Skip to main content
Log in

On the prediction of temperature-dependent viscosity of multicomponent liquid alloys

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The simulation of casting processes demands accurate information on thermophysical properties for selected alloys to properly feed the mathematical models. One of such properties is the viscosity of pure liquid metals and alloys, which can be either found in the literature as experimental data or to be calculated by theoretical models. Nevertheless, a considerable discrepancy between experimental data and simulated results is frequently observed for some pure metals, as high as twice the experimental measured values. Several models can be found in the literature, such as those in the form of Arrhenius-type equations, which depend on the availability of experimental data with a view to permitting the apparent activation energy and the pre-exponential constant parameters to be determined. Furthermore, models based on Andrade’s equation and its extensions, to deal with the apparent activation energy and the free volume concepts, are generally dependent only on thermodynamic data, that is, molar weight, molar volume, Gibbs energy of viscous flow activation, Gibbs energy and enthalpy of formation, and the molar fractions of the alloy components. In this paper, an extension of Takahira’s model for pure liquid metals is proposed, which permits to deal with the viscosity of liquid multicomponent alloys. Comparisons are made among simulations provided by an Arrhenius-type equation, Kaptay’s and Takahira’s models for pure metals, as well as among an Arrhenius-type equation, Kaptay’s model and the present approach for multicomponent alloys. The simulated results are plotted against experimental viscosity data from the literature for pure liquid metals (Al, Cu, Si and Mg) and for ternary and quaternary commercial Al-based alloys. The proposed approach for multicomponent alloys is shown to agree well with the experimental scatters and with Kaptay’s model for all examined cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cheng, J., Gröbner, J., Hort, N., Schmid-Fetzer, R.: Measurement and calculation of the viscosity of metals—a review of the current status and developing trends. Meas. Sci. Technol. 25, 062001 (2014)

    Article  ADS  Google Scholar 

  2. Bakhtiyarov, S.I., Overfelt, R.A.: Measurement of liquid metal viscosity by rotational technique. Acta Mater. 47, 4311–4319 (1999)

    Article  Google Scholar 

  3. Dinsdale, A.T., Quested, P.N.: The viscosity of aluminium and its alloys—a review of data and models. J. Mater. Sci. 39, 7221–7228 (2004)

    Article  ADS  Google Scholar 

  4. Brooks, R.F., Dinsdale, A.T., Quested, P.N.: The measurement of viscosity of alloys—a review of methods, data and models. Meas. Sci. Technol. 16, 354–362 (2005)

    Article  ADS  Google Scholar 

  5. da Andrade, E.N.C.: A theory of the viscosity of liquids—part I. Philos. Mag. 17, 497–511 (1934)

    Article  Google Scholar 

  6. Battezati, L., Greer, A.L.: The viscosity of liquid metals and alloys. Acta Metall. 37, 1791–1802 (1989)

    Article  Google Scholar 

  7. Iida, T., Shiraishi, Y.: Chapter 4-Viscosity. In: Kawai, Y., Shirashi, Y. (eds.) Handbook of Physico-Chemical Properties at High Temperatures. Iron and Steel Institute, Japan (1988)

    Google Scholar 

  8. Hirai, M.: Estimation of viscosities of liquid alloys. ISIJ 33(2), 281–285 (1993)

    Article  MathSciNet  Google Scholar 

  9. Hildebrand, J.H.: Viscosity and Diffusivity: A Predictive Treatment. Wiley, New York (1977)

    Google Scholar 

  10. Mehrota, A.K.: A generalized viscosity equation for pure heavy hydrocarbons. Ind. Eng. Chem. Res. 30(6), 1367–1372 (1991)

    Article  Google Scholar 

  11. Walther, C.: The evaluation of viscosity data. Erdol Teer 7, 382–384 (1931)

    Google Scholar 

  12. Chhabra, R.P., Tripathi, A.: A correlation for the viscosity of liquid metals. High Temp. High Press. 25, 713–718 (1993)

    Google Scholar 

  13. Kaptay, G.: A unified equation for the viscosity of pure liquid metals. Z. Metallkd. 96, 1–8 (2005)

    Article  Google Scholar 

  14. Zivkovic, D., Manasijevic, D.: An optimal method to calculate the viscosity of simple liquid ternary alloys from the measured binary data. CALPHAD 29, 312–316 (2005)

    Article  Google Scholar 

  15. Kucharski, M.: The viscosity of multicomponent systems. Z. Metallkd. 77, 393–396 (1986)

    Google Scholar 

  16. Kaptay, G.: A new equation to estimate the concentration dependence of the viscosity of liquid metallic alloys from the heat of mixing data. In: Proceedings of microCAD 2003 Conference, Section Metallurgy, University of Miskolc, Hungary, 23–28 2003

  17. Zhong, X.M., Liu, Y.H., Chou, K.C., Lu, X.G., Zivkovic, D., Zivkovic, Z.: Estimating ternary viscosity using the thermodynamic geometric model. J. Phase Equilib. 24, 7–11 (2003)

