Skip to main content
Log in

Model-based control of vortex shedding at low Reynolds numbers

  • Original Article
  • Published:
Theoretical and Computational Fluid Dynamics Aims and scope Submit manuscript

Abstract

Model-based feedback control of vortex shedding at low Reynolds numbers is considered. The feedback signal is provided by velocity measurements in the wake, and actuation is achieved using blowing and suction on the cylinder’s surface. Using two-dimensional direct numerical simulations and reduced-order modelling techniques, linear models of the wake are formed at Reynolds numbers between 45 and 110. These models are used to design feedback controllers using \(\mathcal {H}_\infty \) loop-shaping. Complete suppression of shedding is demonstrated up to Re \(=\) 110—both for a single-sensor arrangement and for a three-sensor arrangement. The robustness of the feedback controllers is also investigated by applying them over a range of off-design Reynolds numbers, and good robustness properties are seen. It is also observed that it becomes increasingly difficult to achieve acceptable control performance—measured in a suitable way—as Reynolds number increases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Åström, K.J., Murray, R.M.: Feedback Systems: An Introduction for Scientists and Engineers. Princeton University Press, Princeton (2008)

    Google Scholar 

  2. Bagheri, S., Henningson, D.S., Hoepffner, J., Schmid, P.J.: Input–output analysis and control design applied to a linear model of spatially developing flows. Appl. Mech. Rev. 62(2), 020,803 (2009)

    Article  Google Scholar 

  3. Berger, E.: Suppression of vortex shedding and turbulence behind oscillating cylinders. Phys. Fluids Suppl. 10, S191–S193 (1967)

    Article  Google Scholar 

  4. Bergmann, M., Cordier, L.: Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced-order models. J. Comput. Phys. 227(16), 7813–7840 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bergmann, M., Cordier, L., Brancher, J.P.: Optimal rotary control of the cylinder wake using proper orthogonal decomposition reduced-order model. Phys. Fluids 17(9), 097,101 (2005)

    Article  MATH  Google Scholar 

  6. Camarri, S., Iollo, A.: Feedback control of the vortex-shedding instability based on sensitivity analysis. Phys. Fluids 22(9), 094,102 (2010)

    Article  Google Scholar 

  7. Cohen, K., Siegel, S., McLaughlin, T., Gillies, E.: Feedback control of a cylinder wake low-dimensional model. AIAA J. 41(7), 1389–1391 (2003)

    Article  Google Scholar 

  8. Ffowcs Williams, J.E., Zhao, B.C.: The active control of vortex shedding. J. Fluids Struct. 3(2), 115–122 (1989)

    Article  Google Scholar 

  9. Forssell, U., Ljung, L.: Closed-loop identification revisited. Automatica 35(7), 1215–1241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fukagata, K., Kasagi, N.: Highly energy-conservative finite difference method for the cylindrical coordinate system. J. Comput. Phys. 181(2), 478–498 (2002)

    Article  MATH  Google Scholar 

  11. Georgiou, T.T., Smith, M.C.: Feedback control and the arrow of time. Int. J. Control 83(7), 1325–1338 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gillies, E.A.: Low-dimensional control of the circular cylinder wake. J. Fluid Mech. 371, 157–178 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Glover, K., McFarlane, D.: Robust stabilization of normalized coprime factor plant descriptions with \(\cal H_\infty \)-bounded uncertainty. IEEE Trans. Autom. Control 34(8), 821–830 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Graham, W.R., Peraire, J., Tang, K.Y.: Optimal control of vortex shedding using low-order models. Part II—model-based control. Int. J. Numer. Methods Eng. 44(7), 973–990 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gunzburger, M.D., Lee, H.C.: Feedback control of Karman vortex shedding. J. Appl. Mech. 63(3), 828–835 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gustavsson, I., Ljung, L., Söderström, T.: Identification of processes in closed loop—identifiability and accuracy aspects. Automatica 13(1), 59–75 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  17. He, J.W., Glowinski, R., Metcalfe, R., Nordlander, A., Periaux, J.: Active control and drag optimization for flow past a circular cylinder: I. Oscillatory cylinder rotation. J. Comput. Phys. 163(1), 83–117 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  18. Homescu, C., Navon, I.M., Li, Z.: Suppression of vortex shedding for flow around a circular cylinder using optimal control. Int. J. Numer. Meth. Fluids 38(1), 43–69 (2002)

    Article  MATH  Google Scholar 

  19. Illingworth, S.J., Morgans, A.S., Rowley, C.W.: Feedback control of flow resonances using balanced reduced-order models. J. Sound Vib. 330, 1567–1581 (2011)

    Article  Google Scholar 

  20. Illingworth, S.J., Naito, H., Fukagata, K.: Active control of vortex shedding: an explanation of the gain window. Phys. Rev. E 90, 043,014 (2014)

    Article  Google Scholar 

  21. Juang, J.N.: Applied System Identification. Prentice Hall, Upper Saddle River (1994)

    MATH  Google Scholar 

  22. Juang, J.N., Pappa, R.S.: An eigensystem realization algorithm for modal parameter identification and model reduction. J. Guid. Control Dyn. 8(5), 620–627 (1985)

