Archives of Toxicology

, Volume 88, Issue 5, pp 1069–1082 | Cite as

An update of human mesenchymal stem cell biology and their clinical uses

  • Walid Zaher
  • Linda Harkness
  • Abbas Jafari
  • Moustapha Kassem
Review Article

Abstract

In the past decade, an increasing urge to develop new and novel methods for the treatment of degenerative diseases where there is currently no effective therapy has lead to the emerging of the cell therapy or cellular therapeutics approach for the management of those conditions where organ functions are restored through transplantation of healthy and functional cells. Stem cells, because of their nature, are currently considered among the most suitable cell types for cell therapy. There are an increasing number of studies that have tested the stromal stem cell functionality both in vitro and in vivo. Consequently, stromal (mesenchymal) stem cells (MSCs) are being introduced into many clinical trials due to their ease of isolation and efficacy in treating a number of disease conditions in animal preclinical disease models. The aim of this review is to revise MSC biology, their potential translation in therapy, and the challenges facing their adaptation in clinical practice.

Keywords

Adipogenesis Bone Osteogenesis Stromal stem cells Regenerative medicine 

References

  1. Abdallah Basem M, Harkness L, Mahmood A, Kassem M (2011) Direct differentiation of human embryonic stem cells toward osteoblasts and chondrocytes through an intermediate mesenchyme progenitor lineage. In: Atwood C (ed) Embryonic stem cells: the hormonal regulation of pluripotency and embryogenesis, InTech Europe, Rijeka, Croatia, p 607–618. http://www.intechopen.com
  2. Akiyama H, Lefebvre V (2011) Unraveling the transcriptional regulatory machinery in chondrogenesis. J Bone Miner Metab 29(4):390–395. doi:10.1007/s00774-011-0273-9 PubMedPubMedCentralGoogle Scholar
  3. Al-Nbaheen M, Vishnubalaji R, Ali D et al (2013) Human stromal (mesenchymal) stem cells from bone marrow, adipose tissue and skin exhibit differences in molecular phenotype and differentiation potential. Stem Cell Rev 9(1):32–43. doi:10.1007/s12015-012-9365-8 PubMedPubMedCentralGoogle Scholar
  4. Barberi T, Willis LM, Socci ND, Studer L (2005) Derivation of multipotent mesenchymal precursors from human embryonic stem cells. PLoS Med 2(6):e161PubMedPubMedCentralGoogle Scholar
  5. Barbuto R, Mitchell J (2013) Regulation of the osterix (Osx, Sp7) promoter by osterix and its inhibition by parathyroid hormone. J Mol Endocrinol 51(1):99–108. doi:10.1530/JME-12-0251 PubMedPubMedCentralGoogle Scholar
  6. Bentivegna AMM, Riva G, Foudah D, Butta V, Dalprà L, Tredici G (2013) DNA methylation changes during in vitro propagation of human mesenchymal stem cells: implications for their genomic stability? Stem Cells Int 2013:192425. doi:10.1155/2013/192425 PubMedPubMedCentralGoogle Scholar
  7. Bentzon JF, Stenderup K, Hansen FD et al (2005) Tissue distribution and engraftment of human mesenchymal stem cells immortalized by human telomerase reverse transcriptase gene. Biochem Biophys Res Commun 330(3):633–640. doi:10.1016/j.bbrc.2005.03.072 PubMedGoogle Scholar
  8. Bhansali A, Upreti V, Khandelwal N et al (2009) Efficacy of autologous bone marrow-derived stem cell transplantation in patients with type 2 diabetes mellitus. Stem Cells Dev 18(10):1407–1416. doi:10.1089/scd.2009.0164 PubMedGoogle Scholar
  9. Bianco P, Riminucci M, Gronthos S, Robey PG (2001) Bone marrow stromal stem cells: nature, biology, and potential applications. Stem Cells 19(3):180–192PubMedGoogle Scholar
  10. Bianco P, Kuznetsov SA, Riminucci M, Gehron RP (2006) Postnatal skeletal stem cells. Methods Enzymol 419:117–148PubMedGoogle Scholar
  11. Bianco P, Cao X, Frenette PS et al (2013) The meaning, the sense and the significance: translating the science of mesenchymal stem cells into medicine. Nat Med 19(1):35–42. doi:10.1038/nm.3028 PubMedGoogle Scholar
  12. Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG (2004) Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J Cell Biol 167(4):723–734PubMedPubMedCentralGoogle Scholar
  13. Borengasser SJ, Zhong Y, Kang P et al (2013) Maternal obesity enhances white adipose tissue differentiation and alters genome-scale DNA methylation in male rat offspring. Endocrinology 154(11):4113–4125. doi:10.1210/en.2012-2255 PubMedGoogle Scholar
  14. Boyd NL, Robbins KR, Dhara SK, West FD, Stice SL (2009) Human embryonic stem cell-derived mesoderm-like epithelium transitions to mesenchymal progenitor cells. Tissue Eng Part A 15(8):1897–1907PubMedPubMedCentralGoogle Scholar
  15. Brown SE, Tong W, Krebsbach PH (2009) The derivation of mesenchymal stem cells from human embryonic stem cells. Cells Tissues Organs 189(1–4):256–260PubMedGoogle Scholar
  16. Caplan AI (1991) Mesenchymal stem cells. J Orthop Res Off Publ Orthop Res Soc 9(5):641–650. doi:10.1002/jor.1100090504 Google Scholar
  17. Chen SL, Fang WW, Ye F et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94(1):92–95PubMedGoogle Scholar
  18. Chen S, Tao J, Bae Y et al (2013) Notch gain of function inhibits chondrocyte differentiation via Rbpj-dependent suppression of Sox9. J Bone Miner Res Off J Am Soc Bone Miner Res 28(3):649–659. doi:10.1002/jbmr.1770 Google Scholar
  19. Choi H, Lee RH, Bazhanov N, Oh JY, Prockop DJ (2011a) Anti-inflammatory protein TSG-6 secreted by activated MSCs attenuates zymosan-induced mouse peritonitis by decreasing TLR2/NF-kappaB signaling in resident macrophages. Blood 118(2):330–338. doi:10.1182/blood-2010-12-327353 PubMedPubMedCentralGoogle Scholar
