Skip to main content

Advertisement

Log in

Physiological concentrations of unconjugated bilirubin prevent oxidative stress-induced hepatocanalicular dysfunction and cholestasis

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Bilirubin is an endogenous antioxidant with cytoprotective properties, and several studies highlight its potential in the treatment of pro-oxidant diseases. We demonstrated that oxidative stress (OS), a key feature in most hepatopathies, induces cholestasis by actin cytoskeleton disarrangement and further endocytic internalization of key canalicular transporters, such as the bile salt export pump (Bsep) and the multidrug resistance-associated protein 2 (Mrp2) . Here, we evaluated the capability of physiological concentrations of unconjugated bilirubin (UB) to limit OS and the impairment in biliary secretory function induced by the model pro-oxidant agent, tert-butylhydroperoxide (tBuOOH). UB fully prevented the formation of reactive oxygen species and membrane lipid peroxidation induced by tBuOOH in isolated rat hepatocytes. In the isolated rat hepatocyte couplet model, UB (17.1 μM) prevented the endocytic internalization of Bsep and Mrp2 and the impairment in their secretory function induced by tBuOOH. UB also prevented actin disarrangement, as evaluated by both plasma membrane bleb formation and actin fluorescent staining. Finally, UB prevented tBuOOH-induced cPKC activation. Experiments in isolated perfused rat livers showed that UB prevents the increase in oxidized glutathione biliary excretion and the drop in bile flow and the biliary excretion of specific Bsep and Mrp2 substrates. We conclude that physiological concentrations of UB are sufficient to prevent the biliary secretory failure induced by OS, by counteracting actin disarrangement and the consequent internalization of canalicular transporters relevant to normal bile formation. This reveals an important role for UB in preserving biliary secretory function under OS conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Arriaga SM, Basiglio CL, Mottino AD, Almará AM (2009) Unconjugated bilirubin inhibits C1 esterase activity. Clin Biochem 42:919–921

    Article  CAS  PubMed  Google Scholar 

  • Ballatori N, Truong AT (1992) Glutathione as a primary osmotic driving force in hepatic bile formation. Am J Physiol Gastrointest Liver Physiol 263:G617–G624

    CAS  Google Scholar 

  • Basiglio CL, Arriaga SM, Pelusa F, Almará AM, Roma MG, Mottino AD (2007) Protective role of unconjugated bilirubin on complement-mediated hepatocytolysis. Biochim Biophys Acta 1770:1003–1010

    Article  CAS  PubMed  Google Scholar 

  • Basiglio CL, Arriaga SM, Pelusa F, Almará AM, Kapitulnik J, Mottino AD (2010) Complement activation and disease: protective effects of hyperbilirubinemia. Clin Sci 118:99–113

    Article  CAS  Google Scholar 

  • Baur H, Kasperek S, Pfaff E (1975) Criteria of viability of isolated liver cells. Hoppe-Seylers Z Physiol Chem 356:827–838

    Article  CAS  PubMed  Google Scholar 

  • Berry N, Friend DS (1969) High-yield preparation of isolated rat liver parenchymal cells: a biochemical and fine structural study. J Cell Biol 43:506–520

    Article  CAS  PubMed  Google Scholar 

  • Borgognone M, Pérez LM, Basiglio CL, Ochoa JE, Roma MG (2005) Signaling modulation of bile salt-induced necrosis in isolated rat hepatocytes. Toxicol Sci 83:114–125

    Article  CAS  PubMed  Google Scholar 

  • Byrne AM, Lemasters JJ, Nieminen AL (1999) Contribution of increased mitochondrial free Ca2+ to the mitochondrial permeability transition induced by tert-butylhydroperoxide in rat hepatocytes. Hepatology 29:1523–1531

    Article  CAS  PubMed  Google Scholar 

  • Carreras FI, Gradilone SA, Mazzone A, Garcia F, Huang BQ, Ochoa JE, Tietz PS, Larusso NF, Calamita G, Marinelli RA (2003) Rat hepatocyte aquaporin-8 water channels are down-regulated in extrahepatic cholestasis. Hepatology 37:1026–1033

    Article  CAS  PubMed  Google Scholar 

  • Cathcart R, Schwiers E, Ames B (1983) Detection of picolmole levels of hydroperoxides using a fluorescent dichlorofluorescein assay. Anal Biochem 134:111–116

