Skip to main content
Log in

On the need of nonlinear control for efficient model-based wake stabilization

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

The mitigation of oscillatory vortex shedding behind a cylinder is chosen as a well-investigated benchmark problem to compare model-based feedback flow control approaches. The flow is sensed by a single velocity signal in the wake and is manipulated via a single volume force actuator. A low-dimensional proper orthogonal decomposition Galerkin model is adopted as a control-oriented fluid flow representation. An extended Kalman filter is used as an effective means for online dynamic state estimation. Investigated strategies of linear and nonlinear controller design include pole placement, linear parameter-varying, input–output linearization, Lyapunov-based backstepping, and nonlinear model predictive control. These strategies are applicable to a large class of flows with oscillatory dynamics and to experimental conditions, where variants have already been used. Controllers are evaluated and compared based on their application to the full plant, that is, to the direct numerical simulation of the wake, emulating an experiment with a single hot-wire sensor. Overall, nonlinear closed-loop control is shown to be distinctly superior to linear approaches. As is often the case, physics dictates a similarity of successful control commands, irrespective of the design approach, and differentiates these controllers, as a group, from less successful approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afanasiev, K., Hinze, M.: Adaptive control of a wake flow using proper orthogonal decomposition. In: Cagnol, J., Polis, M.P., Zolesio, J.P. (eds.) Shape Optimization & Optimal Design, Lecture Notes in Pure and Applied Mathematics, vol. 216, pp. 317–332. Marcel Dekker, New York (2001)

  2. Allan, B., Juang, J.N., Raney, D.L., Seifert, A., Pack, L.G., Brown, D.E.: Closed loop separation control using oscillatory flow excitations. Tech. Rep. 37, ICASE (2000)

  3. Apkarian, P., Gahinet, P., Beckeri, G.: Self-scheduled H control of linear parameter-varying systems. In: Proceedings of the American Control Conference, pp. 856–860 (1994)

  4. Becker R., Garwon M., Gutknecht C., Bärwolff G., King R.: Robust control of separated shear flows in simulation and experiment. J. Process Control 15(6), 691–700 (2005)

    Article  Google Scholar 

  5. Becker, R., Garwon, M., King, R.: Development of model-based sensors and their use for closed-loop control of separated shear flows. In: Proceedings of the European Control Conference. University of Cambridge, UK, September 1–4 (2003)

  6. Bergmann, M., Cordier, L., Brancher, J.P.: Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced order model. Phys. Fluids 17, 097,101–097,121 (2005)

    Google Scholar 

  7. Bewley T.R., Liu S.: Optimal and robust control and estimation of linear paths to transition. J. Fluid Mech. 365, 305–349 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bloor S.: The transition of turbulence in the wake of a circular cylinder. J. Fluid Mech. 19, 290–304 (1964)

    Article  MATH  Google Scholar 

  9. Brogan W.L.: Modern control theory. Prentice-Hall, Englewood (1985)

    MATH  Google Scholar 

  10. Cordier, L., Bergmann, M.: Post-Processing of Experimental and Numerical Data, chap. Proper Orthogonal Decomposition: An Overview. VKI Lecture Series 2003-03. Von Kármán Institut for Fluid Dynamics (2003)

  11. Cottet G.H., Koumoutsakos P.: Vortex Methods—Theory and Practice. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  12. Crowley, J.L., Demazeau, Y.: Principles and techniques for sensor data fusion. Signal Processing 32(1–2), 5–27 (1993). doi:10.1016/0165-1684(93)90034-8. Intelligent Systems for Signal and Image Understanding

  13. Deane A.E., Kevrekidis I.G., Karniadakis G.E., Orszag S.A.: Low-dimensional models for complex geometry flows: Application to grooved channels and circular cylinders. Phys. Fluids A 3(10), 2337–2354 (1991)

    Article  MATH  Google Scholar 

  14. Detemple-Laake E., Eckelmann H.: Phenomenology of Kármán vortex streets in oscillatory flow. Exps. Fluids 7, 217–227 (1989)

    Article  Google Scholar 

  15. Dorf R., Bishop R.: Modern Control Systems, 10th edn. Pearson Prentice Hall, Englewood Cliffs (2005)

    Google Scholar 

  16. Fiedler H., Fernholz H.: On the management and control of turbulent shear flows. Progr. Aeronaut. Sci. 27, 305–387 (1990)