  20. Choi YH, Gu YM, Oh JW, Lee KY (2011b) Osterix is regulated by Erk1/2 during osteoblast differentiation. Biochem Biophy Res Commun 415(3):472–478. doi:10.1016/j.bbrc.2011.10.097 Google Scholar
  21. Choi YH, Jeong HM, Jin YH, Li H, Yeo CY, Lee KY (2011c) Akt phosphorylates and regulates the osteogenic activity of Osterix. Biochem Biophys Res Commun 411(3):637–641. doi:10.1016/j.bbrc.2011.07.009 PubMedGoogle Scholar
  22. Choi YH, Choi JH, Oh JW, Lee KY (2013) Calmodulin-dependent kinase II regulates osteoblast differentiation through regulation of Osterix. Biochem Biophys Res Commun 432(2):248–255. doi:10.1016/j.bbrc.2013.02.005 PubMedGoogle Scholar
  23. Cook D, Genever P (2013) Regulation of mesenchymal stem cell differentiation. Adv Exp Med Biol 786:213–229. doi:10.1007/978-94-007-6621-1_12 PubMedGoogle Scholar
  24. Cunningham JJ, Ulbright TM, Pera MF, Looijenga LHJ (2012) Lessons from human teratomas to guide development of safe stem cell therapies. Nat Biotech 30(9):849–857Google Scholar
  25. Dai L, Zhang X, Hu X, Zhou C, Ao Y (2012) Silencing of microRNA-101 prevents IL-1beta-induced extracellular matrix degradation in chondrocytes. Arthritis Res Ther 14(6):R268. doi:10.1186/ar4114 PubMedPubMedCentralGoogle Scholar
  26. Database UNIoHNctrar In. (2014) http://clinicaltrials.gov/ Accessed 6 February 2014
  27. De Miguel MP, F-JS Blázquez-Martínez A, Pascual CY, Aller MA, Arias J, Arnalich-Montiel F (2012) Immunosuppressive properties of mesenchymal stem cells: advances and applications. Curr Mol Med 12(5):17. doi:10.2174/156652412800619950 Google Scholar
  28. de Peppo GM, Sjovall P, Lennerås M, et al (2010) osteogenic potential of human mesenchymal stem cells and human embryonic stem cell-derived mesodermal progenitors: a tissue engineering perspective. Tissue Eng Part A 16(11). doi: 10.1089/ten.tea.2010.0052
  29. Devine SM, Bartholomew AM, Mahmud N et al (2001) Mesenchymal stem cells are capable of homing to the bone marrow of non-human primates following systemic infusion. Exp Hematol 29(2):244–255PubMedGoogle Scholar
  30. Diederichsen AC, Moller JE, Thayssen P et al (2010) Changes in left ventricular filling patterns after repeated injection of autologous bone marrow cells in heart failure patients. Scand Cardiovasc J 44(3):139–145. doi:10.3109/14017430903556294 PubMedGoogle Scholar
  31. Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G (1997) Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell 89(5):747–754PubMedGoogle Scholar
  32. Duijvestein M, Vos AC, Roelofs H et al (2010) Autologous bone marrow-derived mesenchymal stromal cell treatment for refractory luminal Crohn’s disease: results of a phase I study. Gut 59(12):1662–1669. doi:10.1136/gut.2010.215152 PubMedGoogle Scholar
  33. Eskildsen T, Taipaleenmaki H, Stenvang J et al (2011) MicroRNA-138 regulates osteogenic differentiation of human stromal (mesenchymal) stem cells in vivo. Proc Natl Acad Sci USA 108(15):6139–6144. doi:10.1073/pnas.1016758108 PubMedPubMedCentralGoogle Scholar
  34. Estrada EJ, Valacchi F, Nicora E et al (2008) Combined treatment of intrapancreatic autologous bone marrow stem cells and hyperbaric oxygen in type 2 diabetes mellitus. Cell Transpl 17(12):1295–1304Google Scholar
  35. Evseenko D, Zhu Y, Schenke-Layland K et al (2010) Mapping the first stages of mesoderm commitment during differentiation of human embryonic stem cells. Proc Natl Acad Sci 107(31):13742–13747PubMedPubMedCentralGoogle Scholar
  36. Fajas L, Schoonjans K, Gelman L et al (1999) Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol 19(8):5495–5503PubMedPubMedCentralGoogle Scholar
  37. Fang B, Song Y, Lin Q et al (2007) Human adipose tissue-derived mesenchymal stromal cells as salvage therapy for treatment of severe refractory acute graft-vs.-host disease in two children. Pediatr Transpl 11(7):814–817Google Scholar
  38. Fengming Yue SS, Ichikawa H, Yoshie S, Akimi Mogi SM, Nagai M, Yokohama T, Sasaki TDaK (2013) Induce differentiation of embryonic stem cells by co-culture system. In: Andrades PJA (ed) Regenerative medicine and tissue engineering. InTech Europe, Rijeka, Croatia, p 117–139. http://www.intechopen.com
  39. Fischer-Rasokat U, Assmus B, Seeger FH et al (2009) A pilot trial to assess potential effects of selective intracoronary bone marrow-derived progenitor cell infusion in patients with nonischemic dilated cardiomyopathy: final 1-year results of the transplantation of progenitor cells and functional regeneration enhancement pilot trial in patients with nonischemic dilated cardiomyopathy. Circ Heart Fail 2(5):417–423. doi:10.1161/CIRCHEARTFAILURE.109.855023 PubMedGoogle Scholar
  40. Franceschi RT, Xiao G, Jiang D, Gopalakrishnan R, Yang S, Reith E (2003) Multiple signaling pathways converge on the Cbfa1/Runx2 transcription factor to regulate osteoblast differentiation. Connect Tissue Res 44(Suppl 1):109–116PubMedPubMedCentralGoogle Scholar
  41. Franceschi RT, Ge C, Xiao G, Roca H, Jiang D (2007) Transcriptional regulation of osteoblasts. Ann N Y Acad Sci 1116:196–207. doi:10.1196/annals.1402.081 PubMedGoogle Scholar
  42. Freytag SO, Paielli DL, Gilbert JD (1994) Ectopic expression of the CCAAT/enhancer-binding protein alpha promotes the adipogenic program in a variety of mouse fibroblastic cells. Genes Dev 8(14):1654–1663PubMedGoogle Scholar
  43. Friedenstein AJ, Piatetzky S II, Petrakova KV (1966) Osteogenesis in transplants of bone marrow cells. J Embryol Exp Morphol 16(3):381–390PubMedGoogle Scholar
