Skip to main content
Log in

A force model in single grain grinding of long fiber reinforced woven composite

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The grinding process of long fiber reinforced woven composite (LFRWC) is complicated due to the special structure of the material. The force model is beneficial to understand, predict, and even control the machining process. In this study, a new force model considering fiber orientation of LFRWC is developed based on energy balancing theory. Through the construction of a mathematical model, the study demonstrates the correlation of grinding force with the processing parameters and the composite fiber orientation. A semi-analytical force model based on the specific energy is obtained combining with single grain grinding experiment of 3D orthogonal SiO2/SiO2. The influences of grinding parameters on the grinding force are discussed and the major material removal mode is researched. The results show that the predictable model has good consistency with the experimental results, and fiber orientation has a major influence on grinding force. This research on one hand can be used to predict the grinding force of LFRWC, thus conducting the machining and controlling their processing quality; on the other hand, it provides a baseline for selecting the proper machine and tool for LFRWC processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Söderfjäll M, Herbst HM, Larsson R, Almqvist A (2017) Influence on friction from piston ring design, cylinder liner roughness and lubricant properties. Tribol Int. https://doi.org/10.1016/j.triboint.2017.07.015

  2. Erol O, Powers BM, Keefe M (2017) Effects of weave architecture and mesoscale material properties on the macroscale mechanical response of advanced woven fabrics. Compos A: Appl Sci Manuf 101:554–566. https://doi.org/10.1016/j.compositesa.2017.07.016

    Article  Google Scholar 

  3. Hosseini Monazzah A, Pouraliakbar H, Bagheri R, Seyed Reihani SM (2017) Al-Mg-Si/SiC laminated composites: fabrication, architectural characteristics, toughness, damage tolerance, fracture mechanisms. Compos Part B 125:49–70. https://doi.org/10.1016/j.compositesb.2017.05.055

    Article  Google Scholar 

  4. Cao HM, Zhou X, Li XY, Lu K (2017) Friction mechanism in the running-in stage of copper: from plastic deformation to delamination and oxidation. Tribol Int 115:3–7. https://doi.org/10.1016/j.triboint.2017.05.027

    Article  Google Scholar 

  5. Malkin S, Hwang TW (1996) Grinding mechanisms for ceramics. CIRP Ann Manuf Technol 45(2):569–580. https://doi.org/10.1016/S0007-8506(07)60511-3

    Article  Google Scholar 

  6. Badger JA, Torrance AA (2000) A comparison of two models to predict grinding forces from wheel surface topography. Int J Mach Tools Manuf 40(8):1099–1120. https://doi.org/10.1016/S0890-6955(99)00116-9

    Article  Google Scholar 

  7. Xiao X, Zheng K, Liao W, Meng H (2016) Study on cutting force model in ultrasonic vibration assisted side grinding of zirconia ceramics. Int J Mach Tools Manuf 104:58–67. https://doi.org/10.1016/j.ijmachtools.2016.01.004

    Article  Google Scholar 

  8. Zhang Z, Huo F, Wu Y, Huang H (2011) Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material. Int J Mach Tools Manuf 51(1):18–24. https://doi.org/10.1016/j.ijmachtools.2010.10.006

    Article  Google Scholar 

  9. Ren YH, Zhang B, Zhou ZX (2009) Specific energy in grinding of tungsten carbides of various grain sizes. CIRP Ann 58(1):299–302. https://doi.org/10.1016/j.cirp.2009.03.026

    Article  Google Scholar 

  10. Sambhav K, Kumar A, Choudhury SK (2011) Mechanistic force modeling of single point cutting tool in terms of grinding angles. Int J Mach Tools Manuf 51(10):775–786. https://doi.org/10.1016/j.ijmachtools.2011.06.007

    Article  Google Scholar 

  11. Sun J, Qin F, Chen P, An T (2016) A predictive model of grinding force in silicon wafer self-rotating grinding. Int J Mach Tools Manuf 109:74–86. https://doi.org/10.1016/j.ijmachtools.2016.07.009

    Article  Google Scholar 

  12. Park HW, Liang SY (2008) Force modeling of micro-grinding incorporating crystallographic effects. Int J Mach Tools Manuf 48(15):1658–1667. https://doi.org/10.1016/j.ijmachtools.2008.07.004

    Article  Google Scholar 

  13. Zhang Y-N, Lin B, Liu J-J, Song X-F, Key J (2015) An experimental study on mechanical modeling of ceramics based on microstructure. Appl Sci 5(4):1337–1349. https://doi.org/10.3390/app5041337

    Article  Google Scholar 

  14. Huang H, Liu YC (2003) Experimental investigations of machining characteristics and removal mechanisms of advanced ceramics in high speed deep grinding. Int J Mach Tools Manuf 43(8):811–823. https://doi.org/10.1016/S0890-6955(03)00050-6

    Article  Google Scholar 

  15. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Maximum undeformed equivalent chip thickness for ductile-brittle transition of zirconia ceramics under different lubrication conditions. Int J Mach Tools Manuf 122:55–65. https://doi.org/10.1016/j.ijmachtools.2017.06.003

