Advertisement

Osteoporosis International

, Volume 27, Issue 3, pp 1003–1010 | Cite as

Impaired skeletal health and neuromuscular function among amphetamine users in clinical treatment

  • M. P. Mosti
  • G. Flemmen
  • J. Hoff
  • A. K. Stunes
  • U. Syversen
  • E. Wang
Original Article

Abstract

Summary

This study examined musculoskeletal health in amphetamine users, compared with healthy age-matched controls. We show that amphetamine users have reduced bone mass at several skeletal sites and attenuated maximal muscle strength and force development capacity in the lower extremities.

Introduction

Amphetamine use may cause poor bone quality and elevated risk of osteoporosis. The purpose of this study was to investigate whether amphetamine users exhibit reduced regional and whole body bone mineral density (BMD), altered bone metabolism, and how muscle function may relate to the patient groups’ skeletal health.

Methods

We assessed hip, lumbar spine and whole body BMD, and trabecular bone score (TBS) by dual x-ray absorptiometry (DXA), and bone metabolism markers in serum and maximal strength and force development capacity in 36 amphetamine users (25 men, 30 ± 7 years; 11 women 35 ± 10 years) and in 37 healthy controls (23 men, 31 ± 9 years; 14 women, 35 ± 7 years).

Results

Whole body BMD was lower in amphetamine users (8 % in males and 7 % females, p < 0.01), as were BMD at the total hip and sub-regions of the hip (9–11 % in men and 10–11 % in women, p < 0.05). Male users had 4 % lower TBS (p < 0.05) and higher serum level of type 1 collagen amino-terminal propeptide (p < 0.01). This coincided with reduced lower extremity maximal strength of 30 % (males, p < 0.001) and 25 % (females, p < 0.05) and 27 % slower muscular force development in males compared to controls (p < 0.01).

Conclusions

These findings demonstrate that amphetamine users suffer from a generalized reduction in bone mass, which was associated with attenuated maximal muscle strength and force development capacity in the lower extremities.

Keywords

Addiction Body composition One repetition maximum Physical capacity Rate of force development Rehabilitation 

Notes

Acknowledgments

The corresponding author was funded by a grant from the Liaison Committee between the Central Norway Regional Health Authority and the Norwegian University of Science and Technology (NTNU). We thank Stian Kwak for assistance with the blood sample collection.

Compliance with ethical standards

Conflicts of interest

None.

Ethics approval

The regional medical ethics committee (REK-nord) approved the study, and it was carried out in accordance with the Declaration of Helsinki.

