Skip to main content

Advertisement

Log in

Exposure of primary porcine urothelial cells to benzo(a)pyrene: in vitro uptake, intracellular concentration, and biological response

  • In vitro systems
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

More than 90 % of all bladder cancers are transitional cell carcinomas arising from the cells lining the inside of the hollow organ (uroepithelium). Cell cultures from primary urinary bladder epithelial cells (PUBEC) of pigs were established to assess the uptake, intracellular concentration, and subcellular distribution of the environmental pollutant benzo(a)pyrene (BaP). During treatment of the cells with 0.5 μM BaP for up to 24 h, intracellular concentration of BaP increased without saturation but with marked differences between various PUBEC pools. Analysis of BaP uptake by laser scanning microscopy indicated that BaP is rapidly partitioned into the cell membrane, while only a slight but significant increase in BaP fluorescence intensity was observed in the cytosol and nucleus. Spectrofluorometric quantification of BaP in PUBEC using ex situ calibration revealed a strong accumulation of BaP, leading to intracellular concentrations ranging from 7.28 to 35.70 μM in cells exposed to 0.5 μM BaP and from 29.9 to 406.64 μM in cells exposed to 10 μM BaP. These results were confirmed by gas chromatographic mass spectrometric analysis. Apoptotic cell nuclei were assessed by TUNEL analysis to see whether BaP exposure at the given concentrations results in a toxic effect. While apoptotic cells were barely detectable in control epithelial cells, there was a marked elevation in apoptosis in the BaP-exposed cells. In conclusion, a comprehensive study on uptake and quantification of BaP in epithelial cells from pig bladder is reported for the first time. The study may be helpful in understanding the pattern of BaP uptake and distribution in bladder and its possible implication in bladder cancer development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alexander M, Behm C, Föllmann W, Kuhlmann J (2008) Miniaturization of primary porcine urinary bladder epithelial cell cultures and application for gene expression studies after exposure to benzo[a]pyrene. J Toxicol Environ Health A 71(13–14):915–922

    Article  PubMed  CAS  Google Scholar 

  • Ariese F, Verkaik M, Hoornweg GP, van de Nesse RJ, Jukema-Leenstra SR, Hofstraat JW, Gooijer C, Velthorst NH (1994) Trace analysis of 3-hydroxy benzo[a]pyrene in urine for the biomonitoring of human exposure to polycyclic aromatic hydrocarbons. J Anal Toxicol 18(4):195–204

    PubMed  CAS  Google Scholar 

  • Barhoumi R, Mouneimne Y, Ramos KS, Safe SH, Phillips TD, Centonze VE, Ainley C, Gupta MS, Burghardt RC (2000) Analysis of benzo[a]pyrene partitioning and cellular homeostasis in a rat liver cell line. Toxicol Sci 53(2):264–270

    Article  PubMed  CAS  Google Scholar 

  • Borza A, Plöttner S, Wolf A, Behm C, Selinski S, Hengstler J, Roos P, Bolt H, Kuhlmann J, Föllmann W (2008) Synergism of aromatic amines and benzo[a]pyrene in induction of Ah receptor-dependent genes. Arch Toxicol 82(12):973–980

    Article  PubMed  CAS  Google Scholar 

  • Brennan P, Bogillot O, Cordier S, Greiser E, Schill W, Vineis P, Lopez-Abente G, Tzonou A, Chang-Claude J, Bolm-Audorff U, Jöckel K-H, Donato F, Serra C, Wahrendorf J, Hours M, T’Mannetje A, Kogevinas M, Boffetta P (2000) Cigarette smoking and bladder cancer in men: a pooled analysis of 11 case-control studies. Int J Cancer 86(2):289–294

    Article  PubMed  CAS  Google Scholar 

  • Brennan P, Bogillot O, Greiser E, Chang-Claude J, Wahrendorf J, Cordier S, Jöckel K-H, Lopez-Abente G, Tzonou A, Vineis P, Donato F, Hours M, Serra C, Bolm-Audorff U, Schill W, Kogevinas M, Boffetta P (2001) The contribution of cigarette smoking to bladder cancer in women (pooled European data). Cancer Causes Control 12(5):411–417

    Article  PubMed  CAS  Google Scholar 

  • Brunette DM, Katz M (1975) The interactions of benzo(a)pyrene with cell membranes: uptake into Chinese hamster ovary (CHO) cells and fluorescence studies with isolated membranes. Chem-Biol Interact 11(1):1–14

    Article  PubMed  CAS  Google Scholar 

  • Busbee DL, Norman JO, Ziprin RL (1990) Comparative uptake, vascular transport, and cellular internalization of aflatoxin-B1 and benzo(a)pyrene. Arch Toxicol 64(4):285–290

    Article  PubMed  CAS  Google Scholar 

  • Castelao JE, Yuan J-M, Skipper PL, Tannenbaum SR, Gago-Dominguez M, Crowder JS, Ross RK, Yu MC (2001) Gender- and smoking-related bladder cancer risk. J Natl Cancer Inst 93(7):538–545