  44. Friedenstein AJ, Chailakhyan RK, Gerasimov UV (1987) Bone marrow osteogenic stem cells: in vitro cultivation and transplantation in diffusion chambers. Cell Tissue Kinet 20(3):263–272PubMedGoogle Scholar
  45. Fujita T, Azuma Y, Fukuyama R et al (2004) Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3 K-Akt signaling. J Cell Biol 166(1):85–95. doi:10.1083/jcb.200401138 PubMedPubMedCentralGoogle Scholar
  46. Fuster V, Kelly BB, Vedanthan R (2011) Global cardiovascular health: urgent need for an intersectoral approach. J Am Coll Cardiol 58(12):1208–1210PubMedGoogle Scholar
  47. Gamez B, Rodriguez-Carballo E, Bartrons R, Rosa JL, Ventura F (2013) MicroRNA-322 (miR-322) and its target protein Tob2 modulate Osterix (Osx) mRNA stability. J Biol Chem 288(20):14264–14275. doi:10.1074/jbc.M112.432104 PubMedGoogle Scholar
  48. Gangji V, Hauzeur JP (2005) Treatment of osteonecrosis of the femoral head with implantation of autologous bone-marrow cells. Surgical technique. J Bone Joint Surg Am 87(Suppl 1 Pt 1):106–112. doi:10.2106/JBJS.D.02662 PubMedGoogle Scholar
  49. Gimble JM, Robinson CE, Wu X et al (1996) Peroxisome proliferator-activated receptor-gamma activation by thiazolidinediones induces adipogenesis in bone marrow stromal cells. Mol Pharmacol 50(5):1087–1094PubMedGoogle Scholar
  50. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103(11):1204–1219. doi:10.1161/CIRCRESAHA.108.176826 PubMedPubMedCentralGoogle Scholar
  51. Goettsch C, Rauner M, Pacyna N, Hempel U, Bornstein SR, Hofbauer LC (2011) miR-125b regulates calcification of vascular smooth muscle cells. Am J Pathol 179(4):1594–1600. doi:10.1016/j.ajpath.2011.06.016 PubMedPubMedCentralGoogle Scholar
  52. Gu S, Boyer TG, Naski MC (2012) Basic helix-loop-helix transcription factor Twist1 inhibits transactivator function of master chondrogenic regulator Sox9. J Biol Chem 287(25):21082–21092. doi:10.1074/jbc.M111.328567 PubMedPubMedCentralGoogle Scholar
  53. Hagenkord J, Parwani A, Lyons-Weiler M et al (2008) Virtual karyotyping with SNP microarrays reduces uncertainty in the diagnosis of renal epithelial tumors. Diagn Pathol 3(1):44PubMedPubMedCentralGoogle Scholar
  54. Haider HK, Jiang S, Idris NM, Ashraf M (2008) IGF-1-overexpressing mesenchymal stem cells accelerate bone marrow stem cell mobilization via paracrine activation of SDF-1alpha/CXCR4 signaling to promote myocardial repair. Circ Res 103(11):1300–1308PubMedGoogle Scholar
  55. Hare JM, Traverse JH, Henry TD et al (2009) A randomized, double-blind, placebo-controlled, dose-escalation study of intravenous adult human mesenchymal stem cells (prochymal) after acute myocardial infarction. J Am Coll Cardiol 54(24):2277–2286PubMedPubMedCentralGoogle Scholar
  56. Harkness L, Mahmood A, Ditzel N, Abdallah BM, Nygaard JV, Kassem M (2010) Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential. Bone 48(2):231–241. doi:10.1016/j.bone.2010.09.023 PubMedGoogle Scholar
  57. Harkness L, Mahmood A, Ditzel N, Abdallah BM, Nygaard JV, Kassem M (2011) Selective isolation and differentiation of a stromal population of human embryonic stem cells with osteogenic potential. Bone 48(2):231–241PubMedGoogle Scholar
  58. Harkness LNS, Beermann J, Bozhevolnyi SI, Kassem M (2012) Identification of abnormal stem cells using Raman spectroscopy. Stem Cells Dev 21(12):8. doi:10.1089/scd.2011.0600 Google Scholar
  59. Hata K, Takashima R, Amano K et al (2013) Arid5b facilitates chondrogenesis by recruiting the histone demethylase Phf2 to Sox9-regulated genes. Nat Commun 4:2850. doi:10.1038/ncomms3850 PubMedGoogle Scholar
  60. Hatzistergos KE, Quevedo H, Oskouei BN et al (2010) Bone marrow mesenchymal stem cells stimulate cardiac stem cell proliferation and differentiation. Circ Res 107(7):913–922. doi:10.1161/CIRCRESAHA.110.222703 PubMedPubMedCentralGoogle Scholar
  61. Heile AM, Wallrapp C, Klinge PM et al (2009) Cerebral transplantation of encapsulated mesenchymal stem cells improves cellular pathology after experimental traumatic brain injury. Neurosci Lett 463(3):176–181PubMedGoogle Scholar
  62. Hentze H, Soong PL, Wang ST, Phillips BW, Putti TC, Dunn NR (2009) Teratoma formation by human embryonic stem cells: evaluation of essential parameters for future safety studies. Stem Cell Res 2(3):198–210. doi:10.1016/j.scr.2009.02.002 PubMedGoogle Scholar
  63. Hernigou P, Poignard A, Beaujean F, Rouard H (2005) Percutaneous autologous bone-marrow grafting for nonunions. Influence of the number and concentration of progenitor cells. J Bone Joint Surg Am 87(7):1430–1437PubMedGoogle Scholar
  64. Hinoi E, Bialek P, Chen YT et al (2006) Runx2 inhibits chondrocyte proliferation and hypertrophy through its expression in the perichondrium. Genes Dev 20(21):2937–2942. doi:10.1101/gad.1482906 PubMedPubMedCentralGoogle Scholar
  65. Houlihan DD, Mabuchi Y, Morikawa S et al (2012) Isolation of mouse mesenchymal stem cells on the basis of expression of Sca-1 and PDGFR-α. Nat Protoc 7(12):2103–2111PubMedGoogle Scholar
  66. Huang W, Yang S, Shao J, Li YP (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12:3068–3092PubMedPubMedCentralGoogle Scholar
  67. Huang J, Zhang Z, Guo J et al (2010) Genetic modification of mesenchymal stem cells overexpressing CCR1 increases cell viability, migration, engraftment, and capillary density in the injured myocardium. Circ Res 106(11):1753–1762PubMedPubMedCentralGoogle Scholar