    Article  CAS  PubMed  Google Scholar 

  • Cesaratto L, Vascotto C, Calligaris S, Tell G (2004) The importance of redox state in liver damage. Ann Hepatol 3:86–92

    PubMed  Google Scholar 

  • Choi J, Ou JH (2006) Mechanisms of liver injury. III. Oxidative stress in the pathogenesis of hepatitis C virus. Am J Physiol Gastrointest Liver Physiol 290:G847–G851

    Article  CAS  PubMed  Google Scholar 

  • Copple BL, Jaeschke H, Klaassen CD (2010) Oxidative stress and the pathogenesis of cholestasis. Semin Liver Dis 30:195–204

    Article  CAS  PubMed  Google Scholar 

  • Crocenzi FA, Mottino AD, Cao J, Veggi LM, Sanchez Pozzi EJ, Vore M, Coleman R, Roma M (2003) Estradiol-17-bd-glucuronide induces endocytic internalization of Bsep in rats. Am J Physiol Gastrointest Liver Physiol 285:G449–G459

    CAS  PubMed  Google Scholar 

  • Crocenzi FA, Zucchetti AE, Boaglio AC, Barosso IR, Sanchez Pozzi EJ, Mottino AD, Roma MG (2012) Localization status of hepatocellular transporters in cholestasis. Front Biosci 17:1201–1218

    Article  CAS  Google Scholar 

  • Davies MJ (1989) Detection of peroxyl and alkoxyl radicals produced by reaction of hydroperoxides with rat liver microsomal fractions. Biochem J 257:603–606

    CAS  PubMed  Google Scholar 

  • Davies SE, Portmann BC, O’Grady JG, Aldis PM, Chaggar K, Alexander GJ, Williams R (1991) Hepatic histological findings after transplantation for chronic hepatitis B virus infection, including a unique pattern of fibrosing cholestatic hepatitis. Hepatology 13:150–157

    Article  CAS  PubMed  Google Scholar 

  • Donner M, Topp SA, Cebula P, Krienen A, Gehrmann T, Sommerfeld A, Reinehr R, Macher A, Herebian D, Mayatepek E, Pannen BH, Knoefel WT, Haeussinger D (2012) HbG200-mediated preinduction of heme oxygenase-1 improves bile flow and ameliorates pericentral downregulation of Bsep and Mrp2 following experimental liver ischemia and reperfusion. Biol Chem 394:97–112

    Google Scholar 

  • Doré S, Takahashi M, Ferris CD, Zakhary R, Hester LD, Guastella D, Snyder SH (1999) Bilirubin, formed by activation of heme oxygenase-2, protects neurons against oxidative stress injury. Proc Natl Acad Sci USA 96:2445–2450

    Article  PubMed  Google Scholar 

  • Eipel C, Eisold M, Schuett H, Vollmar B (2007) Inhibition of heme oxygenase-1 protects against tissue injury in carbon tetrachloride exposed livers. J Surg Res 139:113–120

    Article  CAS  PubMed  Google Scholar 

  • Fevery J, Van de Vijver M, Michiels R, Heirwegh KP (1977) Comparison in different species of biliary bilirubin-IX alpha conjugates with the activities of hepatic and renal bilirubin-IX alpha-uridine diphosphate glycosyltransferases. Biochem J 164:737–746

    CAS  PubMed  Google Scholar 

  • Froh M, Conzelmann L, Walbrun P, Netter S, Wiest R, Wheeler MD, Lehnert M, Uesugi T, Scholmerich J, Thurman RG (2007) Heme oxygenase-1 overexpression increases liver injury after bile duct ligation in rats. World J Gastroenterol 13:3478–3486

    CAS  PubMed  Google Scholar 

  • Fukunaga K, Suzuki T, Takama K (1993) Highly sensitive high-performance liquid chromatography for the measurement of malondialdehyde in biological samples. J Chromatogr 621:77–81