    Article  MATH  Google Scholar 

  17. Fletcher C.A.J.: Computational Galerkin Methods. Springer, New York (1984)

    Book  MATH  Google Scholar 

  18. Gad-el-Hak M.: Flow Control: Passive, Active and Reactive Flow Management, 1st edn. Cambridge University Press, Cambridge (2000)

    Book  Google Scholar 

  19. Gad-el-Hak M., Pollard A., Bonnet J.P.: Flow Control—Fundamentals and practices, 1st edn. Springer, Berlin (1998)

    MATH  Google Scholar 

  20. Garwon, M., Urzynicok, F., Darmadi, L.H.., King, R., Bärwolff, G.: Adaptive control of separated flows. In: Proceedings of the European Control Conference. University of Cambridge, UK, September 1–4 (2003)

  21. Gelb A.: Applied Optimal Estimation, 2nd edn. MIT Press, Cambridge (1986)

    Google Scholar 

  22. Gerhard, J., Pastoor, M., King, R., Noack, B.R., Dillmann, A., Morzyński, M., Tadmor, G.: Model-based control of vortex shedding using low-dimensional Galerkin models. In: 33rd AIAA Fluids Conference and Exhibit. Orlando, Florida, USA, June 23–26, 2003 (2003). Paper 2003-4262

  23. Glezer A., Amitay M., Honohan A.M.: Aspects of low- and high-frequency actuation for aerodynamic flow control. AIAA J. 43(7), 1501–1511 (2005)

    Article  Google Scholar 

  24. Henning, L., King, R.: Multivariable closed-loop control of the reattachment length downstream of a backward-facing step. In: Proceedings of the 16th IFAC World Congress. 3–8 July, 2005, Prague, Czechia (2005). IFAC Paper 02575

  25. Hinze M., Kunisch K.: Three control methods for time—dependent fluid flow. Flow Turbul. Combust. 65, 273–298 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  26. Holmes P., Lumley J.L., Berkooz G.: Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 1st edn. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  27. Isidori, A.: Nonlinear Control Systems: An Introduction, 2nd edn. Communications and Control Engineering Series. Springer (1989)

  28. Jackson C.P.: A finite-element study of the onset of vortex shedding in flow past variously shaped bodies. J. Fluid Mech. 182, 23–45 (1987)

    Article  MATH  Google Scholar 

  29. Khalil H.K.: Nonlinear Systems. MacMillan, New York (1992)

    MATH  Google Scholar 

  30. Kim, B.H., Williams, D.R.: Nonlinear coupling of fluctuating drag and lift on cylinders undergoing forced oscillations. J. Fluid Mech. 559, 335–353 (2006)

    Google Scholar 

  31. King, R., Aleksic, K., Gelbert G., Losse, N., Muminovic, R., Brunn, A., Nitsche, W., Bothien, M.R., Moeck, J.P., Paschereit, C.O., Noack, B.R., Rist, U., Zeng, M.: Model predictive flow control—invited paper. In: 4th AIAA Flow Control Conference, pp. 1–19. June 23–26, 2008, Seattle (2008). AIAA-Paper 2008-3975

  32. King, R., Becker, R., Feuerbach, G., Henning, L., Petz, R., Nitsche, W., Lemke, O., Neise, W.: Adaptive flow control using slope seeking. Mediterr. Conf. Control Autom. 1–6 (2006). doi:10.1109/MED.2006.328753

  33. King, R., Becker, R., Garwon, M., Henning, L.: Robust and adaptive closed-loop control of separated shear flows. In: 2nd AIAA Flow Control Conference. Portland, Oregon, USA, 28.6.–1.7.2004 (2004). Paper 2004-2519

  34. King, R., Seibold, M., Lehmann, O., Noack, B.R., Morzyński, M., Tadmor, G.: Nonlinear flow control based on a low dimensional model of fluid flow. In: Meurer, T., Graichen, K., Gilles, E. (eds.) Control and Observer Design for Nonlinear Finite and Infinite Dimensional Systems, LNCIS 322, pp. 369–386. Springer (2005)

  35. King, R.E.: Active Flow Control. Notes on Numerical Fluid Mechanics and Interdisciplinary Design, vol. (95). Springer, Berlin (2007)

  36. Krstić M., Wang H.H.: Stability of extremum seeking feedback for general nonlinear dynamic systems. Automatica 36, 595–601 (2000)

    Article  MATH  Google Scholar 

  37. Landau L.D., Lifshitz E.M.: Fluid Mechanics. Pergamon Press, Londres (1959)

    Google Scholar 

  38. Lehmann, O., Luchtenburg, M., Noack, B.R., King, R., Morzyński, M., Tadmor, G.: Wake stabilization using pod galerkin models with interpolated modes. In: 44th IEEE Conference on Decision and Control and European Control Conference ECC. Seville, Spain, 12–15 Dec. 2005 (2005). Invited Paper MoA15.2