  68. Inanc B, Elcin AE, Elcin YM (2007) Effect of osteogenic induction on the in vitro differentiation of human embryonic stem cells cocultured with periodontal ligament fibroblasts. Artif Organs 31(11):792–800PubMedGoogle Scholar
  69. Jang H, Kim EJ, Park JK et al (2014) SMILE inhibits BMP-2-induced expression of osteocalcin by suppressing the activity of the RUNX2 transcription factor in MC3T3E1 cells. Bone. doi:10.1016/j.bone.2013.12.028 PubMedGoogle Scholar
  70. Jeevanantham V, Butler M, Saad A, Abdel-Latif A, Zuba-Surma EK, Dawn B (2012) Adult bone marrow cell therapy improves survival and induces long-term improvement in cardiac parameters: a systematic review and meta-analysis. Circulation 126(5):551–568. doi:10.1161/CIRCULATIONAHA.111.086074 PubMedGoogle Scholar
  71. Ji JF, He BP, Dheen ST, Tay SS (2004) Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells 22(3):415–427PubMedGoogle Scholar
  72. Jia J, Tian Q, Ling S, Liu Y, Yang S, Shao Z (2013) miR-145 suppresses osteogenic differentiation by targeting Sp7. FEBS Lett 587(18):3027–3031. doi:10.1016/j.febslet.2013.07.030 PubMedGoogle Scholar
  73. Karp JM, Leng Teo GS (2009) Mesenchymal stem cell homing: the devil is in the details. Cell Stem Cell 4(3):206–216PubMedGoogle Scholar
  74. Karp JM, Ferreira LS, Khademhosseini A, Kwon AH, Yeh J, Langer RS (2006) Cultivation of human embryonic stem cells without the embryoid body step enhances osteogenesis in vitro. Stem Cells 24(4):835–843PubMedGoogle Scholar
  75. Kassem M, Marie PJ (2011) Senescence-associated intrinsic mechanisms of osteoblast dysfunctions. Aging Cell 10(2):191–197PubMedGoogle Scholar
  76. Kassem M, Mosekilde L, Eriksen EF (1993) 1,25-dihydroxyvitamin D3 potentiates fluoride-stimulated collagen type I production in cultures of human bone marrow stromal osteoblast-like cells. J Bone Miner Res 8(12):1453–1458PubMedGoogle Scholar
  77. Kawai M, Green CB, Lecka-Czernik B et al (2010) A circadian-regulated gene, Nocturnin, promotes adipogenesis by stimulating PPAR-gamma nuclear translocation. Proc Natl Acad Sci USA 107(23):10508–10513. doi:10.1073/pnas.1000788107 PubMedPubMedCentralGoogle Scholar
  78. Kawate K, Yajima H, Ohgushi H et al (2006) Tissue-engineered approach for the treatment of steroid-induced osteonecrosis of the femoral head: transplantation of autologous mesenchymal stem cells cultured with beta-tricalcium phosphate ceramics and free vascularized fibula. Artif Organs 30(12):960–962PubMedGoogle Scholar
  79. Kebriaei P, Isola L, Bahceci E et al (2009) Adult human mesenchymal stem cells added to corticosteroid therapy for the treatment of acute graft-versus-host disease. Biol Blood Marrow Transpl 15(7):804–811Google Scholar
  80. Kermani AJ, Fathi F, Mowla SJ (2008) Characterization and genetic manipulation of human umbilical cord vein mesenchymal stem cells: potential application in cell-based gene therapy. Rejuvenation Res 11(2):379–386. doi:10.1089/rej.2008.0674 PubMedGoogle Scholar
  81. Kim HE, Bae E, Jeong DY et al (2013) Lipin1 regulates PPARgamma transcriptional activity. Biochem J 453(1):49–60. doi:10.1042/BJ20121598 PubMedGoogle Scholar
  82. Kitoh H, Kitakoji T, Tsuchiya H et al (2004) Transplantation of marrow-derived mesenchymal stem cells and platelet-rich plasma during distraction osteogenesis–a preliminary result of three cases. Bone 35(4):892–898. doi:10.1016/j.bone.2004.06.013 PubMedGoogle Scholar
  83. Klinge PM, Harmening K, Miller MC et al (2011) Encapsulated native and glucagon-like peptide-1 transfected human mesenchymal stem cells in a transgenic mouse model of Alzheimer’s disease. Neurosci Lett 497(1):6–10PubMedGoogle Scholar
  84. Koga T, Matsui Y, Asagiri M et al (2005) NFAT and Osterix cooperatively regulate bone formation. Nat Med 11(8):880–885. doi:10.1038/nm1270 PubMedGoogle Scholar
  85. Koromila T, Baniwal SK, Song YS, Martin A, Xiong J, Frenkel B (2014) Glucocorticoids antagonize RUNX2 during osteoblast differentiation in cultures of ST2 pluripotent mesenchymal cells. J Cell Biochem 115(1):27–33. doi:10.1002/jcb.24646 PubMedGoogle Scholar
  86. Kumar S, Wan C, Ramaswamy G, Clemens TL, Ponnazhagan S (2010) Mesenchymal stem cells expressing osteogenic and angiogenic factors synergistically enhance bone formation in a mouse model of segmental bone defect. Mol Ther 18(5):1026–1034PubMedPubMedCentralGoogle Scholar
  87. Kuznetsov SA, Krebsbach PH, Satomura K et al (1997) Single-colony derived strains of human marrow stromal fibroblasts form bone after transplantation in vivo. J Bone Miner Res Off J Am Soc Bone Miner Res 12(9):1335–1347Google Scholar
  88. Lange C, Brunswig-Spickenheier B, Cappallo-Obermann H et al (2011) Radiation rescue: mesenchymal stromal cells protect from lethal irradiation. PLoS One 6(1):e14486PubMedPubMedCentralGoogle Scholar
  89. Larsen KH, Frederiksen CM, Burns JS, Abdallah BM, Kassem M (2010) Identifying a molecular phenotype for bone marrow stromal cells with in vivo bone-forming capacity. J Bone Miner Res 25(4):796–808. doi:10.1359/jbmr.091018 PubMedGoogle Scholar
  90. Lawson KA, Teteak CJ, Gao J et al (2013) ESET histone methyltransferase regulates osteoblastic differentiation of mesenchymal stem cells during postnatal bone development. FEBS Lett 587(24):3961–3967. doi:10.1016/j.febslet.2013.10.028 PubMedGoogle Scholar
  91. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148(6):2669–2680. doi:10.1210/en.2006-1587 PubMedPubMedCentralGoogle Scholar
  92. Le Blanc K, Ringden O (2007) Immunomodulation by mesenchymal stem cells and clinical experience. J Intern Med 262(5):509–525PubMedGoogle Scholar