References

  1. 1.
    Gonzales R, Marinelli-Casey P, Shoptaw S, Ang A, Rawson RA (2006) Hepatitis C virus infection among methamphetamine-dependent individuals in outpatient treatment. J Subst Abus Treat 31:195–202CrossRefGoogle Scholar
  2. 2.
    Kalechstein AD, Newton TF, Longshore D, Anglin MD, van Gorp WG, Gawin FH (2000) Psychiatric comorbidity of methamphetamine dependence in a forensic sample. J Neuropsychiatry Clin Neurosci 12:480–484CrossRefPubMedGoogle Scholar
  3. 3.
    Matsumoto T, Kamijo A, Miyakawa T, Endo K, Yabana T, Kishimoto H, Okudaira K, Iseki E, Sakai T, Kosaka K (2002) Methamphetamine in Japan: the consequences of methamphetamine abuse as a function of route of administration. Addiction 97:809–817CrossRefPubMedGoogle Scholar
  4. 4.
    Zweben JE, Cohen JB, Christian D, Galloway GP, Salinardi M, Parent D, Iguchi M, Methamphetamine Treatment P (2004) Psychiatric symptoms in methamphetamine users. Am J Addict 13:181–190CrossRefPubMedGoogle Scholar
  5. 5.
    Flemmen G, Unhjem R, Wang E (2014) High-intensity interval training in patients with substance use disorder. BioMed Res Int 2014:616935CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Dolezal BA, Chudzynski J, Storer TW, Abrazado M, Penate J, Mooney L, Dickerson D, Rawson RA, Cooper CB (2013) Eight weeks of exercise training improves fitness measures in methamphetamine-dependent individuals in residential treatment. J Addict Med 7:122–128CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kemmler W, Bebenek M, von Stengel S, Bauer J (2014) Peak-bone-mass development in young adults: effects of study program related levels of occupational and leisure time physical activity and exercise. A prospective 5-year study. Osteoporos Intl: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporos Found USAGoogle Scholar
  8. 8.
    Tan VP, Macdonald HM, Kim S, Nettlefold L, Gabel L, Ashe MC, McKay HA (2014) Influence of physical activity on bone strength in children and adolescents: a systematic review and narrative synthesis. J Bone Miner Res: Off J Am Soc Bone Miner Res 29:2161–2181CrossRefGoogle Scholar
  9. 9.
    Katsuragawa Y (1999) Effect of methamphetamine abuse on the bone quality of the calcaneus. Forensic Sci Int 101:43–48CrossRefPubMedGoogle Scholar
  10. 10.
    Kim EY, Kwon do H, Lee BD, Kim YT, Ahn YB, Yoon KY, Sa SJ, Cho W, Cho SN (2009) Frequency of osteoporosis in 46 men with methamphetamine abuse hospitalized in a national hospital. Forensic Sci Int 188:75–80CrossRefPubMedGoogle Scholar
  11. 11.
    Tomita M, Katsuyama H, Watanabe Y, Okuyama T, Fushimi S, Ishikawa T, Nata M, Miyamoto O (2014) Does methamphetamine affect bone metabolism? Toxicology 319:63–68CrossRefPubMedGoogle Scholar
  12. 12.
    Rantalainen T, Nikander R, Heinonen A, Multanen J, Hakkinen A, Jamsa T, Kiviranta I, Linnamo V, Komi PV, Sievanen H (2010) Neuromuscular performance and body mass as indices of bone loading in premenopausal and postmenopausal women. Bone 46:964–969CrossRefPubMedGoogle Scholar
  13. 13.
    Stengel SV, Kemmler W, Pintag R, Beeskow C, Weineck J, Lauber D, Kalender WA, Engelke K (2005) Power training is more effective than strength training for maintaining bone mineral density in postmenopausal women. J Appl Physiol 99:181–188CrossRefPubMedGoogle Scholar
  14. 14.
    Mosti MP, Carlsen T, Aas E, Hoff J, Stunes AK, Syversen U (2014) Maximal strength training improves bone mineral density and neuromuscular performance in young adult women. J Strength Cond Res / Natl Strength Cond Assoc 28:2935–2945CrossRefGoogle Scholar
  15. 15.
    Kato T, Terashima T, Yamashita T, Hatanaka Y, Honda A, Umemura Y (2006) Effect of low-repetition jump training on bone mineral density in young women. J Appl Physiol 100:839–843CrossRefPubMedGoogle Scholar
