroth D, Herak-Kramberger CM, Ljubojevic M, Anzai N, Antolovic R, Burckhardt G, Fleck C, Sabolic I (2005) Immunocytochemical characterization of the in vitro incubated rat renal cortical slices. Pflugers Arch Eur J Physiol 450:269–279

    Article  CAS  Google Scholar 

  • Dudley RE, Gammal LM, Klaassen CD (1985) Cadmium-induced hepatic and renal injury in chronically exposed rats: likely role of hepatic cadmium-metallothionein in nephrotoxicity. Toxicol Appl Pharmacol 77:414–426

    Article  PubMed  CAS  Google Scholar 

  • Edwards JR, Prozialeck WC (2009) Cadmium, diabetes and chronic kidney disease. Toxicol Appl Pharmacol 238:289–293

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Filipski KK, Mathijssen RH, Mikkelsen TS, Schinkel AH, Sparreboom A (2009) Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin Pharmacol Ther 86:396–402

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fowler BA (2009) Monitoring of human populations for early markers of cadmium toxicity: a review. Toxicol Appl Pharmacol 238:294–300

    Article  PubMed  CAS  Google Scholar 

  • Freitas HS, Anhe GF, Melo KFS, Okamoto MM, Oliveira-Souza M, Bordin S, Machado UF (2008) Na+-glucose transporter-2 messenger ribonucleic acid expression in kidney of diabetic rats correlates with glycemic levels: involvement of hepatocyte nuclear factor-1 alpha expression and activity. Endocrinology 149:717–724

    Article  PubMed  CAS  Google Scholar 

  • Grover B, Buckley D, Buckley AR, Cacini W (2004) Reduced expression of organic cation transporters rOCT1 and rOCT2 in experimental diabetes. J Pharmacol Exp Ther 308:949–956

    Article  PubMed  CAS  Google Scholar 

  • Gutmann EJ, Niles JL, McCluskey RT, Brown D (1989) Colchicine-induced redistribution of an apical membrane glycoprotein (gp330) in proximal tubules. Am J Pathol 257:C397–C407

    CAS  Google Scholar 

  • Herak-Kramberger CM, Spindler B, Biber J, Murer H, Sabolic I (1996) Renal type II Na/Pi-cotransporter is strongly impaired whereas the Na/sulphate-cotransporter and aquaporin 1 are unchanged in cadmium-treated rats. Pfluegers Arch Eur J Physiol 432:336–344

    Article  CAS  Google Scholar 

  • Herak-Kramberger CM, Brown D, Sabolic I (1998) Cadmium inhibits vacuolar H+-ATPase and endocytosis in rat kidney cortex. Kidney Int 53:1713–1726

    Article  PubMed  CAS  Google Scholar 

  • Ho RH, Kim RB (2005) Transporters and drug therapy: implications for drug disposition and disease. Clin Pharmacol Ther 78:260–277

    Article  PubMed  CAS  Google Scholar 

  • Hohage H, Mehrens T, Mergelsberg U, Löhr M, Greven J (1998) Effects of extracellular cadmium on renal basolateral organic anion transport. Toxicol Lett 98:189–194

    Article  PubMed  CAS  Google Scholar 

  • Järup L, Åkesson A (2009) Current status of cadmium as an environmental health problem. Toxicol Appl Pharmacol 238:201–208

    Article  PubMed  CAS  Google Scholar 

  • Jin T, Leffler P, Nordberg GF (1987) Cadmium-metallothionein nephrotoxicity in the rat: transient calciuria and proteinuria. Toxicology 45:307–317

    Article  PubMed  CAS  Google Scholar 

  • Karbach U, Kricke J, Meyer-Wentrup F, Gorboulev V, Volk C, Loffing-Cueni D, Kaissling B, Bachmann S, Koepsell H (2000) Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am J Physiol Renal Physiol 279:F679–F687

    PubMed  CAS  Google Scholar 

  • Kim YK, Choi JK, Kim JS, Park YS (1988) Changes in renal function in cadmium-intoxicated rats. Pharmacol Toxicol 63:342–350

    Article  PubMed  CAS  Google Scholar 

  • Kim KR, Kim GC, Choi JS, Ahn DW, Park YS (1998) Renal transport systems for organic anions and cations in cadmium-exposed rats. Toxicol Appl Pharmacol 149:144–149

    Article  PubMed  CAS  Google Scholar 

  • Kinne-Saffran E, Hulseweh M, Pfaff C, Kinne RKH (1993) Inhibition of Na, K-ATPase by cadmium: different mechanisms in different species. Toxicol Appl Pharmacol 121:22–29