  93. Le Blanc K, Gotherstrom C, Ringden O et al (2005) Fetal mesenchymal stem-cell engraftment in bone after in utero transplantation in a patient with severe osteogenesis imperfecta. Transplantation 79(11):1607–1614PubMedGoogle Scholar
  94. Le BK, Frassoni F, Ball L et al (2008) Mesenchymal stem cells for treatment of steroid-resistant, severe, acute graft-versus-host disease: a phase II study. Lancet 371(9624):1579–1586Google Scholar
  95. Lee YH, Kim SH, Lee YJ et al (2013) Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor gamma. Cell Mol Life Sci 70(20):3959–3971. doi:10.1007/s00018-013-1363-8 PubMedGoogle Scholar
  96. Lefebvre V, Li P, de Crombrugghe B (1998) A new long form of Sox5 (L-Sox5), Sox6 and Sox9 are coexpressed in chondrogenesis and cooperatively activate the type II collagen gene. EMBO J 17(19):5718–5733. doi:10.1093/emboj/17.19.5718 PubMedPubMedCentralGoogle Scholar
  97. Lepperdinger G, Brunauer R, Jamnig A, Laschober G, Kassem M (2008) Controversial issue: is it safe to employ mesenchymal stem cells in cell-based therapies? Exp Gerontol 43(11):1018–1023PubMedGoogle Scholar
  98. Leung VY, Gao B, Leung KK et al (2011) SOX9 governs differentiation stage-specific gene expression in growth plate chondrocytes via direct concomitant transactivation and repression. PLoS Genet 7(11):e1002356. doi:10.1371/journal.pgen.1002356 PubMedPubMedCentralGoogle Scholar
  99. Levy O, Zhao W, Mortensen LJ et al (2013) mRNA-engineered mesenchymal stem cells for targeted delivery of interleukin-10 to sites of inflammation. Blood. doi:10.1182/blood-2013-04-495119 Google Scholar
  100. Li W, Ma N, Ong LL et al (2007) Bcl-2 engineered MSCs inhibited apoptosis and improved heart function. Stem Cells 25(8):2118–2127PubMedGoogle Scholar
  101. Li H, Jeong HM, Choi YH et al (2013a) Glycogen synthase kinase 3 alpha phosphorylates and regulates the osteogenic activity of Osterix. Biochem Biophys Res Commun 434(3):653–658. doi:10.1016/j.bbrc.2013.03.137 PubMedGoogle Scholar
  102. Li J, Zhang N, Huang X et al (2013b) Dexamethasone shifts bone marrow stromal cells from osteoblasts to adipocytes by C/EBPalpha promoter methylation. Cell Death Dis 4:e832. doi:10.1038/cddis.2013.348 PubMedPubMedCentralGoogle Scholar
  103. Li E, Zhang J, Yuan T, Ma B (2014) miR-143 suppresses osteogenic differentiation by targeting Osterix. Mol Cell Biochem. doi:10.1007/s11010-013-1957-3 Google Scholar
  104. Lian Q, Lye E, Suan Yeo K et al (2007) Derivation of clinically compliant MSCs from CD105 + , CD24 − differentiated human ESCs. Stem Cells 25(2):425–436PubMedGoogle Scholar
  105. Lian Q, Zhang Y, Zhang J et al (2010) Functional mesenchymal stem cells derived from human induced pluripotent stem cells attenuate limb ischemia in mice. Circulation 121(9):1113–1123. doi:10.1161/CIRCULATIONAHA.109.898312 PubMedGoogle Scholar
  106. Liang J, Zhang H, Wang D et al (2012) Allogeneic mesenchymal stem cell transplantation in seven patients with refractory inflammatory bowel disease. Gut 61(3):468–469. doi:10.1136/gutjnl-2011-300083 PubMedGoogle Scholar
  107. Liao L, Yang X, Su X et al (2013) Redundant miR-3077-5p and miR-705 mediate the shift of mesenchymal stem cell lineage commitment to adipocyte in osteoporosis bone marrow. Cell Death Dis 4:e600. doi:10.1038/cddis.2013.130 PubMedPubMedCentralGoogle Scholar
  108. Lin FT, Lane MD (1992) Antisense CCAAT/enhancer-binding protein RNA suppresses coordinate gene expression and triglyceride accumulation during differentiation of 3T3-L1 preadipocytes. Genes Dev 6(4):533–544PubMedGoogle Scholar
  109. Liu Y, Goldberg AJ, Dennis JE, Gronowicz GA, Kuhn LT (2012) One-Step derivation of mesenchymal stem cell (MSC)-like cells from human pluripotent stem cells on a fibrillar collagen coating. PLoS One 7(3):e33225. doi:10.1371/journal.pone.0033225 PubMedPubMedCentralGoogle Scholar
  110. Mabuchi Y, Houlihan DD, Akazawa C, Okano H, Matsuzaki Y (2013) Prospective isolation of murine and human bone marrow mesenchymal stem cells based on surface markers. Stem Cells Int 2013:507301. doi:10.1155/2013/507301 PubMedPubMedCentralGoogle Scholar
  111. Mahmood A, Harkness L, Schroder HD, Abdallah BM, Kassem M (2010) Enhanced differentiation of human embryonic stem cells to mesenchymal progenitors by inhibition of TGF-beta/activin/nodal signaling using SB-431542. J Bone Miner Res 25(6):1216–1233. doi:10.1002/jbmr.34 PubMedGoogle Scholar
  112. Mahmood A, Harkness L, Abdallah BM et al (2012) Derivation of stromal (skeletal and mesenchymal) stem-like cells from human embryonic stem cells. Stem Cells Dev 21(17):3114–3124. doi:10.1089/scd.2012.0035 PubMedPubMedCentralGoogle Scholar
  113. Mangi AA, Noiseux N, Kong D et al (2003) Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9(9):1195–1201PubMedGoogle Scholar
  114. Marie PJ (2008) Transcription factors controlling osteoblastogenesis. Arch Biochem Biophys 473(2):98–105. doi:10.1016/j.abb.2008.02.030 PubMedGoogle Scholar
  115. Martinez-Sanchez A, Dudek KA, Murphy CL (2012) Regulation of human chondrocyte function through direct inhibition of cartilage master regulator SOX9 by microRNA-145 (miRNA-145). J Biol Chem 287(2):916–924. doi:10.1074/jbc.M111.302430 PubMedPubMedCentralGoogle Scholar
  116. Matsumoto Y, Ivasaki H, Suda T (2011) Maintenance of adult stem cells: role of the stem cell niche. In: Phinney DG (ed) Adult stem cells: biology and methods of analysis. Stem cell biology and regenerative medicine. Springer, Berlin, pp 35–55Google Scholar
  117. Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50(2):280–289. doi:10.1016/j.yjmcc.2010.08.005 PubMedPubMedCentralGoogle Scholar