    Article  MATH  Google Scholar 

  23. Keles, R.S.: Active control of transition to turbulence in the wake of a cylinder. Aircr. Des. 3(1), 1–15 (2000)

    Article  Google Scholar 

  24. Kim, J., Bewley, T.R.: A linear systems approach to flow control. Annu. Rev. Fluid Mech. 39, 383–417 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lauga, E., Bewley, T.R.: The decay of stabilizability with Reynolds number in a linear model of spatially developing flows. Proc. R. Soc. A 459(2036), 2077–2095 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, F., Aubry, N.: Feedback control of a flow past a cylinder via transverse motion. Phys. Fluids 15(8), 2163–2176 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  27. Li, Z., Navon, I.M., Hussaini, M.Y., Dimet, F.X.L.: Optimal control of cylinder wakes via suction and blowing. Comput. Fluids 32(2), 149–171 (2003)

    Article  MATH  Google Scholar 

  28. Ljung, L.: System Identification: Theory for the User, 2nd edn. Prentice-Hall, Upper Saddle River (1999)

    MATH  Google Scholar 

  29. Ma, Z., Ahuja, S., Rowley, C.W.: Reduced order models for control of fluids using the eigensystem realization algorithm. Theor. Comp. Fluid Mech. 25, 233–247 (2009)

    Article  MATH  Google Scholar 

  30. McFarlane, D.C., Glover, K.: Robust controller design using normalized coprime factor plant descriptions. Springer, Berlin (1990)

    Book  MATH  Google Scholar 

  31. Min, C., Choi, H.: Suboptimal feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 401, 123–156 (1999)

    Article  MATH  Google Scholar 

  32. Naito, H., Fukagata, K.: Numerical simulation of flow around a circular cylinder having porous surface. Phys. Fluids 24(11), 117,102 (2012)

    Article  Google Scholar 

  33. Park, D.S., Ladd, D.M., Hendricks, E.W.: Feedback control of von Kármán vortex shedding behind a circular cylinder at low Reynolds numbers. Phys. Fluids 6(7), 2390–2405 (1994)

    Article  MATH  Google Scholar 

  34. Protas, B.: Linear feedback stabilization of laminar vortex shedding based on a point vortex model. Phys. Fluids 16(12), 4473–4488 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  35. Protas, B., Styczek, A.: Optimal rotary control of the cylinder wake in the laminar regime. Phys. Fluids 14(7), 2073–2087 (2002)

    Article  MATH  Google Scholar 

  36. Roussopoulos, K.: Feedback control of vortex shedding at low Reynolds numbers. J. Fluid Mech. 248(1), 267–296 (1993)

    Article  Google Scholar 

  37. Rowley, C.W.: Model reduction for fluids, using balanced proper orthogonal decomposition. Int. J. Bifurc. Chaos 15(3), 997–1013 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Siegel, S., Cohen, K., McLaughlin, T.: Numerical simulations of a feedback-controlled circular cylinder wake. AIAA J. 44(6), 1266–1276 (2006)

    Article  Google Scholar 

  39. Singh, S.N., Myatt, J.H., Addington, G.A., Banda, S., Hall, J.K.: Optimal feedback control of vortex shedding using proper orthogonal decomposition models. J. Fluids Eng. 123(3), 612–618 (2001)

    Article  Google Scholar 

  40. Skogestad, S., Postlethwaite, I.: Multivariable Feedback Control: Analysis and Design. Wiley, New York (2005)

    MATH  Google Scholar 

  41. Son, D., Jeon, S., Choi, H.: A proportional-integral-differential control of flow over a circular cylinder. Phil. Trans. R. Soc. A 369(1940), 1540–1555 (2011)

    Article  Google Scholar 

  42. Tao, J.S., Huang, X.Y., Chan, W.K.: A flow visualization study on feedback control of vortex shedding from a circular cylinder. J. Fluids Struct. 10(8), 965–970 (1996)

    Article  Google Scholar 

  43. Van den Hof, P.M.J., Schrama, R.J.P.: Identification and control—closed-loop issues. Automatica 31(12), 1751–1770 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  44. Vinnicombe, G.: Uncertainty and feedback: \(\cal {H}_{\infty }\) loop-shaping and the \(\nu \)-gap metric. Imperial College Press, London (2000)

    Book  Google Scholar 

  45. Weller, J., Camarri, S., Iollo, A.: Feedback control by low-order modelling of the laminar flow past a bluff body. J. Fluid Mech. 634, 405–418 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  46. Williamson, C.H.K.: Oblique and parallel modes of vortex shedding in the wake of a circular cylinder at low Reynolds numbers. J. Fluid Mech. 206, 579–627 (1989)

    Article  Google Scholar 

  47. Williamson, C.H.K.: Vortex dynamics in the cylinder wake. Annu. Rev. Fluid Mech. 28, 477–539 (1996)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon J. Illingworth.

Additional information

Communicated by Jeff D. Eldredge.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Illingworth, S.J. Model-based control of vortex shedding at low Reynolds numbers. Theor. Comput. Fluid Dyn. 30, 429–448 (2016). https://doi.org/10.1007/s00162-016-0389-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00162-016-0389-6

Keywords

Navigation