Skip to main content
Log in

Evaluation of the effects and mechanisms of action of glufosinate, an organophosphate insecticide, on striatal dopamine release by using in vivo microdialysis in freely moving rats

  • Organ Toxicity and Mechanisms
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The purpose of the present work was to assess the effects of glufosinate ammonium (GLA), an aminoacid structurally related to glutamate, on in vivo dopamine (DA) release from rat striatum, using brain microdialysis coupled to HPLC-EC. Intrastriatal administration of GLA produced significant concentration-dependent increases in DA levels. At least two mechanisms can be proposed to explain these increases: GLA could be inducing DA release from synaptic vesicles or producing an inhibition of DA transporter (DAT). Thus, we investigated the effects of GLA under Ca++-free condition, and after pretreatment with reserpine and TTX. It was observed that the pretreatment with Ca++-free Ringer, reserpine or TTX significantly reduced the DA release induced by GLA. Coinfusion of GLA and nomifensine shows that the GLA-induced DA release did not involve the DAT. These results show that GLA-induced striatal DA release is probably mediated by an exocytotic-, Ca++-, action potential-dependent mechanism, being independent of DAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aswad DW (1984) Determination of d- and l-aspartate in amino acid mixtures by high performance liquid chromatography after derivatization with a chiral adduct of o-phthaldialdehyde. Anal Biochem 137:405–407

    Article  CAS  PubMed  Google Scholar 

  • Bak LK, Schousbo A, Waagepetersen HS (2006) The glutamate/GABA-glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer. J Neurochem 98:641–653

    Article  CAS  PubMed  Google Scholar 

  • Calas GG, Richard O, Même S, Beloeil JC, Doan BT, Gefflaut T, Même W, Crusio WE, Pichon J, Montécot C (2008) Chronic exposure to glufosinate-ammonium induces spatial memory impairments, hippocampal MRI modifications and glutamine synthetase activation in mice. Neurotoxicology 29:740–747

    Article  CAS  PubMed  Google Scholar 

  • Cianca RC, Barbosa RD, Faro LR, Adan LV, Gago-Martínez A, Pallares MA (2009) Differential changes of neuroactive amino acids in samples obtained from discrete rat brain regions after systemic administration of saxitoxin. Neurochem Int 54:308–313

    Article  CAS  PubMed  Google Scholar 

  • David HN, Ansseau M, Abraini JH (2005) Dopamine–glutamate reciprocal modulation of release and motor responses in the rat caudate–putamen and nucleus accumbens of ‘‘intact’’ animals. Brain Res Rev 50:336–360

    CAS  PubMed  Google Scholar 

  • Durán R, Alfonso M, Arias B (1998) Determination of biogenic amines in rat brain dialysates by high performance liquid chromatography. J Liq Chromatogr Relat Technol 21:2799–2811

    Article  Google Scholar 

  • Elverfors A, Pileblad E, Lagerkvist S, Bergquist F, Jonason J, Nissbrandt H (1997) 3-Methoxytyramine formation following monoamine oxidase inhibition is a poor index of dendritic DA release in the substantia nigra. J Neurochem 69:1684–1692

    Article  CAS  PubMed  Google Scholar 

  • Fagg GE, Lanthorn TH (1985) Cl2/Ca21-dependent l-glutamate binding sites do not correspond to 2-amino-4-phosphonobutanoate-sensitive excitatory amino acid receptors. Br J Pharmacol 86:743–751

    CAS  PubMed  Google Scholar 

  • Gluck MR, Zeevalk GD (2004) Inhibition of brain mitochondrial respiration by dopamine and its metabolites: implications for Parkinson’s disease and catecholamine-associated diseases. J Neurochem 91:788–795

    Article  CAS  PubMed  Google Scholar 

  • Hack R, Ebert E, Ehling G, Leist KH (1994) Glufosinate ammonium-some aspects of its mode of action in mammals. Food Chem Toxicol 32:461–470

    Article  CAS  PubMed  Google Scholar 

  • Heeringa MJ, Abercrombie ED (1995) Biochemistry of somatodendritic dopa- mine release in substantia nigra: an in vivo comparison with striatal dopamine release. J Neurochem 65:192–200

    Article  CAS  PubMed  Google Scholar 

  • Kannari K, Tanaka H, Maeda T, Tomiyama M, Suda T, Matsunaga M (2000) Reserpine pretreatment prevents increases in extracellular striatal dopamine following L-DOPA administration in rats with nigrostriatal denervation. J Neurochem 74:263–269

    Article  CAS  PubMed  Google Scholar 

  • Lapouble E, Montecot C, Sevestre A, Pichon J (2002) Phosphinothricin induces epileptic activity via nitric oxide production through NMDA receptor activation in adult mice. Brain Res 957:46–52

    Article  CAS  PubMed  Google Scholar 

  • Lea PJ, Joy KW, Ramo JL, Guerrero MG (1984) The action of 2-amino-4-(methylphosphinyl)-butanoic acid (phosphinothricin) and its 2-oxo-derivative on the metabolism of cyanobacteria and higher plants. Phytochemistry 23:1–6