    Article  PubMed  CAS  Google Scholar 

  • Koepsell H, Lips K, Volk C (2007) Polyspecific organic cation transporters: structure, function, physiological roles, and biopharmaceutical implications. Pharm Res 24:1227–1251

    Article  PubMed  CAS  Google Scholar 

  • Kojima R, Sekine T, Kawachi M, Cha SH, Suzuki Y, Endou H (2002) Immunolocalization of multispecific organic anion transporters, OAT1, OAT2, and OAT3, in rat kidney. J Am Soc Nephrol 13:848–857

    PubMed  CAS  Google Scholar 

  • Lee W, Kim RB (2004) Transporters and renal drug elimination. Ann Rev Pharmacol Toxicol 44:137–166

    Article  CAS  Google Scholar 

  • Lee HY, Kim KR, Woo JS, Kim YK, Park YS (1990) Transport of organic compounds in renal plasma membrane vesicles of cadmium intoxicated rats. Kidney Int 37:727–735

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Habeebu SS, Liu Y, Klaassen CD (1998) Acute CdMT injection is not a good model to study chronic Cd nephropathy: comparison of chronic CdCl2 and CdMT exposure with acute CdMT injection in rats. Toxicol Appl Pharmacol 153:48–58

    Article  PubMed  CAS  Google Scholar 

  • Ljubojevic M, Herak-Kramberger CM, Hagos Y, Bahn A, Endou H, Burckhardt G, Sabolic I (2004) Rat renal cortical OAT1 and OAT3 exhibit gender differences determined by both androgen stimulation and estrogen inhibition. Am J Physiol Renal Physiol 287:F124–F138

    Article  PubMed  CAS  Google Scholar 

  • Lungkaphin A, Arjinajarn P, Srimaroeng C, Chatsudthipong V (2012) Function and expression of renal organic anion transporters in experimental diabetes in mice. ScienceAsia 38:18–23

    Article  CAS  Google Scholar 

  • More VR, Wen X, Thomas PE, Aleksunes LM, Slitt AL (2012) Severe diabetes and leptin resistance cause differential hepatic and renal transporter expression in mice. Comp Hepatol 11:1. doi:10.1186/1476-5926-11-1

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui K (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874

    PubMed  CAS  Google Scholar 

  • Nechay BR, Sauners JP (1977) Inhibition of renal adenosine triphosphatase by cadmium. J Pharmacol Exp Therap 200:623–629

    CAS  Google Scholar 

  • Nikiforov AA, Ostretsova IB (1994) Stimulation of weak organic acid uptake in rat renal tubules by cadmium and nystatin. Biochem Pharmacol 47:815–820

    Article  PubMed  CAS  Google Scholar 

  • Nishizumi M (1972) Electron microscopic study of cadmium nephrotoxicity in the rat. Arch Environ Health 24:215–225

    Article  PubMed  CAS  Google Scholar 

  • Nomiyama K (1986) The chronic toxicity of cadmium: influence of environmental and other variables. Handb Exp Pharmacol 80:101–133

    Article  Google Scholar 

  • Nowicki MT, Aleksunes LM, Sawant SP, Dnyanmote AV, Mehendale HM, Manautou JE (2008) Renal and hepatic transporter expression in type 2 diabetic rats. Drug Metab Lett 2:11–17

    Article  PubMed  CAS  Google Scholar 

  • Osorio H, Bautista R, Rios A, Franco M, Arellano A, Vargas-Robies H, Romo E, Escalante B (2010) Effect of phlorizin on SGLT2 expression in the kidney of diabetic rats. J Nephrol 23:541–546

    PubMed  Google Scholar 

  • Phatchawan A, Chutima S, Varanuj C, Anusom L (2014) Decreased renal organic anion transporter 3 expression in type 1 diabetic rats. Am J Med Sci 347:221–227

    Article  PubMed  Google Scholar 

  • Piscator M (1986) The nephropathy of chronic cadmium poisoning. Handb Exp Pharmacol 80:179–194

    Article  Google Scholar 

  • Prozialeck WC, Edwards JR (2007) Cell adhesion molecules in chemically-induced renal injury. Pharmacol Ther 114:74–93

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Robertson EE, Rankin GO (2006) Human renal organic anion transporters: characteristics and contributions to drug and drug metabolite excretion. Pharmacol Ther 109:399–412

