Skip to main content

Advertisement

Log in

Vertical distribution of particle-associated and free-living ammonia-oxidizing archaea in Suruga Bay, a deep coastal embayment of Japan

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

We analyzed the vertical distributions of ammonia-oxidizing archaea (AOA) in terms of abundance in Suruga Bay, Japan. We distinguished particle-associated (PA) from free-living (FL) assemblages. According to quantitative PCR measurements of the ammonia monooxygenase subunit A gene (amoA), most marine AOA were in an FL state. The vertical distributions of PA AOA ecotypes differed from the general trend; the Shallow Marine clade was dominant in both the surface and deep layers. Thus, although PA AOA account for a small percentage of AOA abundance, they have a community structure distinct from that of FL AOA in planktonic environments. Marine particles should be investigated further as an unexplored niche of AOA in the ocean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanogr 20:41–82

    Article  Google Scholar 

  • Alldredge AL, Youngbluth MJ (1985) The significance of macroscopic aggregates (marine snow) as sites for heterotrophic bacterial production in the mesopelagic zone of the subtropical Atlantic. Deep-Sea Res 32:1445–1456

    Article  Google Scholar 

  • Beman JM, Popp BN, Francis CA (2008) Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME J 2:429–441

    Article  CAS  PubMed  Google Scholar 

  • Beman JM, Sachdeva R, Fuhrman JA (2010) Population ecology of nitrifying archaea and bacteria in the Southern California Bight. Environ Microbiol 12:1282–1292

    Article  CAS  PubMed  Google Scholar 

  • Bidle KD, Fletcher M (1995) Comparison of free-living and particle-associated bacterial communities in the Chesapeake Bay by stable low-molecular weight RNA analysis. Appl Environ Microbiol 61:944–952

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brochier-Armanet C, Boussau B, Gribaldo S, Forterre P (2008) Mesophilic crenarchaeota: proposal for a third archaeal phylum, the Thaumarchaeota. Nat Rev Microbiol 6:245–252

    Article  CAS  PubMed  Google Scholar 

  • Coolen MJL, Abbas B, van Bleijswijk J, Hopmans EC, Kuypers MMM, Wakeham SG, Damste JSS (2007) Putative ammonia-oxidizing Crenarchaeota in suboxic waters of the Black Sea: a basin-wide ecological study using 16S ribosomal and functional genes and membrane lipids. Environ Microbiol 9:1001–1016

    Article  CAS  PubMed  Google Scholar 

  • DeLong EF, Franks DG, Alldredge AL (1993) Phylogenetic diversity of aggregate-attached vs. free-living marine bacterial assemblages. Limnol Oceanogr 38:924–934

    Article  Google Scholar 

  • Eloe EA, Shulse CN, Fadrosh DW, Williamson SJ, Allen EE, Bartlett DH (2011) Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ Microbiol Rep 3:449–458

    Article  PubMed  Google Scholar 

  • Francis CA, Roberts KJ, Beman JM, Santoro AE, Oakley BB (2005) Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc Natl Acad Sci USA 102:14683–14688

    Article  CAS  PubMed  Google Scholar 

  • Fuchsman CA, Devol AH, Saunders JK, McKay C, Rocap G (2017) Niche partitioning in the N cycling community of an offshore oxygen deficient zone. Front Microbiol 8:2384

    Article  PubMed  PubMed Central  Google Scholar 

  • Ghiglione JF, Mevel G, Pujo-Pay M, Mousseau L, Lebaron P, Goutx M (2007) Diel and seasonal variations in abundance, activity, and community structure of particle-attached and free-living bacteria in NW Mediterranean Sea. Microb Ecol 54:217–231

    Article  CAS  PubMed  Google Scholar 

  • Grossart HP, Tang KW, Kiorboe T, Ploug H (2007) Comparison of cell-specific activity between free-living and attached bacteria using isolates and natural assemblages. FEMS Microbiol Lett 266:194–200