    Article  PubMed  CAS  Google Scholar 

  • Chang LH (1943) The fecal excretion of polycyclic hydrocarbons following their adminstration to the rat. J Biol Chem 151(1):93–99

    CAS  Google Scholar 

  • Ekelman KB, Milo GE (1978) Cellular uptake, transport, and macromolecular binding of benzo(a)pyrene and 7,12-dimethylbenz(a)anthracene by human cells in vitro. Cancer Res 38(9):3026–3032

    PubMed  CAS  Google Scholar 

  • Fahl WE, Jefcoate CR, Kasper CB (1978) Characteristics of benzo(a)pyrene metabolism and cytochrome P-450 heterogeneity in rat liver nuclear envelope and comparison to microsomal membrane. J Biol Chem 253(9):3106–3113

    PubMed  CAS  Google Scholar 

  • Flieger A, Golka K, Schulze H, Föllmann W (2008) Primary cultures of human urothelial cells for genotoxicity testing. J Toxicol Environ Health A 71(13–14):930–935

    Article  PubMed  CAS  Google Scholar 

  • Föllmann W, Guhe C (1994) A cell culture model of isolated porcine urinary bladder epithelial cells for genotoxicity studies. Toxicol Vitro 8(4):763–765

    Article  Google Scholar 

  • Förster K, Preuss R, Roßbach B, Brüning T, Angerer J, Simon P (2008) 3-Hydroxybenzo[a]pyrene in the urine of workers with occupational exposure to polycyclic aromatic hydrocarbons in different industries. Occup Environ Med 65(4):224–229

    Article  PubMed  Google Scholar 

  • Godschalk RWL, Moonen EJC, Schilderman PAEL, Broekmans WMR, Kleinjans JCS, Van Schooten FJ (2000) Exposure-route-dependent DNA adduct formation by polycyclic aromatic hydrocarbons. Carcinogenesis 21(1):87–92

    Article  PubMed  CAS  Google Scholar 

  • Guhe C, Föllmann W (1994) Growth and characterization of porcine urinary bladder epithelial cells in vitro. Am J Physiol 266(2 Pt 2):F298–F308

    PubMed  CAS  Google Scholar 

  • Guhe C, Degen GH, Schuhmacher US, Kiefer F, Föllmann W (1996) Drug metabolizing enzyme activities in porcine urinary bladder epithelial cell cultures (PUBEC). Arch Toxicol 70(10):599–606

    Article  PubMed  CAS  Google Scholar 

  • Kadlubar FF, Badawi AF (1995) Genetic susceptibility and carcinogen-DNA adduct formation in human urinary bladder carcinogenesis. Toxicol Lett 82–83:627–632

    Article  PubMed  Google Scholar 

  • Kasper CB (1971) Biochemical distinctions between the nuclear and microsomal membranes from rat hepatocytes. J Biol Chem 246(3):577–581

    PubMed  CAS  Google Scholar 

  • Kaufman DS, Shipley WU, Feldman AS (2009) Bladder cancer. Lancet 374(9685):239–249

    Article  PubMed  CAS  Google Scholar 

  • Kelman BJ, Springer DL (1982) Movements of benzo[a]pyrene across the hemochorial placenta of the guinea pig. Proc Soc Exp Biol Med 169(1):58–62

    PubMed  CAS  Google Scholar 

  • Khandwala AS, Kasper CB (1973) Preferential induction of aryl hydroxylase activity in rat liver nuclear envelope by 3-methylcholanthrene. Biochem Biophys Res Commun 54(4):1241–1246

    Article  PubMed  CAS  Google Scholar 

  • Kogevinas M, Mannetje A, Cordier S, Ranft U, Gonzalez CA, Vineis P, Chang-Claude J, Lynge E, Wahrendorf J, Tzonou A, Jöckel KH, Serra C, Porru S, Hours M, Greiser E, Boffetta P (2003) Occupation and bladder cancer among men in Western Europe. Cancer Causes Control 14(10):907–914

    Article  PubMed  Google Scholar 

  • Lilienfeld A, Levin ML, Moore GE (1956) The association of smoking with cancer of the urinary bladder in humans. AMA Arch Intern Med 98(2):129–135

    Article  PubMed  Google Scholar 

  • Maffezzini M, Audisio R, Pavone-Macaluso M, Hall RR (1998) Bladder cancer. Crit Rev Oncol Hematol 27(2):151–153

    Article  PubMed  CAS  Google Scholar 

  • Mallon BJ, Harrison FL (1984) Octanol-water partition coefficient of benzo(a)pyrene: measurement, calculation, and environmental implications. Bull Environ Contam Toxicol 32(1):316–323

    Article  PubMed  CAS  Google Scholar 

  • Miller KP, Ramos KS (2001) Impact of cellular metabolism on the biological effects of benzo[a]pyrene and related hydrocarbons. Drug Metab Rev 33(1):1–35