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I (2006) Common mechanisms in nephropathy induced by toxic metals. Nephron Physiol 104:107–114

    Article  CAS  Google Scholar 

  • Sabolic I, Herak-Kramberger CM, Blanusa M, Brown D (2000) Loss of brush-border proteins in cadmium-induced nephrotoxicity in rat. Period Biol 102:33–41

    CAS  Google Scholar 

  • Sabolic I, Herak-Kramberger CM, Brown D (2001) Subchronic cadmium treatment affects the abundance and arrangement of cytoskeletal proteins in rat renal proximal tubule cells. Toxicology 165:205–216

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Herak-Kramberger CM, Ljubojevic M, Biemesderfer D, Brown D (2002a) NHE3 and NHERF are targeted to the basolateral membrane in proximal tubules of colchicine-treated rats. Kidney Int 61:1351–1364

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Ljubojevic M, Herak-Kramberger CM, Brown D (2002b) Cd-MT causes endocytosis of brush-border transporters in rat renal proximal tubules. Am J Physiol Renal Physiol 283:F1389–F1402

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Herak-Kramberger CM, Antolovic R, Breton S, Brown D (2006) Loss of basolateral invaginations in proximal tubules of cadmium-intoxicated rats is independent of microtubules and clathrin. Toxicology 218:149–163

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Asif AR, Budach WE, Wanke C, Bahn A, Burckhardt G (2007) Gender differences in kidney function. Pflügers Arch Eur J Physiol 455:397–429

    Article  CAS  Google Scholar 

  • Sabolic I, Breljak D, Skarica M, Herak-Kramberger CM (2010) Role of metallothionein in cadmium traffic and toxicity in kidneys and other mammalian organs. Biometals 23:897–926

    Article  PubMed  CAS  Google Scholar 

  • Sabolic I, Vrhovac I, Balen Eror D, Gerasimova M, Rose M, Breljak D, Ljubojevic M, Brzica H, Sebastiani A, Thal SC, Sauvant C, Kipp H, Vallon V, Koepsell H (2012) Expression of Na+-d-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiol Cell Physiol 302:C1174–C1188

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scott R, Aughey E, Sinclair J (1977) Histological and ultrastructural changes in rat kidney following cadmium injection. Urol Res 5:15–20

    Article  PubMed  CAS  Google Scholar 

  • Sekine T, Miyazaki H, Endou H (2006) Molecular physiology or renal organic anion transporters. Am J Physiol Renal Physiol 290:F251–F261

    Article  PubMed  CAS  Google Scholar 

  • Soodvilai S, Nantavishit J, Muanprasat C, Chatsudthipong V (2011) Renal organic cation transporters mediated cadmium-induced nephrotoxicity. Toxicol Lett 204:38–42

    Article  PubMed  CAS  Google Scholar 

  • Special Issue (2010) New perspectives in cadmium toxicity. Biometals 23(5):763–960

    Article  CAS  Google Scholar 

  • Squibb KS, Ridlington JW, Carmichael NG, Fowler BA (1979) Early cellular effects of circulating cadmium-thionein on kidney proximal tubules. Environ Health Perspect 28:287–296

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Squibb KS, Pritchard JB, Fowler BA (1984) Cadmium-metallothionein nephropathy: relationship between ultrastructural/biochemical alterations and intracellular cadmium binding. J Pharmacol Exp Ther 229:311–321

    PubMed  CAS  Google Scholar 

  • Sugihira N, Sagai M, Suzuki KT (1987) Renal damage induced by cadmium-metallothionenin: effects on biochemical indicators. Toxicology 44:1–11

    Article  PubMed  CAS  Google Scholar 

  • Suzuki CA, Cherian MG (1988) Effects of cadmium-metallothionein on renal organic ion transport and lipid peroxidation in rats. J Biochem Toxicol 3:11–20

    Article  PubMed  CAS  Google Scholar 

  • Sweet DH (2005) Organic anion transport (Slc22a) family members as mediators of toxicity. Toxicol Appl Pharmacol 204:198–215

    Article  PubMed  CAS  Google Scholar 

  • Sweet DH, Bush KT, Nigam SK (2001) The organic anion transporter family: from physiology to ontogeny and the clinic. Am J Physiol Renal Physiol 281:F197–F205

    PubMed  CAS  Google Scholar 

  • Tabatabai NM, Blumenthal SS, Lewand DL, Petering DH (2001) Differential regulation of mouse kidney sodium-dependent transporters mRNA by cadmium. Toxicol Appl Pharmacol 177:163–173