    Article  CAS  PubMed  Google Scholar 

  • González R, Cruz A, Ferrín G, López-Cillero P, Fernández-Rodríguez R, Briceño J, Gómez MA, Rufián S, de Mata ML, Martínez-Ruiz A, Marin JJ, Muntané J (2011) Nitric oxide mimics transcriptional and post-translational regulation during α-tocopherol cytoprotection against glycochenodeoxycholate-induced cell death in hepatocytes. J Hepatol 55:133–144

    Article  PubMed  Google Scholar 

  • Gores G, Herman B, Lemasters J (1990) Plasma membrane bleb formation and rupture: a common feature of hepatocellular injury. Hepatology 11:690–698

    Article  CAS  PubMed  Google Scholar 

  • Granato A, Gores G, Vilei MT, Tolando R, Ferraresso C, Muraca M (2003) Bilirubin inhibits bile acid induced apoptosis in rat hepatocytes. Gut 52:1774–1778

    Article  CAS  PubMed  Google Scholar 

  • Griffith OW (1980) Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Anal Biochem 106:207–212

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Hughes M, Green CJ, Naughton P, Foresti R, Motterlini R (2003) Interaction of bilirubin and biliverdin with reactive nitrogen species. FEBS Lett 543:113–119

    Article  CAS  PubMed  Google Scholar 

  • Kawai S, Arai T, Yokoyama Y, Nagino M, Nimura Y (2007) Free oxygen radicals reduce bile flow in rats via an intracellular cyclic AMP-dependent mechanism. J Gastroenterol Hepatol 22:429–435

    Article  CAS  PubMed  Google Scholar 

  • Kikuchi S, Hata M, Yamane Y, Matsui T, Tamura A, Yonemura S, Yamagishi H, Keppler D, Tsukita S, Tsukita S (2002) Radixin deficiency causes conjugated hyperbilirubinemia with loss of Mrp2 from bile canalicular membranes. Nat Genet 31:320–325

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Kang YS, Lee SH, Lee YS (2000) Inhibitors of Na+/Ca2+ exchanger prevent oxidant-induced intracellular Ca2+ increase and apoptosis in a human hepatoma cell line. Free Radic Res 33:267–277

    Article  CAS  PubMed  Google Scholar 

  • Labori KJ, Arnkvaern K, Bjørnbeth BA, Press CM, Raeder MG (2002) Cholestatic effect of large bilirubin loads and cholestasis protection conferred by cholic acid coinfusion: a molecular and ultrastructural study. Scand J Gastroenterol 37:585–596

    Article  CAS  PubMed  Google Scholar 

  • Lauterburg BH, Smith CV, Hughes H, Mitchell JR (1984) Biliary excretion of glutathione and glutathione disulfide in the rat: regulation and response to oxidative stress. J Clin Invest 73:124–133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu Y, Liu J, Tetzlaff W, Paty DW, Cynader MS (2006) Biliverdin reductase, a major physiologic cytoprotectant, suppresses experimental autoimmune encephalomyelitis. Free Radic Biol Med 40:960–967

    Article  CAS  PubMed  Google Scholar 

  • Lowry OH, Rosebrough NJ, Farr LL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  • Maghzal GJ, Leck M, Collinson E, Li C, Stocker R (2009) Limited role for the Bilirubin–Biliverdin redox amplification cycle in the cellular antioxidant protection by Biliverdin reductase. J Biol Chem 284:29251–29259

    Article  CAS  PubMed  Google Scholar 

  • Maglova LM, Jackson AM, Meng XJ, Carruth MW, Schteingart CD, Ton-Nu HT, Hofmann AF, Weinman SA (1995) Transport characteristics of three fluorescent conjugated bile acid analogs in isolated rat hepatocytes and couplets. Hepatology 22:637–647

    CAS  PubMed  Google Scholar 

  • Maines MD (1997) The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol 37:517–554

    Article  CAS  PubMed  Google Scholar 

  • Mancuso C, Barone E, Guido P, Micelia F, Di Domenico F, Perluigi M, Santangelo R, Preziosi P (2012) Inhibition of lipid peroxidation and protein oxidation by endogenous and exogenous antioxidants in rat brain microsomes in vitro. Neurosci Lett 518:101–105

    Article  CAS  PubMed  Google Scholar 

  • McDonagh AF (2010) Controversies in bilirubin biochemistry and their clinical relevance. Semin Fetal Neonat 15:141–147