  39. Leith D.J., Leithead W.E.: Survey of gain-scheduling analysis and design. Int. J. Control 73(11), 1001–1025 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Luchtenburg, D.M., Günter, B., Noack, B.R., King, R., Tadmor, G.: A generalized mean-field model of the natural and actuated flows around a high-lift configuration. J. Fluid Mech. submitted, 1–50 (2008)

  41. Morzyński, M.: Methods of the flow control analysed with the global stability method. Tech. rep., Inst. of Combustion Engines and Basics of Machine Design, Poznan University of Technology, Poland (1997)

  42. Morzyński M., Afanasiev K., Thiele F.: Solution of the eigenvalue problems resulting from global non-parallel flow stability analysis. Comput. Meth. Appl. Mech. Eng. 169, 161–176 (1999)

    Article  MATH  Google Scholar 

  43. Noack, B., Tadmor, G., Morzyński, M.: Actuation models and dissipative control in empirical Galerkin models of fluid flows. In: The 2004 American Control Conference, pp. 0001–0006. Boston, MA, USA, June 30–July 2, 2004 (2004). Paper FrP15.6

  44. Noack, B.R.: Niederdimensionale Galerkin-Modelle für laminare und transitionelle freie Scherströmungen (transl.: low-dimensional Galerkin models of laminar and transitional free shear flows) (2006). Habilitation thesis, Berlin Institute of Technology, Germany

  45. Noack B.R., Afanasiev K., Morzyński M., Tadmor G., Thiele F.: A hierarchy of low-dimensional models for the transient and post-transient cylinder wake. J. Fluid Mech. 497, 335–363 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  46. Noack B.R., Papas P., Monkewitz P.A.: The need for a pressure-term representation in empirical Galerkin models of incompressible shear flows. J. Fluid Mech. 523, 339–365 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  47. Noack B.R., Schlegel M., Ahlborn B., Mutschke G., Morzyński M., Comte P., Tadmor G.: A finite-time thermodynamics of unsteady fluid flows. J. Non-Equilibr. Thermodyn. 33(2), 103–148 (2008)

    Article  MATH  Google Scholar 

  48. Ogata K.: Modern Control Engineering. Prentice-Hall, Englewood (1970)

    Google Scholar 

  49. Pastoor M., Henning L., Noack B.R., King R., Tadmor G.: Feedback shear layer control for bluff body drag reduction. J. Fluid Mech. 608, 161–196 (2008)

    Article  MATH  Google Scholar 

  50. Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, New York (1992)

    Google Scholar 

  51. Protas B.: Linear feedback stabilization of laminar vortex shedding based on a point vortex model. Phys. Fluids 16(12), 4473–4488 (2004)

    Article  MathSciNet  Google Scholar 

  52. Protas B., Styczek A.: Optimal rotary control of the cylinder wake in the laminar regime. Phys. Fluids 14(7), 2073–2087 (2002)

    Article  Google Scholar 

  53. Rebbeck H., Choi K.S.: A wind-tunnel experiment on real-time opposition control of turbulence. Phys. Fluids 18(035103), 1–13 (2006)

    Google Scholar 

  54. Rempfer D., Fasel H.F.: Dynamics of three-dimensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 275, 257–283 (1994). doi:10.1017/S0022112094002351

    Article  Google Scholar 

  55. Rempfer D., Fasel H.F.: Evolution of three-dimensional coherent structures in a flat-plate boundary layer. J. Fluid Mech. 260, 351–375 (1994). doi:10.1017/S0022112094003551

    Article  Google Scholar 

  56. Roussopoulos K.: Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248, 267–296 (1993)

    Article  Google Scholar 

  57. Rowley C.W.: Model reduction for fluids using balanced proper orthogonal decomposition. J. Int. Bifurcation Chaos 15(3), 997–1013 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  58. Rugh W.J., Shamma J.: Research on gain scheduling. Automatica 36, 1401–1425 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  59. Samimy, M., Debiasi, M., Caraballo, E., Serrani, A., Yuan, X., Little, J.: Reduced-order model-based feedback control of subsonic cavity flows - an experimental approach. In: Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM), vol. 25, pp. 211–230. Springer, Berlin (2007)