  16. 16.
    Schmidt CJ, Gibb JW (1985) Role of the dopamine uptake carrier in the neurochemical response to methamphetamine: effects of amfonelic acid. Eur J Pharmacol 109:73–80CrossRefPubMedGoogle Scholar
  17. 17.
    Burrows KB, Gudelsky G, Yamamoto BK (2000) Rapid and transient inhibition of mitochondrial function following methamphetamine or 3,4-methylenedioxymethamphetamine administration. Eur J Pharmacol 398:11–18CrossRefPubMedGoogle Scholar
  18. 18.
    Thomas DM, Walker PD, Benjamins JA, Geddes TJ, Kuhn DM (2004) Methamphetamine neurotoxicity in dopamine nerve endings of the striatum is associated with microglial activation. J Pharmacol Exp Ther 311:1–7CrossRefPubMedGoogle Scholar
  19. 19.
    Kadota T, Kadota K (2004) Neurotoxic morphological changes induced in the medial prefrontal cortex of rats behaviorally sensitized to methamphetamine. Arch Histol Cytol 67:241–251CrossRefPubMedGoogle Scholar
  20. 20.
    Cadet JL, Jayanthi S, Deng X (2005) Methamphetamine-induced neuronal apoptosis involves the activation of multiple death pathways. Rev Neurotoxicity Res 8:199–206CrossRefGoogle Scholar
  21. 21.
    McLean RR, Shardell MD, Alley DE et al (2014) Criteria for clinically relevant weakness and low lean mass and their longitudinal association with incident mobility impairment and mortality: the foundation for the National Institutes of Health (FNIH) sarcopenia project. J Gerontol Ser A Biol Med Sci 69:576–583CrossRefGoogle Scholar
  22. 22.
    Ortega FB, Silventoinen K, Tynelius P, Rasmussen F (2012) Muscular strength in male adolescents and premature death: cohort study of one million participants. BMJ 345, e7279CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    McLellan AT, Kushner H, Metzger D, Peters R, Smith I, Grissom G, Pettinati H, Argeriou M (1992) The fifth edition of the addiction severity index. J Subst Abus Treat 9:199–213CrossRefGoogle Scholar
  24. 24.
    Briot K, Paternotte S, Kolta S, Eastell R, Reid DM, Felsenberg D, Gluer CC, Roux C (2013) Added value of trabecular bone score to bone mineral density for prediction of osteoporotic fractures in postmenopausal women: the OPUS study. Bone 57:232–236CrossRefPubMedGoogle Scholar
  25. 25.
    Briot K, Roux C (2008) Drug-induced osteoporosis: beyond glucocorticoids. Curr Rheumatol Rep 10:102–109CrossRefPubMedGoogle Scholar
  26. 26.
    Leslie WD, Johansson H, Kanis JA, Lamy O, Oden A, McCloskey EV, Hans D (2014) Lumbar spine texture enhances 10-year fracture probability assessment. Osteoporos Int: J Established Result Cooperation Between Eur Found Osteoporos Natl Osteoporosis Found USA 25:2271–2277CrossRefGoogle Scholar
  27. 27.
    Jenkins N, Black M, Paul E, Pasco JA, Kotowicz MA, Schneider HG (2013) Age-related reference intervals for bone turnover markers from an Australian reference population. Bone 55:271–276CrossRefPubMedGoogle Scholar
  28. 28.
    Ros I, Alvarez L, Guanabens N, Peris P, Monegal A, Vazquez I, Cerda D, Ballesta AM, Munoz-Gomez J (2005) Hypophosphatemic osteomalacia: a report of five cases and evaluation of bone markers. J Bone Miner Metab 23:266–269CrossRefPubMedGoogle Scholar
  29. 29.
    Nagata Y, Imanishi Y, Ishii A et al (2011) Evaluation of bone markers in hypophosphatemic rickets/osteomalacia. Endocrine 40:315–317CrossRefPubMedGoogle Scholar
  30. 30.
    Dawson-Hughes B, Heaney RP, Holick MF, Lips P, Meunier PJ, Vieth R (2005) Estimates of optimal vitamin D status. Osteoporos Int 16:713–716CrossRefPubMedGoogle Scholar
  31. 31.
    Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501CrossRefPubMedGoogle Scholar
  32. 32.