  118. Miura K, Okada Y, Aoi T, et al (2009) Variation in the safety of induced pluripotent stem cell lines. Nat Biotech 27(8):743–745 http://www.nature.com/nbt/journal/v27/n8/suppinfo/nbt.1554_S1.html Google Scholar
  119. Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L (1998) The chemokine receptor CXCR-4 is expressed on CD34 + hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91(12):4523–4530PubMedGoogle Scholar
  120. Nakashima K, Zhou X, Kunkel G et al (2002) The novel zinc finger-containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell 108(1):17–29PubMedGoogle Scholar
  121. Nauta AJ, Fibbe WE (2007) Immunomodulatory properties of mesenchymal stromal cells. Blood 110(10):3499–3506. doi:10.1182/blood-2007-02-069716 PubMedGoogle Scholar
  122. Nejadnik H, Hui JH, Feng Choong EP, Tai BC, Lee EH (2010) Autologous bone marrow-derived mesenchymal stem cells versus autologous chondrocyte implantation: an observational cohort study. Am J Sports Med 38(6):1110–1116. doi:10.1177/0363546509359067 PubMedGoogle Scholar
  123. Nishio Y, Dong Y, Paris M, O’Keefe RJ, Schwarz EM, Drissi H (2006) Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene 372:62–70. doi:10.1016/j.gene.2005.12.022 PubMedGoogle Scholar
  124. Noiseux N, Gnecchi M, Lopez-Ilasaca M et al (2006) Mesenchymal stem cells overexpressing Akt dramatically repair infarcted myocardium and improve cardiac function despite infrequent cellular fusion or differentiation. Mol Ther J Am Soc Gene Ther 14(6):840–850. doi:10.1016/j.ymthe.2006.05.016 Google Scholar
  125. Nouspikel T (2013) Genetic instability in human embryonic stem cells: prospects and caveats. Future Oncol 9(6):867–877. doi:10.2217/fon.13.22 PubMedGoogle Scholar
  126. Nuttall ME, Shah F, Singh V, Thomas-Porch C, Frazier T, Gimble JM (2014) Adipocytes and the regulation of bone remodeling: a balancing act. Calcif Tissue Int 94(1):78–87. doi:10.1007/s00223-013-9807-6 PubMedGoogle Scholar
  127. Oh CD, Maity SN, Lu JF et al (2010) Identification of SOX9 interaction sites in the genome of chondrocytes. PLoS One 5(4):e10113. doi:10.1371/journal.pone.0010113 PubMedPubMedCentralGoogle Scholar
  128. Olivier E, Bouhassira E (2011) Differentiation of human embryonic stem cells into mesenchymal stem cells by the raclure method. In: Nieden NI (ed) Embryonic stem cell therapy for Osteo-degenerative diseases. Methods in molecular biology, vol 690. Humana, Clifton, pp 183–193Google Scholar
  129. Orbay H, Tobita M, Mizuno H (2012) Mesenchymal stem cells isolated from adipose and other tissues: basic biological properties and clinical applications. Stem cells Int 461718. doi: 10.1155/2012/461718
  130. Orozco L, Munar A, Soler R et al (2013) Treatment of knee osteoarthritis with autologous mesenchymal stem cells: a pilot study. Transplantation 95(12):1535–1541. doi:10.1097/TP.0b013e318291a2da PubMedGoogle Scholar
  131. Ortuno MJ, Ruiz-Gaspa S, Rodriguez-Carballo E et al (2010) p38 regulates expression of osteoblast-specific genes by phosphorylation of osterix. J Biol Chem 285(42):31985–31994. doi:10.1074/jbc.M110.123612 PubMedPubMedCentralGoogle Scholar
  132. Pal P, Lochab S, Kanaujiya JK et al (2013) E3 ubiquitin ligase E6AP negatively regulates adipogenesis by downregulating proadipogenic factor C/EBPalpha. PLoS One 8(6):e65330. doi:10.1371/journal.pone.0065330 PubMedPubMedCentralGoogle Scholar
  133. Pan S, Yang X, Jia Y, Li R, Zhao R (2013) Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-gamma expression. J Cell Physiol. doi:10.1002/jcp.24486 PubMedCentralGoogle Scholar
  134. Park BO, Ahrends R, Teruel MN (2012) Consecutive positive feedback loops create a bistable switch that controls preadipocyte-to-adipocyte conversion. Cell Rep 2(4):976–990. doi:10.1016/j.celrep.2012.08.038 PubMedGoogle Scholar
  135. Paul G, Ozen I, Christophersen NS et al (2012) The adult human brain harbors multipotent perivascular mesenchymal stem cells. PLoS One 7(4):e35577. doi:10.1371/journal.pone.0035577 PubMedPubMedCentralGoogle Scholar
  136. Peng Y, Shi K, Wang L et al (2013) Characterization of Osterix protein stability and physiological role in osteoblast differentiation. PLoS One 8(2):e56451. doi:10.1371/journal.pone.0056451 PubMedPubMedCentralGoogle Scholar
  137. Perez-Ilzarbe M, Agbulut O, Pelacho B et al (2008) Characterization of the paracrine effects of human skeletal myoblasts transplanted in infarcted myocardium. Eur J Heart Fail 10(11):1065–1072. doi:10.1016/j.ejheart.2008.08.002 PubMedGoogle Scholar
  138. Porada CD, Almeida-Porada G (2010) Mesenchymal stem cells as therapeutics and vehicles for gene and drug delivery. Adv Drug Deliv Rev 62(12):1156–1166. doi:10.1016/j.addr.2010.08.010 PubMedPubMedCentralGoogle Scholar
  139. Pratap J, Galindo M, Zaidi SK et al (2003) Cell growth regulatory role of Runx2 during proliferative expansion of preosteoblasts. Cancer Res 63(17):5357–5362PubMedGoogle Scholar
  140. Quesenberry PJ, Becker PS (1998) Stem cell homing: rolling, crawling, and nesting. Proc Natl Acad Sci USA 95(26):15155–15157PubMedPubMedCentralGoogle Scholar
  141. Quintana E, Shackleton M, Sabel MS, Fullen DR, Johnson TM, Morrison SJ (2008) Efficient tumour formation by single human melanoma cells. Nature 456(7222):593–598PubMedPubMedCentralGoogle Scholar
  142. Ringden O, Uzunel M, Rasmusson I et al (2006) Mesenchymal stem cells for treatment of therapy-resistant graft-versus-host disease. Transplantation 81(10):1390–1397PubMedGoogle Scholar