    Article  Google Scholar 

  • Morita T, Imai T, Yamaguchi T, Sugiyama T, Katayama S, Yoshino G (2003) Induction of heme oxygenase-1 in monocytes suppresses angiotensin II-elicited chemotactic activity through inhibition of CCR2: role of bilirubin and carbon monoxide generated by the enzyme. Antioxid Redox Signal 5:439–447

    Article  CAS  PubMed  Google Scholar 

  • Nies A, Keppler D (2007) The apical conjugate efflux pump ABCC2 (MRP2). Pflugers Arch 453:643–659

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell V, Burkitt MJ (1994) Mitochondrial metabolism of a hydroperoxide to free radicals in human endothelial cells: an electron spins resonance spin-trapping investigation. Biochem J 304:707–713

    PubMed  Google Scholar 

  • Ollinger R, Wang H, Yamashita K, Wegiel B, Thomas M, Margreiter R, Bach FH (2007) Therapeutic applications of bilirubin and biliverdin in transplantation. Antioxid Redox Signal 9:2175–2185

    Article  PubMed  Google Scholar 

  • Pérez LM, Milkiewicz P, Ahmed-Choudhury J, Elias E, Ochoa JE, Sánchez Pozzi EJ, Coleman R, Roma MG (2006a) Oxidative stress induces actin-cytoskeletal and tight-junctional alterations in hepatocytes by a Ca2+-dependent, PKC-mediated mechanism: protective effect of PKA. Free Radic Biol Med 40:2005–2017

    Article  PubMed  Google Scholar 

  • Pérez LM, Milkiewicz P, Elias E, Coleman R, Sánchez Pozzi EJ, Roma MG (2006b) Oxidative stress induces internalization of the bile salt export pump, Bsep, and bile-salt-secretory failure in isolated rat hepatocyte couplets: a role for protein kinase C and prevention by protein kinase A. Toxicol Sci 91:150–158

    Article  PubMed  Google Scholar 

  • Petrov AI, Vatev NT, Atanasova MV (2012) Cholestatic syndrome in viral hepatitis A. Folia Med (Plovdiv) 54:30–35

    Google Scholar 

  • Roelofsen H, Soroka CJ, Keppler D, Boyer JL (1998) Cyclic AMP stimulates sorting of the canalicular organic anion transporter (Mrp2/cMoat) to the apical domain in hepatocyte couplets. J Cell Sci 111:1137–1145

    CAS  PubMed  Google Scholar 

  • Rolo AP, Teodoro JS, Palmeira CM (2012) Role of oxidative stress in the pathogenesis of nonalcoholic steatohepatitis. Free Radic Biol Med 52:59–69

    Article  CAS  PubMed  Google Scholar 

  • Roma MG, Sanchez Pozzi EJ (2008) Oxidative stress: a radical way to stop making bile. Ann Hepatol 7:16–33

    CAS  PubMed  Google Scholar 

  • Roma MG, Milkiewicz P, Elias E, Coleman R (2000) Control by signaling modulators of the sorting of canalicular transporters in rat hepatocyte couplets: role of the cytoskeleton. Hepatology 32:1342–1356

    Article  CAS  PubMed  Google Scholar 

  • Rost D, Kartenbeck J, Keppler D (1999) Changes in the localization of the rat canalicular conjugate export pump Mrp2 in phalloidin-induced cholestasis. Hepatology 29:814–821

    Article  CAS  PubMed  Google Scholar 

  • Ryter SW, Morse D, Choi AM (2007) Carbon monoxide and bilirubin: potential therapies for pulmonary/vascular injury and disease. Am J Respir Cell Mol Biol 36:175–182

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Takeo T, Liu Q, Nakano K, Osanai T, Suga S, Wakui M, Wu J (2009) Hydrogen peroxide mobilizes Ca2+ through two distinct mechanisms in rat hepatocytes. Acta Pharmacol Sin 30:78–89

    Article  CAS  PubMed  Google Scholar 

  • Schacter BA, Joseph E, Firneisz G (1983) Effect of cholestasis produced by bile duct ligation on hepatic heme and hemoprotein metabolism in rats. Gastroenterology 84:227–235