    Article  PubMed  CAS  Google Scholar 

  • Moore BP, Hicks RM, Knowles MA, Redgrave S (1982) Metabolism and binding of benzo(a)pyrene and 2-acetylaminofluorene by short-term organ cultures of human and rat bladder. Cancer Res 42(2):642–648

    PubMed  CAS  Google Scholar 

  • Murta-Nascimento C, Schmitz-Dräger B, Zeegers M, Steineck G, Kogevinas M, Real F, Malats N (2007) Epidemiology of urinary bladder cancer: from tumor development to patient’s death. World J Urol 25(3):285–295

    Article  PubMed  Google Scholar 

  • Neal MS, Zhu J, Holloway AC, Foster WG (2007) Follicle growth is inhibited by benzo-[a]-pyrene, at concentrations representative of human exposure, in an isolated rat follicle culture assay. Hum Reprod 22(4):961–967

    Article  PubMed  CAS  Google Scholar 

  • Petrat F, de Groot H, Rauen U (2000) Determination of the chelatable iron pool of single intact cells by laser scanning microscopy. Arch Biochem Biophys 376(1):74–81

    Article  PubMed  CAS  Google Scholar 

  • Plant AL, Benson DM, Smith LC (1985) Cellular uptake and intracellular localization of benzo(a)pyrene by digital fluorescence imaging microscopy. J Cell Biol 100(4):1295–1308

    Article  PubMed  CAS  Google Scholar 

  • Plöttner S, Borza A, Wolf A, Bolt HM, Kuhlmann J, Föllmann W (2008) Evaluation of time dependence and interindividual differences in benzo[a]pyrene-mediated CYP1A1 induction and genotoxicity in porcine urinary bladder cell cultures. J Toxicol Environ Health Part A 71(13):969–975

    Article  PubMed  Google Scholar 

  • Plöttner S, Selinski S, Bolt H, Degen G, Hengstler J, Roos P, Föllmann W (2009) Distinct subtypes of urinary bladder epithelial cells with inducible and non-inducible cytochrome P450 1A1. Arch Toxicol 83(2):131–138

    Article  PubMed  Google Scholar 

  • Rodgman A, Smith CJ, Perfetti TA (2000) The composition of cigarette smoke: a retrospective, with emphasis on polycyclic components. Hum Exp Toxicol 19(10):573–595

    Article  PubMed  CAS  Google Scholar 

  • Rossella F, Campo L, Pavanello S, Kapka L, Siwinska E, Fustinoni S (2009) Urinary polycyclic aromatic hydrocarbons and monohydroxy metabolites as biomarkers of exposure in coke oven workers. Occup Environ Med 66(8):509–516

    Article  PubMed  CAS  Google Scholar 

  • Sun JD, Wolff RK, Kanapilly GM (1982) Deposition, retention, and biological fate of inhaled benzo(a)pyrene adsorbed onto ultrafine particles and as a pure aerosol. Toxicol Appl Pharmacol 65(2):231–244

    Article  PubMed  CAS  Google Scholar 

  • Sureau F, Chinsky L, Duquesne M, Laigle A, Turpin PY, Amirand C, Ballini JP, Vigny P (1990) Microspectrofluorimetric study of the kinetics of cellular uptake and metabolization of benzo(a)pyrene in human T 47 D mammary tumor cells: evidence for cytochrome P1450 induction. Eur Biophys J 18(5):301–307

    Article  PubMed  CAS  Google Scholar 

  • Vauhkonen M, Kuusi T, Kinnunen PKJ (1980) Serum and tissue distribution of benzo[a]pyrene from intravenously injected chylomicrons in rat in vivo. Cancer Lett 11(2):113–119

    Article  PubMed  CAS  Google Scholar 

  • Verma N, Bäuerlein C, Pink M, Rettenmeier AW, Schmitz-Spanke S (2011a) Proteome and phosphoproteome of primary cultured pig urothelial cells. Electrophoresis 32(24):3600–3611

    Article  PubMed  CAS  Google Scholar 

  • Verma N, Rettenmeier AW, Schmitz-Spanke S (2011b) Recent advances in the use of Sus scrofa (pig) as a model system for proteomic studies. Proteomics 11(4):776–793

    Article  PubMed  CAS  Google Scholar 

  • Verma N, Pink M, Rettenmeier AW, Schmitz-Spanke S (2012) Review on proteomic analyses of benzo(a)pyrene toxicity. Proteomics. doi:10.1002/pmic.201100466

  • Wolf A, Kutz A, Plöttner S, Behm C, Bolt HM, Föllmann W, Kuhlmann J (2005) The effect of benzo(a)pyrene on porcine urinary bladder epithelial cells analyzed for the expression of selected genes and cellular toxicological endpoints. Toxicology 207(2):255–269

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

There are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisha Verma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verma, N., Pink, M., Petrat, F. et al. Exposure of primary porcine urothelial cells to benzo(a)pyrene: in vitro uptake, intracellular concentration, and biological response. Arch Toxicol 86, 1861–1871 (2012). https://doi.org/10.1007/s00204-012-0899-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0899-y

Keywords

Navigation