    Article  CAS  Google Scholar 

  • Leviel V (2001) The reverse transporter of DA, What the physiological significance? Neurochem Int 38:83–106

    Article  CAS  PubMed  Google Scholar 

  • Logusch EW, Walker DM, McDonald JF, Franz JE (1989) Substrate variability as a factor in enzyme inhibitor design: inhibition of ovine brain glutamine synthetase by alpha- and gamma-substituted phosphinothricins. Biochemistry 28:3043–3051

    Article  CAS  PubMed  Google Scholar 

  • Matsumura N, Takeuchi C, Hishikawa K, Fujii T, Nakaki T (2001) GLA ammonium induces convulsion through N-methyl-d-aspartate receptors in mice. Neurosci Lett 304:123–125

    Article  CAS  PubMed  Google Scholar 

  • Meiergerd SM, Schenk JO (1994) Kinetic evaluation of the commonality between the site(s) of action of cocaine and some other structurally similar and dissimilar inhibitors of the striatal transporter for DA. J Neurochem 63:1683–1692

    Article  CAS  PubMed  Google Scholar 

  • Meme S, Calas AG, Montécot C, Richard O, Gautier H, Gefflaut T, Doan BT, Même W, Pichon J, Beloeil JC (2009) MRI characterization of structural mouse brain changes in response to chronic exposure to the glufosinate ammonium herbicide. Toxicol Sci 111:321–330

    Article  CAS  PubMed  Google Scholar 

  • Nakaki T, Mishima A, Suzuki E, Shintani F, Fujii T (2000) GLA ammonium stimulates nitric oxide production through N-methyl d-aspartate receptors in rat cerebellum. Neurosci Lett 290:209–212

    Article  CAS  PubMed  Google Scholar 

  • Park HY, Lee PH, Shin DH, Kim GW (2006) Anterograde amnesia with hippocampal lesions following GLA intoxication. Neurology 67:914–915

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The rat brain: in stereotaxic coordinates, 4th edn. Academic Press, New York

    Google Scholar 

  • Roth JA, Breakefield XO, Castiglione CM (1976) Monoamine oxidase and catechol-O-methyltransferase activities in cultured human skin fibroblasts. Life Sci 19:1705–1710

    Article  CAS  PubMed  Google Scholar 

  • Tanaka J, Yamashita M, Yamashita M, Matsuo H, Yamamoto T (1998) Two cases of GLA poisoning with late onset convulsions. Vet Hum Toxicol 40:219–222

    CAS  PubMed  Google Scholar 

  • Tarazi FI, Baldessarini RJ (1999) Regional localization of dopamine and ionotropic glutamate receptor subtypes in striatolimbic brain regions. J Neurosci Res 55:401–410

    Article  CAS  PubMed  Google Scholar 

  • Tarazi FI, Campbell A, Yeghiayan SK, Baldessarini RJ (1998) Localization of ionotropic glutamate receptors in caudate–putamen and nucleus accumbens septi of rat brain: comparison of NMDA, AMPA, and kainate receptors. Synapse 30:227–235

    Article  CAS  PubMed  Google Scholar 

  • Tolwani RJ, Jakowec MW, Petzinger GM, Green S, Waggie K (1999) Experimental models of Parkinson’s disease: insights from many models. Lab Anim Sci 49:363–371

    CAS  PubMed  Google Scholar 

  • Watanabe T, Sano T (1998) Neurological effects of GLA poisoning with a brief review. Hum Exp Toxicol 17:35–39

    Article  CAS  PubMed  Google Scholar 

  • Wendler C, Wild A (1990) Effect of phosphinothricin (Glufosinate) on photosynthesis and photorespiration. Z Naturforsch 45:535–537

    CAS  Google Scholar 

  • Wieczorek WJ, Kruk ZL (1994) A quantitative comparison on the effects of benztropine, cocaine and nomifensine on electrically evoked DA overflow and rate of re-uptake in the caudate putamen and nucleus accumbens in the rat brain slice. Brain Res 657:42–50

    Article  CAS  PubMed  Google Scholar 

  • Wood PL, Altar CA (1988) Dopamine release in vivo from nigrostriatal, mesolimbic, and mesocortical neurons: utility of 3-methoxytyramine measurements. Pharmacol Rev 40:163–187

    CAS  PubMed  Google Scholar 

  • Zetterström T, Brundin P, Gage FH, Sharp T, Isacson O, Dunnett SB, Ungerstedt U, Björklund A (1986) In vivo measurement of spontaneous release and metabolism of dopamine from intrastriatal nigral grafts using intracerebral dialysis. Brain Res 362:344–349

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Brenda Nunes acknowledges MAEC-AECID (Spain) for a research grant. The research was supported by grant (Contract-Program) from University of Vigo (0022 122F641.02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lilian R. Ferreira Faro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferreira Nunes, B.V., Durán, R., Alfonso, M. et al. Evaluation of the effects and mechanisms of action of glufosinate, an organophosphate insecticide, on striatal dopamine release by using in vivo microdialysis in freely moving rats. Arch Toxicol 84, 777–785 (2010). https://doi.org/10.1007/s00204-010-0533-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-010-0533-9

Keywords

Navigation