    Article  CAS  PubMed  Google Scholar 

  • Guerrero-Feijóo E, Sintes E, Herndl GJ, Varela MM (2018) High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin). Environ Microbiol 20:602–611

    Article  CAS  PubMed  Google Scholar 

  • Hallam SJ, Mincer TJ, Schleper C, Preston CM, Roberts K, Richardson Paul M, DeLong EF (2006) Pathways of carbon assimilation and ammonia oxidation suggested by environmental genomic analyses of marine Crenarchaeota. Plos Biol 4:0521–0536

    Article  Google Scholar 

  • Herfort L, Schouten S, Abbas B, Veldhuis MJW, Coolen MJL, Wuchter C, Boon JP, Herndl GJ, Damste JSS (2007) Variations in spatial and temporal distribution of archaea in the North Sea in relation to environmental variables. FEMS Microbiol Ecol 62:242–257

    Article  CAS  PubMed  Google Scholar 

  • Horak REA, Qin W, Bertagnolli AD et al (2018) Relative impacts of light, temperature, and reactive oxygen on thaumarchaeal ammonia oxidation in the North Pacific Ocean. Limnol Oceanogr 63:741–757

    Article  CAS  Google Scholar 

  • Ijichi M, Hamasaki K (2011) Community structure of ammonia-oxidizing marine archaea differs by depth of collection and temperature of cultivation. J Oceanogr 67:739–745

    Article  Google Scholar 

  • Ijichi M, Hamasaki K (2017) Distinctive physiological response of shallow and deep ecotypes of ammonia-oxidizing marine archaea in seawater cultures. Plankton Benthos Res 12:259–265

    Article  Google Scholar 

  • Karl DM, Knauer GA, Martin JH, Ward BB (1984) Bacterial chemolithotrophy in the ocean is associated with sinking particles. Nature 309:54–56

    Article  CAS  Google Scholar 

  • Kataoka T, Suzuki K, Irino T, Yamamoto M, Higashi S, Liu H (2018) Phylogenetic diversity and distribution of bacterial and archaeal amoA genes in the East China Sea during spring. Arch Microbiol 200:329–342

    Article  CAS  PubMed  Google Scholar 

  • Könneke M, Schubert DM, Brown PC, Hügler M, Standfest S, Schwander T, Schada von Borzyskowski L, Erb TJ, Stahl DA, Berg IA (2014) Ammonia-oxidizing archaea use the most energy-efficient aerobic pathway for CO2 fixation. Proc Natl Acad Sci USA 111:8239–8244

    Article  CAS  PubMed  Google Scholar 

  • Luo H, Tolar BB, Swan BK, Zhang CL, Stepanauskas R, Ann Moran M, Hollibaugh JT (2014) Single-cell genomics shedding light on marine Thaumarchaeota diversification. ISME J 8:732–736

    Article  CAS  PubMed  Google Scholar 

  • Martens-Habbena W, Berube PM, Urakawa H, de la Torre JR, Stahl DA (2009) Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature 461:976–981

    Article  CAS  PubMed  Google Scholar 

  • Mestre M, Borrull E, Sala MM, Gasol JM (2017) Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J 11:999–1010

    Article  PubMed  PubMed Central  Google Scholar 

  • Mincer TJ, Church MJ, Taylor LT, Preston C, Karl DM, DeLong EF (2007) Quantitative distribution of presumptive archaeal and bacterial nitrifiers in Monterey Bay and the North Pacific Subtropical Gyre. Environ Microbiol 9:1162–1175

    Article  CAS  PubMed  Google Scholar 

  • Moeseneder MM, Winter C, Herndl GJ (2001) Horizontal and vertical complexity of attached and free-living bacteria of the eastern Mediterranean Sea, determined by 16S rDNA and 16S rRNA fingerprints. Limnol Oceanogr 46:95–107

    Article  CAS  Google Scholar 

  • Molina V, Belmar L, Ulloa O (2010) High diversity of ammonia-oxidizing archaea in permanent and seasonal oxygen-deficient waters of the eastern South Pacific. Environ Microbiol 12:2450–2465