  143. Sacchetti B, Funari A, Michienzi S et al (2007) Self-renewing osteoprogenitors in bone marrow sinusoids can organize a hematopoietic microenvironment. Cell 131(2):324–336. doi:10.1016/j.cell.2007.08.025 PubMedGoogle Scholar
  144. Samuelsson L, Stromberg K, Vikman K, Bjursell G, Enerback S (1991) The CCAAT/enhancer binding protein and its role in adipocyte differentiation: evidence for direct involvement in terminal adipocyte development. EMBO J 10(12):3787–3793PubMedPubMedCentralGoogle Scholar
  145. Sarkar D, Vemula PK, Zhao W, Gupta A, Karnik R, Karp JM (2010) Engineered mesenchymal stem cells with self-assembled vesicles for systemic cell targeting. Biomaterials 31(19):5266–5274. doi:10.1016/j.biomaterials.2010.03.006 PubMedPubMedCentralGoogle Scholar
  146. Schaap-Oziemlak AM, Raymakers RA, Bergevoet SM et al (2010) MicroRNA hsa-miR-135b regulates mineralization in osteogenic differentiation of human unrestricted somatic stem cells. Stem Cells Dev 19(6):877–885. doi:10.1089/scd.2009.0112 PubMedGoogle Scholar
  147. Schrepfer S, Deuse T, Reichenspurner H, Fischbein MP, Robbins RC, Pelletier MP (2007) Stem cell transplantation: the lung barrier. Transpl Proc 39(2):573–576. doi:10.1016/j.transproceed.2006.12.019 Google Scholar
  148. Schriebl K, Satianegara G, Hwang A et al (2012) Selective removal of undifferentiated human embryonic stem cells using magnetic activated cell sorting followed by a cytotoxic antibody. Tissue Eng Part A 18(9–10):899–909PubMedGoogle Scholar
  149. Schuldiner M, Yanuka O, Itskovitz-Eldor J, Melton DA, Benvenisty N (2000) Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proc Natl Acad Sci USA 97(21):11307–11312PubMedPubMedCentralGoogle Scholar
  150. Shi M, Li J, Liao L et al (2007) Regulation of CXCR4 expression in human mesenchymal stem cells by cytokine treatment: role in homing efficiency in NOD/SCID mice. Haematologica 92(7):897–904PubMedGoogle Scholar
  151. Shi K, Lu J, Zhao Y et al (2013) MicroRNA-214 suppresses osteogenic differentiation of C2C12 myoblast cells by targeting Osterix. Bone 55(2):487–494. doi:10.1016/j.bone.2013.04.002 PubMedGoogle Scholar
  152. Shiojima I, Walsh K (2006) Regulation of cardiac growth and coronary angiogenesis by the Akt/PKB signaling pathway. Genes Dev 20(24):3347–3365. doi:10.1101/gad.1492806 PubMedGoogle Scholar
  153. Shujia J, Haider HK, Idris NM, Lu G, Ashraf M (2008) Stable therapeutic effects of mesenchymal stem cell-based multiple gene delivery for cardiac repair. Cardiovasc Res 77(3):525–533PubMedGoogle Scholar
  154. Simonsen JL, Rosada C, Serakinci N et al (2002) Telomerase expression extends the proliferative life-span and maintains the osteogenic potential of human bone marrow stromal cells. Nat Biotechnol 20(6):592–596PubMedGoogle Scholar
  155. Sinha KM, Zhou X (2013) Genetic and molecular control of osterix in skeletal formation. J Cell Biochem 114(5):975–984. doi:10.1002/jcb.24439 PubMedPubMedCentralGoogle Scholar
  156. Sinha KM, Yasuda H, Zhou X, Decrombrugghe B (2013) Osterix and NO66 histone demethylase control the chromatin architecture of Osterix target genes during osteoblast differentiation. J Bone Miner Res Off J Am Soc Bone Miner Res. doi:10.1002/jbmr.2103 Google Scholar
  157. Sordi V, Malosio ML, Marchesi F et al (2005) Bone marrow mesenchymal stem cells express a restricted set of functionally active chemokine receptors capable of promoting migration to pancreatic islets. Blood 106(2):419–427PubMedGoogle Scholar
  158. Sottile V, Thomson A, McWhir J (2003) In Vitro Osteogenic Differentiation of Human ES Cells. Cloning Stem Cells 5(2):149–155PubMedGoogle Scholar
  159. Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926. doi:10.1016/j.bone.2003.07.005 PubMedGoogle Scholar
  160. Takada I, Kouzmenko AP, Kato S (2009a) Molecular switching of osteoblastogenesis versus adipogenesis: implications for targeted therapies. Expert Opin Ther Targets 13(5):593–603. doi:10.1517/14728220902915310 PubMedGoogle Scholar
  161. Takada I, Kouzmenko AP, Kato S (2009b) Wnt and PPARgamma signaling in osteoblastogenesis and adipogenesis. Nat Rev Rheumatol 5(8):442–447. doi:10.1038/nrrheum.2009.137 PubMedGoogle Scholar
  162. Tang QQ, Lane MD (2000) Role of C/EBP homologous protein (CHOP-10) in the programmed activation of CCAAT/enhancer-binding protein-beta during adipogenesis. Proc Natl Acad Sci USA 97(23):12446–12450. doi:10.1073/pnas.220425597 PubMedPubMedCentralGoogle Scholar
  163. Tang C, Weissman IL, Drukker M (2012) The safety of embryonic stem cell therapy relies on teratoma removal. Oncotarget 3(1):7–8. PMID 22294556Google Scholar
  164. Tao Z, Chen B, Tan X et al (2011) Coexpression of VEGF and angiopoietin-1 promotes angiogenesis and cardiomyocyte proliferation reduces apoptosis in porcine myocardial infarction (MI) heart. Proc Natl Acad Sci USA 108(5):2064–2069. doi:10.1073/pnas.1018925108 PubMedPubMedCentralGoogle Scholar
  165. Tong Q, Dalgin G, Xu H, Ting CN, Leiden JM, Hotamisligil GS (2000) Function of GATA transcription factors in preadipocyte-adipocyte transition. Science 290(5489):134–138PubMedGoogle Scholar
  166. Tong Q, Tsai J, Tan G, Dalgin G, Hotamisligil GS (2005) Interaction between GATA and the C/EBP family of transcription factors is critical in GATA-mediated suppression of adipocyte differentiation. Mol Cell Biol 25(2):706–715. doi:10.1128/MCB.25.2.706-715.2005 PubMedPubMedCentralGoogle Scholar
  167. Tontonoz P, Hu E, Graves RA, Budavari AI, Spiegelman BM (1994) mPPAR gamma 2: tissue-specific regulator of an adipocyte enhancer. Genes Dev 8(10):1224–1234PubMedGoogle Scholar