    CAS  PubMed  Google Scholar 

  • Schmitt M, Kubitz R, Wettstein M, vom Dahl S, Häussinger D (2000) Retrieval of the mrp2 gene encoded conjugate export pump from the canalicular membrane contributes to cholestasis induced by tert-butyl hydroperoxide and chloro-dinitrobenzene. Biol Chem 381:487–495

    Article  CAS  PubMed  Google Scholar 

  • Sedlak TW, Snyder SH (2004) Bilirubin benefits: cellular protection by a biliverdin reductase antioxidant cycle. Pediatrics 113:1776–1782

    Article  PubMed  Google Scholar 

  • Sedlak TW, Saleh M, Higginson DS, Paul BD, Juluri KR, Snyder SH (2009) Bilirubin and glutathione have complementary antioxidant and cytoprotective roles. Proc Nat Acad Sci 106:5171–5176

    Article  CAS  PubMed  Google Scholar 

  • Sorrentino P, Tarantino G, Perrella A, Micheli P, Perrella O, Conca P (2005) A clinical-morphological study on cholestatic presentation of nonalcoholic fatty liver disease. Dig Dis Sci 50:1130–1135

    Article  CAS  PubMed  Google Scholar 

  • Stehbens WE (2004) Oxidative stress in viral hepatitis and AIDS. Exp Mol Pathol 77:121–132

    Article  CAS  PubMed  Google Scholar 

  • Stocker R (2004) Antioxidant activities of bile pigments. Antioxid Redox Signal 6:841–849

    CAS  PubMed  Google Scholar 

  • Stocker R, Yamamoto Y, McDonagh AF, Glazer AN, Ames BN (1987a) Bilirubin is an antioxidant of possible physiological importance. Science 235:1043–1046

    Article  CAS  PubMed  Google Scholar 

  • Stocker R, Glazer AN, Ames BN (1987b) Antioxidant activity of albumin-bound bilirubin. Proc Natl Acad Sci USA 84:5918–5922

    Article  CAS  PubMed  Google Scholar 

  • Stone V, Johnson G, Wilton J, Coleman R, Chipman J (1994) Effect of oxidative stress and disruption of Ca2+ homeostasis on hepatocytes canalicular function in vitro. Biochem Pharmacol 47:625–632

    Article  CAS  PubMed  Google Scholar 

  • Talalay P (1960) Enzymatic analysis of steroid hormones. Methods Biochem Anal 8:119–143

    Article  CAS  PubMed  Google Scholar 

  • Tietze F (1969) Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal Biochem 27:502–522

    Article  CAS  PubMed  Google Scholar 

  • Vitek L (2012) The role of bilirubin in diabetes, metabolic syndrome, and cardiovascular diseases. Front Pharmacol. doi:10.3389/fphar.2012.00055

    Google Scholar 

  • Wilton JC, Williams DE, Strain AJ, Parslow RA, Chipman JK, Coleman R (1991) Purification of hepatocyte couplets by centrifugal elutriation. Hepatology 14:180–183

    Article  CAS  PubMed  Google Scholar 

  • Witting PK, Westerlund C, Stocker R (1996) A rapid and simple screening test for potential inhibitors of tocopherol-mediated peroxidation of LDL lipids. J Lipid Res 37:853–867

    CAS  PubMed  Google Scholar 

  • Yang B, Hill CE (2001) Nifedipine modulation of biliary GSH and GSSG/conjugate efflux in normal and regenerating rat liver. Am J Physiol 281:G85–G94

    CAS  Google Scholar 

  • Zelenka J, Muchova L, Zelenkova M, Vanova K, Vreman HJ, Wong RJ, Vitek L (2012) Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress. Biochimie 94:1821–1827

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) to Drs. Aldo D. Mottino and Marcelo G. Roma. We thank Drs. Marcelo Luquita, Mara Ojeda, and Rodrigo Vena for their valuable technical assistance in HPLC determinations, flow cytometric studies, and confocal imaging, respectively.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo G. Roma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basiglio, C.L., Toledo, F.D., Boaglio, A.C. et al. Physiological concentrations of unconjugated bilirubin prevent oxidative stress-induced hepatocanalicular dysfunction and cholestasis. Arch Toxicol 88, 501–514 (2014). https://doi.org/10.1007/s00204-013-1143-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1143-0

Keywords

Navigation