    Article  CAS  PubMed  Google Scholar 

  • Pachiadaki MG, Sintes E, Bergauer K et al (2017) Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358:1046–1051

    Article  CAS  PubMed  Google Scholar 

  • Phillips CJ, Smith Z, Embley TM, Prosser JI (1999) Phylogenetic differences between particle-associated and planktonic ammonia-oxidizing bacteria of the beta subdivision of the class Proteobacteria in the northwestern Mediterranean Sea. Appl Environ Microbiol 65:779–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Santoro AE, Casciotti KL, Francis CA (2010) Activity, abundance and diversity of nitrifying archaea and bacteria in the central California current. Environ Microbiol 12:1989–2006

    Article  CAS  PubMed  Google Scholar 

  • Santoro AE, Dupont CL, Richter RA, Craig MT, Carini P, McIlvin MR, Yang Y, Orsi WD, Moran DM, Saito MA (2015) Genomic and proteomic characterization of “Candidatus Nitrosopelagicus brevis”: an ammonia-oxidizing archaeon from the open ocean. Proc Natl Acad Sci USA 112:1173–1178

    Article  CAS  PubMed  Google Scholar 

  • Santoro AE, Saito MA, Goepfert TJ, Lamborg CH, Dupont CL, DiTullio GR (2017) Thaumarchaeal ecotype distributions across the equatorial Pacific Ocean and their potential roles in nitrification and sinking flux attenuation. Limnol Oceanogr 62:1984–2003

    Article  CAS  Google Scholar 

  • Shiozaki T, Ijichi M, Isobe K, Hashihama F, Nakamura K, Ehama M, Hayashizaki K, Takahashi K, Hamasaki K, Furuya K (2016) Nitrification and its influence on biogeochemical cycles from the equatorial Pacific to the Arctic Ocean. ISME J 10:2184–2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sintes E, Bergauer K, De Corte D, Yokokawa T, Herndl GJ (2013) Archaeal amoA gene diversity points to distinct biogeography of ammonia-oxidizing Crenarchaeota in the ocean. Environ Microbiol 15:1647–1658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland EDP, Gomez ML, Sieracki ME, DeLong EF, Herndl GJ, Stepanauskas R (2011) Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–1300

    Article  CAS  PubMed  Google Scholar 

  • Swan BK, Chaffin MD, Martinez-Garcia M, Morrison HG, Field EK, Poulton NJ, Masland EDP, Harris CC, Sczyrba A, Chain PSG, Koren S, Woyke T, Stepanauskas R (2014) Genomic and metabolic diversity of Marine Group I Thaumarchaeota in the mesopelagic of two subtropical gyres. PLoS One 9:e95380

    Article  PubMed  PubMed Central  Google Scholar 

  • Wuchter C, Abbas B, Coolen MJL, Herfort L, van Bleijswijk J, Timmers P, Strous M, Teira E, Herndl GJ, Middelburg JJ, Schouten S, Damste JSS (2006) Archaeal nitrification in the ocean. Proc Natl Acad Sci USA 103:12317–12322

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to the captain and crew of the research vessel Tansei-maru and the onboard researchers of cruise KT-08-02. We thank the staff and members of the Marine Microbiology Section and Genetic Research Section (Atmosphere and Ocean Research Institute, The University of Tokyo) and Dr. Hidetoshi Urakawa (Florida Gulf Coast University) for providing valuable advice at the start of this study. This work was supported by MEXT KAKENHI Grant no. JP24121004 to KH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoru Ijichi.

Additional information

Communicated by Erko Stackebrandt.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1170 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ijichi, M., Itoh, H. & Hamasaki, K. Vertical distribution of particle-associated and free-living ammonia-oxidizing archaea in Suruga Bay, a deep coastal embayment of Japan. Arch Microbiol 201, 1141–1146 (2019). https://doi.org/10.1007/s00203-019-01680-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-019-01680-6

Keywords

Navigation