  60. Siegel, S., Aradag, S., Seigel, J., Cohen, K., McLaughlin, T.: Low dimensional pod based estimation of a 3d turbulent separated flow. In: 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NV, USA, Jan. 8–11, 2007 (2007). AIAA Paper 2007-0112

  61. Siegel, S., Cohen, K., McLaughlin, T.: Feedback control of a circular cylinder wake in experiment and simulation. In: 33rd AIAA Fluids Conference and Exhibit. Orlando, Florida, USA, June 23–26, 2003 (2003). Paper No 2003-3571

  62. Siegel S., Seidel J., Fagley C., Luchtenburg D.M., Cohen K., McLaughlin T.: Low-dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition. J. Fluid Mech. 610(−1), 1–42 (2008). doi:10.1017/S0022112008002115

    MATH  MathSciNet  Google Scholar 

  63. Slotine J.J.R., Li W.: Applied Nonlinear Control, First edn. Pearson Prentice Hall, Englewood Cliffs (1991)

    Google Scholar 

  64. Smith T.R., Moehlis J., Holmes P.: Low-Dimensional Modelling of Turbulence Using the Proper Orthogonal Decomposition: A Tutorial. Nonlinear Dyn. 41, 275–307 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  65. Strykowski, P.J., Sreenivasan, K.R.: On the formation and suppression of vortex shedding at low Reynolds numbers. J. Fluid Mech. 218, 71–107 (1990)

    Google Scholar 

  66. Tadmor, G., Lehmann, O., Noack, B.R., Morzyński, M.: Mean field representation of the natural and actuated cylinder wake. Phys. Fluids 22(3), 034102 (2010). doi:10.1063/1.3298960. http://link.aip.org/link/?PHF/22/034102/1

    Google Scholar 

  67. Tadmor, G., Noack, B.R.: Dynamic estimation for reduced Galerkin models of fluid flows. In: The 2004 American Control Conference, pp. 0001–0006. Boston, MA, U.S.A., June 30–July 2, 2004 (2004). Paper WeM18.1

  68. Tadmor, G., Noack, B.R., Lehmann, O., Morzynski, M., Stankiewicz, W., Gonzalez, J.: Shift Modes and Transient Dynamics in Low Order, Design Oriented Galerkin Models. In: 45th AIAA Aerospace Sciences Meeting and Exhibit (8–11 January, 2007). Paper AIAA 2007-111

  69. Thiria B., Goujon-Durand S., Wesfreid J.E.: The wake of a cylinder performing rotary oscillations. J. Fluid Mech. 560, 123–147 (2006)

    Article  MATH  Google Scholar 

  70. Unal M.F., Rockwell D.: On the vortex formation from a cylinder; Part2. Control by a splitter-plate interference. J. Fluid Mech. 190, 513–529 (1987)

    Article  Google Scholar 

  71. Wiederhold, O., King, R., Noack, B.R., Neuhaus, L., Neise W., Enghard, L., Swoboda, M.: Extensions of extremum-seeking control to improve the aerodynamic performance of axial turbomachines. In: 39th AIAA Fluid Dynamics Conference, pp. 1–19. Seattle, WA, USA (2008). AIAA-Paper 092407

  72. Wiener N.: Cybernetics: or Control and Communication in the Animal and the Machine, 1st edn. MIT Press, Boston (1948)

    Google Scholar 

  73. Wu J., Wang L., Tadmor J.Z.: Suppression of the von karman vortex street behind a circular cylinder by a traveling wave generated by a flexible surface. J. Fluid. Mech. 574, 365–391 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  74. Zebib A.: Stability of viscous flow past a circular cylinder. J. Eng. Math. 21, 155–165 (1987)

    Article  Google Scholar 

  75. Zhang H.Q., Fey U., Noack B.R., König M., Eckelmann H.: On the transition of the cylinder wake. Phys. Fluids 7(4), 779–795 (1995)

    Article  Google Scholar 

  76. Zhang T., Ge S.S., Hang C.C.: Adaptive neural network control for strict-feedback nonlinear systems using backstepping control. Automatica 36, 1835–1846 (2000)

    MATH  MathSciNet  Google Scholar 

  77. Zheng A.: Some practical issues and possible solutions for nonlinear model predictive control. Prog. Syst. Control Theory 26, 129–145 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudibert King.

Additional information

Communicated by Hussaini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksić-Roeßner, K., King, R., Lehmann, O. et al. On the need of nonlinear control for efficient model-based wake stabilization. Theor. Comput. Fluid Dyn. 28, 23–49 (2014). https://doi.org/10.1007/s00162-013-0299-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-013-0299-9

Keywords

Navigation