  168. Tormin A, Li O, Brune JC et al (2011) CD146 expression on primary nonhematopoietic bone marrow stem cells is correlated with in situ localization. Blood 117(19):5067–5077. doi:10.1182/blood-2010-08-304287 PubMedPubMedCentralGoogle Scholar
  169. Tornvig L, Mosekilde LI, Justesen J, Falk E, Kassem M (2001) Troglitazone treatment increases bone marrow adipose tissue volume but does not affect trabecular bone volume in mice. Calcif Tissue Int 69(1):46–50. doi:10.1007/s002230020018 PubMedGoogle Scholar
  170. Tremoleda JL, Forsyth NR, Khan NS et al (2008) Bone Tissue Formation from Human Embryonic Stem Cells In Vivo. Cloning Stem Cells 10(1):119–132PubMedGoogle Scholar
  171. Trivedi P, Hematti P (2008) Derivation and immunological characterization of mesenchymal stromal cells from human embryonic stem cells. Exp Hematol 36(3):350–359PubMedPubMedCentralGoogle Scholar
  172. Tu Q, Valverde P, Li S, Zhang J, Yang P, Chen J (2007) Osterix overexpression in mesenchymal stem cells stimulates healing of critical-sized defects in murine calvarial bone. Tissue Eng 13(10):2431–2440PubMedPubMedCentralGoogle Scholar
  173. Ueta C, Iwamoto M, Kanatani N et al (2001) Skeletal malformations caused by overexpression of Cbfa1 or its dominant negative form in chondrocytes. J Cell Biol 153(1):87–100PubMedPubMedCentralGoogle Scholar
  174. Vimalraj S, Partridge NC, Selvamurugan N (2014) A positive role of microRNA-15b on regulation of osteoblast differentiation. J Cell Physiol. doi:10.1002/jcp.24557 PubMedGoogle Scholar
  175. Wakitani S, Nawata M, Tensho K, Okabe T, Machida H, Ohgushi H (2007) Repair of articular cartilage defects in the patello-femoral joint with autologous bone marrow mesenchymal cell transplantation: three case reports involving nine defects in five knees. J Tissue Eng Regen Med 1(1):74–79. doi:10.1002/term.8 PubMedGoogle Scholar
  176. Wang YH, Han Z-B; Song Y-P; Han ZC (2012) Safety of mesenchymal stem cells for clinical application. Stem Cells Int 2012(Article ID 652034):4. doi: 10.1155/2012/652034
  177. Wang CY, Yang SF, Wang Z et al (2013) PCAF acetylates Runx2 and promotes osteoblast differentiation. J Bone Miner Metab 31(4):381–389. doi:10.1007/s00774-013-0428-y PubMedGoogle Scholar
  178. Weng JY, Du X, Geng SX et al (2010) Mesenchymal stem cell as salvage treatment for refractory chronic GVHD. Bone Marrow Transpl 45(12):1732–1740. doi:10.1038/bmt.2010.195 Google Scholar
  179. Wu Y, Zhao RC (2012) The role of chemokines in mesenchymal stem cell homing to myocardium. Stem Cell Rev 8(1):243–250PubMedGoogle Scholar
  180. Xiao G, Jiang D, Thomas P et al (2000) MAPK pathways activate and phosphorylate the osteoblast-specific transcription factor, Cbfa1. J Biol Chem 275(6):4453–4459PubMedGoogle Scholar
  181. Yamashita S, Miyaki S, Kato Y et al (2012) L-Sox5 and Sox6 proteins enhance chondrogenic miR-140 microRNA expression by strengthening dimeric Sox9 activity. J Biol Chem 287(26):22206–22215. doi:10.1074/jbc.M112.343194 PubMedPubMedCentralGoogle Scholar
  182. Yang L, Cheng P, Chen C et al (2012a) miR-93/Sp7 function loop mediates osteoblast mineralization. J Bone Miner Res Off J Am Soc Bone Miner Res 27(7):1598–1606. doi:10.1002/jbmr.1621 Google Scholar
  183. Yang X, Balakrishnan I, Torok-Storb B, Pillai MM (2012b) Marrow stromal cell infusion rescues hematopoiesis in lethally irradiated mice despite rapid clearance after infusion. Adv Hematol 2012:142530PubMedPubMedCentralGoogle Scholar
  184. Yang D, Okamura H, Nakashima Y, Haneji T (2013) Histone demethylase Jmjd3 regulates osteoblast differentiation via transcription factors Runx2 and osterix. J Biol Chem 288(47):33530–33541. doi:10.1074/jbc.M113.497040 PubMedGoogle Scholar
  185. Zhang JF, Fu WM, He ML et al (2011a) MiR-637 maintains the balance between adipocytes and osteoblasts by directly targeting Osterix. Mol Biol Cell 22(21):3955–3961. doi:10.1091/mbc.E11-04-0356 PubMedPubMedCentralGoogle Scholar
  186. Zhang JF, Fu WM, He ML et al (2011b) MiRNA-20a promotes osteogenic differentiation of human mesenchymal stem cells by co-regulating BMP signaling. RNA Biol 8(5):829–838. doi:10.4161/rna.8.5.16043 PubMedGoogle Scholar
  187. Zhao S, Wehner R, Bornhauser M, Wassmuth R, Bachmann M, Schmitz M (2010) Immunomodulatory properties of mesenchymal stromal cells and their therapeutic consequences for immune-mediated disorders. Stem Cells Dev 19(5):607–614. doi:10.1089/scd.2009.0345 PubMedGoogle Scholar
  188. Zhou M, Ma J, Chen S, Chen X, Yu X (2013) MicroRNA-17-92 cluster regulates osteoblast proliferation and differentiation. Endocrine. doi:10.1007/s12020-013-9986-y Google Scholar
  189. Zimmet H, Porapakkham P, Sata Y et al (2012) Short- and long-term outcomes of intracoronary and endogenously mobilized bone marrow stem cells in the treatment of ST-segment elevation myocardial infarction: a meta-analysis of randomized control trials. Eur J Heart Fail 14(1):91–105. doi:10.1093/eurjhf/hfr148 PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Walid Zaher
    • 1
    • 3
  • Linda Harkness
    • 1
  • Abbas Jafari
    • 1
    • 2
  • Moustapha Kassem
    • 1
    • 2
    • 3
  1. 1.Endocrine Research (KMEB), Department of Endocrinology, Odense University HospitalUniversity of Southern DenmarkOdense CDenmark
  2. 2.Danish Stem Cell Center (DanStem), Panum InstituteUniversity of CopenhagenCopenhagenDenmark
  3. 3.Stem Cell Unit, Department of Anatomy, College of MedicineKing Saud UniversityRiyadhSaudi Arabia

Personalised recommendations