    Article  PubMed  CAS  Google Scholar 

  • Tabatabai NM, Sharma M, Blumenthal SS, Petering DH (2009) Enhanced expression of sodium-glucose cotransporters in the kidney of diabetic Zucker rats. Diabet Res Clin Pract 83:e27–e30

    Article  CAS  Google Scholar 

  • Templeton DM, Liu Y (2010) Multiple roles of cadmium in cell death and survival. Chem Biol Interact 188:267–275

    Article  PubMed  CAS  Google Scholar 

  • Terlouw SA, Graeff C, Smeets PHE, Fricker G, Russel FGM, Masereeuw R, Miller DS (2002) Short- and long-term influences of heavy metals on anionic drug efflux from renal proximal tubule. J Pharmacol Exp Therap 301:578–585

    Article  CAS  Google Scholar 

  • Terlouw SA, Masereeuw R, Russel FGM (2003) Modulatory effects of hormones, drugs, and toxic events on renal organic anion transport. Biochem Pharmacol 65:1393–1405

    Article  PubMed  CAS  Google Scholar 

  • Thevenod F (2003) Nephrotoxicity and the proximal tubule. Nephron Physiol 93:87–93

    Article  CAS  Google Scholar 

  • Thevenod F, Friedmann JM (1999) Cadmium-mediated oxidative stress in kidney proximal tubule cells induces degradation of Na+/K+-ATPase through proteasomal and endo-lysosomal proteolytic pathways. FASEB J 13:1751–1761

    PubMed  CAS  Google Scholar 

  • Thevenod F, Ciarimboli G, Leistner M, Wolff NA, Lee WK, Schatz I, Kelle T, Al-Monajjed R, Gorboulev V, Koepsell H (2013) Substrate- and cell contact-dependent inhibitor affinity of human organic cation transporter 2: studies with two classical organic cation substrates and the novel substrate Cd2+. Mol Pharm 10:3045–3056

    Article  PubMed  CAS  Google Scholar 

  • Thomas MC, Tikellis C, Burns WC, Thallas V, Forbes JM, Cao Z, Osicka TM, Russo LM, Jerums G, Ghabrial H, Cooper ME, Kantharidi SP (2003) Reduced tubular cation transport in diabetes: prevented by ACE inhibition. Kidney Int 63:2152–2161

    Article  PubMed  CAS  Google Scholar 

  • Tojo A, Sekine T, Makajima N, Hosoyamada M, Kanai Y, Kimura K, Endou H (1999) Immunohistochemical localization of multispecific renal organic anion transporter 1 in rat kidney. J Am Soc Nephrol 10:464–471

    PubMed  CAS  Google Scholar 

  • Torres AM, Dnyanmote AV, Bush KT, Wu W, Nigam SK (2011) Deletion of multispecific organic anion transporter Oat1/Slc22a6 protects against mercury-induced kidney injury. J Biol Chem 286:26391–26395

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vander AJ (1963) Effects of zinc, cadmium, and mercury on renal transport systems. Am J Physiol 204:781–784

    PubMed  CAS  Google Scholar 

  • Vidotti DB, Arnoni CP, Maquigussa E, Boim MA (2008) Effect of long-term type 1 diabetes on renal sodium and water transporters in rats. Am J Nephrol 28:107–114

    Article  PubMed  Google Scholar 

  • Zalups RK, Ahmad S (2003) Molecular handling of cadmium in transporting epithelia. Toxicol Appl Pharmacol 186:163–188

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Mrs. Eva Heršak for technical assistance, and Prof. Dr. Hermann Koepsell, Institute of Anatomy and Cell Biology, University of Würzburg, Germany, for generous donation of the Oct1, Oct2 and Sglt1 and Sglt2 antibodies. This work was supported by Grant 022-0222148-2146 from Ministry for Science, Education and Sports, Republic of Croatia (I.S.).

Conflict of interest

The authors declare no conflicts of interest in this study.

Ethical standard

The manuscript does not contain clinical studies or patient data. All experiments were performed on experimental animals (rats) in conformity with the highest standards of international recommendations and rules on animal rights and were approved by the Institutional Ethic Committee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Sabolić.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ljubojević, M., Breljak, D., Herak-Kramberger, C.M. et al. Expression of basolateral organic anion and cation transporters in experimental cadmium nephrotoxicity in rat kidney. Arch Toxicol 90, 525–541 (2016). https://doi.org/10.1007/s00204-015-1450-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1450-8

Keywords

Navigation