    Colussi-Mas J, Panayi F, Scarna H, Renaud B, Berod A, Lambas-Senas L (2005) Blockade of beta-adrenergic receptors prevents amphetamine-induced behavioural sensitization in rats: a putative role of the bed nucleus of the stria terminalis. Int J Neuropsychopharmacol 8:569–581CrossRefPubMedGoogle Scholar
  33. 33.
    Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317CrossRefPubMedGoogle Scholar
  34. 34.
    Bonnet N, Benhamou CL, Beaupied H, Laroche N, Vico L, Dolleans E, Courteix D (2007) Doping dose of salbutamol and exercise: deleterious effect on cancellous and cortical bones in adult rats. J Appl Physiol 102:1502–1509CrossRefPubMedGoogle Scholar
  35. 35.
    Bonnet N, Benhamou CL, Brunet-Imbault B, Arlettaz A, Horcajada MN, Richard O, Vico L, Collomp K, Courteix D (2005) Severe bone alterations under beta2 agonist treatments: bone mass, microarchitecture and strength analyses in female rats. Bone 37:622–633CrossRefPubMedGoogle Scholar
  36. 36.
    Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815CrossRefPubMedGoogle Scholar
  37. 37.
    Aagaard P, Suetta C, Caserotti P, Magnusson SP, Kjaer M (2010) Role of the nervous system in sarcopenia and muscle atrophy with aging: strength training as a countermeasure. Scand J Med Sci Sports 20:49–64CrossRefPubMedGoogle Scholar
  38. 38.
    Lindle RS, Metter EJ, Lynch NA, Fleg JL, Fozard JL, Tobin J, Roy TA, Hurley BF (1997) Age and gender comparisons of muscle strength in 654 women and men aged 20–93 yr. J Appl Physiol 83:1581–1587PubMedGoogle Scholar
  39. 39.
    Aagaard P, Simonsen EB, Andersen JL, Magnusson P, Dyhre-Poulsen P (2002) Increased rate of force development and neural drive of human skeletal muscle following resistance training. J Appl Physiol 93:1318–1326CrossRefPubMedGoogle Scholar
  40. 40.
    Hvid L, Aagaard P, Justesen L, Bayer ML, Andersen JL, Ortenblad N, Kjaer M, Suetta C (2010) Effects of aging on muscle mechanical function and muscle fiber morphology during short-term immobilization and subsequent retraining. J Appl Physiol 109:1628–1634CrossRefPubMedGoogle Scholar
  41. 41.
    Kaptoge S, Dalzell N, Jakes RW, Wareham N, Day NE, Khaw KT, Beck TJ, Loveridge N, Reeve J (2003) Hip section modulus, a measure of bending resistance, is more strongly related to reported physical activity than BMD. Osteoporos Int 14:941–949CrossRefPubMedGoogle Scholar
  42. 42.
    Karasik D, Kiel DP (2010) Evidence for pleiotropic factors in genetics of the musculoskeletal system. Bone 46:1226–1237CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Judex S, Carlson KJ (2009) Is bone’s response to mechanical signals dominated by gravitational loading? Med Sci Sports Exerc 41:2037–2043CrossRefPubMedGoogle Scholar
  44. 44.
    Iizuka K, Machida T, Hirafuji M (2014) Skeletal muscle is an endocrine organ. J Pharmacol Sci 125:125–131CrossRefPubMedGoogle Scholar

Copyright information

© International Osteoporosis Foundation and National Osteoporosis Foundation 2015

Authors and Affiliations

  • M. P. Mosti
    • 1
  • G. Flemmen
    • 2
    • 3
  • J. Hoff
    • 2
    • 4
  • A. K. Stunes
    • 1
  • U. Syversen
    • 1
    • 5
  • E. Wang
    • 2
    • 6
  1. 1.Department of Cancer Research and Molecular MedicineNorwegian University of Science and TechnologyTrondheimNorway
  2. 2.Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
  3. 3.Department of Research and Development, Clinic of Substance Use and Addiction MedicineSt. Olav’s University HospitalTrondheimNorway
  4. 4.Department of Physical Medicine and RehabilitationSt. Olav’s University HospitalTrondheimNorway
  5. 5.Department of EndocrinologySt. Olav’s University HospitalTrondheimNorway
  6. 6.Department of Internal MedicineUniversity of UtahSalt Lake CityUSA

Personalised recommendations