    Article  Google Scholar 

  16. Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Analysis of grinding mechanics and improved predictive force model based on material-removal and plastic-stacking mechanisms. Int J Mach Tools Manuf 122:81–97. https://doi.org/10.1016/j.ijmachtools.2017.06.002

    Article  Google Scholar 

  17. Xi X, Yu T, Ding W, Xu J (2018) Grinding of Ti2AlNb intermetallics using silicon carbide and alumina abrasive wheels: tool surface topology effect on grinding force and ground surface quality. Precis Eng 53:134–145. https://doi.org/10.1016/j.precisioneng.2018.03.007

    Article  Google Scholar 

  18. Ding K, Fu Y, Su H, Cui F, Li Q, Lei W, Xu H (2017) Study on surface/subsurface breakage in ultrasonic assisted grinding of C/SiC composites. Int J Adv Manuf Technol 91(9–12):3095–3105. https://doi.org/10.1007/s00170-017-0012-z

    Article  Google Scholar 

  19. Ning F, Cong W, Wang H, Hu Y, Hu Z, Pei Z (2017) Surface grinding of CFRP composites with rotary ultrasonic machining: a mechanistic model on cutting force in the feed direction. Int J Adv Manuf Technol 92(1–4):1217–1229. https://doi.org/10.1007/s00170-017-0149-9

    Article  Google Scholar 

  20. Wang H, Cong W, Ning F, Hu Y (2018) A study on the effects of machining variables in surface grinding of CFRP composites using rotary ultrasonic machining. Int J Adv Manuf Technol 95(9–12):3651–3663. https://doi.org/10.1007/s00170-017-1468-6

    Article  Google Scholar 

  21. Wang Y, Lin B, Zhang X (2014) Research on the system matching model in ultrasonic vibration-assisted grinding. Int J Adv Manuf Technol 70(1):449–458. https://doi.org/10.1007/s00170-013-5269-2

    Article  Google Scholar 

  22. Yuan S, Fan H, Amin M, Zhang C, Guo M (2016) A cutting force prediction dynamic model for side milling of ceramic matrix composites C/SiC based on rotary ultrasonic machining. Int J Adv Manuf Technol 86(1–4):37–48. https://doi.org/10.1007/s00170-015-8099-6

    Article  Google Scholar 

  23. Yuan S, Zhang C, Amin M, Fan H, Liu M (2015) Development of a cutting force prediction model based on brittle fracture for carbon fiber reinforced polymers for rotary ultrasonic drilling. Int J Adv Manuf Technol 81(5–8):1223–1231. https://doi.org/10.1007/s00170-015-7269-x

    Article  Google Scholar 

  24. Wang Y, Sarin VK, Lin B, Li H, Gillard S (2016) Feasibility study of the ultrasonic vibration filing of carbon fiber reinforced silicon carbide composites. Int J Mach Tools Manuf 101:10–17. https://doi.org/10.1016/j.ijmachtools.2015.11.003

    Article  Google Scholar 

  25. Cong WL, Pei ZJ, Sun X, Zhang CL (2014) Rotary ultrasonic machining of cfrp: a mechanistic predictive model for cutting force. Ultra 54(2):663–675. https://doi.org/10.1016/j.ultras.2013.09.005

    Article  Google Scholar 

  26. Li P, Zhang W (2014) Experiment based cutting force model for high speed milling of aluminium based composite. Mater Res Innov 18(sup5):S5-35–S35-38. https://doi.org/10.1179/1432891714Z.000000000909

    Article  Google Scholar 

  27. Ojo S, Ismail SO, Paggi M, Dhakal H (2017) A new critical thrust force model for delamination of composite laminates: analytical approach using first-order shear deformation theory

  28. Cao X, Lin B, Wang Y, Wang S (2014) Influence of diamond wheel grinding process on surface micro-topography and properties of SiO2/SiO2 composite. Appl Surf Sci 292:181–189. https://doi.org/10.1016/j.apsusc.2013.11.109

    Article  Google Scholar 

  29. Li Z, Ding W, Liu C, Su H (2018) Grinding performance and surface integrity of particulate-reinforced titanium matrix composites in creep-feed grinding. Int J Adv Manuf Technol 94(9):3917–3928. https://doi.org/10.1007/s00170-017-1159-3

    Article  Google Scholar 

  30. Liu C, Ding W, Yu T, Yang C (2018) Materials removal mechanism in high-speed grinding of particulate reinforced titanium matrix composites. Precis Eng 51:68–77. https://doi.org/10.1016/j.precisioneng.2017.07.012

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for Engineer Shigang Dai’s valuable advices on test design during the experiment process, thus making the results have good reliability and repeatability.

Funding

This study received financial assistance from the National Natural Science Foundation of China (NO.51375333).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, J., Wang, H., Lin, B. et al. A force model in single grain grinding of long fiber reinforced woven composite. Int J Adv Manuf Technol 100, 541–552 (2019). https://doi.org/10.1007/s00170-018-2719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-018-2719-x

Keywords

Navigation