    Article  Google Scholar 

  18. Singh, R.N., Nadan, R., Sommer, F.: Viscosity of liquid alloys: generalization of Andrade’s equation. Monatsh. Chem. 143, 1235–1242 (2012)

    Article  Google Scholar 

  19. Jeyakumar, M., Hamed, M., Shankar, S.: Rheology of liquid metals and alloys. J. Non-Newton. Fluid Mech. 166, 831–838 (2011)

    Article  MATH  Google Scholar 

  20. Solek, K., Korolczuk-Hejnak, M., Slezak, W.: Viscosity measurement for modeling of continuous steel casting. Arch. Metall. Mater. 57, 333–338 (2012)

    Google Scholar 

  21. Budai, I., Benkö, M.Z., Kaptay, G.: Comparison of different theoretical models to experimental data on viscosity of binary liquid alloys. Mater. Sci. Forum 537–538, 489–496 (2007)

    Article  Google Scholar 

  22. Moelwyn-Hughes, E.A.: Physikalische Chemie. Thieme, Stuttgart (1970)

    Google Scholar 

  23. Iida, T., Ueda, M., Morita, Z.: On the excess viscosity of liquid alloys and the atomic interaction of their constituents. Tetsu-to-Hagane 62, 1169–1178 (1976)

    Article  Google Scholar 

  24. Kozlov, L.Y., Romanov, L.M., Pod’yachev, A.P., Petrov, N.N., Kostygova, O.V.: Calculation of the viscosity of multicomponent iron- and nickel-base melts. Izv. Vyssh. Uchebn. Zaved. Chern. Metall. 5, 1–4 (1982)

    Google Scholar 

  25. Seetharaman, S., Du, S.C.: Estimation of the viscosities of binary metallic melts using Gibbs energies of mixing. Metall. Mater. Trans. 25B, 589–595 (1994)

    Article  Google Scholar 

  26. Takahira, N.: Influence of enthalpy changes on the temperature dependency of the viscosity of pure liquid metals. ISIJ Int. 55(10), 2247–2251 (2015)

    Article  Google Scholar 

  27. Sato, Y., Sugisawa, K., Aoki, D., Yamamura, T.: Viscosities of Fe–Ni, Fe–Co and Ni–Co binary melts. Meas. Sci. Technol. 16, 363–371 (2005)

    Article  ADS  Google Scholar 

  28. Zhang, F., Du, Y., Liu, S., Jie, W.: Modeling of the viscosity in the Al–Cu–Mg–Si system: database construction. CALPHAD 49, 79–86 (2015)

    Article  Google Scholar 

  29. Nascimento, F.C., Paresque, M.C.C., Castro, J.A., Jácome, P.A.D., Garcia, A., Ferreira, I.L.: Application of computational thermodynamics to the determination of thermophysical properties as a function of temperature for multicomponent Al-based alloys. Thermochim. Acta 619, 1–7 (2015)

    Article  Google Scholar 

  30. Ferreira, D.J.S., Bezerra, B.N., Collyer, M.N., Garcia, A., Ferreira, I.L.: The use of computational thermodynamics for the determination of surface tension and Gibbs–Thomson coefficient of multicomponent alloys. Contin. Mech. Therm. 30, 1145–1154 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kobatake, H., Schmitz, J., Brillo, J.: Density and viscosity of ternary Al–Cu–Si alloys. J. Mater. Sci. 49, 3541–3549 (2014)

    Article  ADS  Google Scholar 

  32. Sato, Y.: Report to the Ministry of Economy, Trade and Industry (METI), Japan (2004)

  33. Mills, K.C.: Recommended Thermophysical Properties for Selected Commercial Alloys. Woodhead Publishing Series in Metals and Surface Engineering (2002)

  34. Arsent’ev, P.P., Polyakova, K.I.: Izv Vyssh, Uchebn Zaved. Tsvetn. Metall. 51, 5 (1977)

    Google Scholar 

  35. Gebhardt, E., Becker, M., Dorner, S.: Effect of alloying additions on the viscosity of aluminum. Aluminum 31, 315–321 (1955)

    Google Scholar 

  36. Kehr, M., Hoyer, W., Egry, I.: A new high-temperature oscillating cup viscometer. Int. J. Thermophys. 28, 1017–1025 (2007)

    Article  ADS  Google Scholar 

  37. Wang, D., Overfelt, R.A.: Oscillating cup viscosity measurements of aluminum alloys: A201, A319 and A356. Int. J. Thermophys. 23, 1063–1076 (2002)

    Article  Google Scholar 

  38. Lihl, F., Nachtigall, E., Schwaiger, A.: Viskositätsmessungen an binären Legierungen des Aluminiums mit Silizium, Zink, Kupfer und Magnesium. Z. Metallkd. 59, 213–219 (1968)

    Google Scholar 

  39. Culpin, M.F.: The viscosity of liquid magnesium and liquid calcium. Proc. Phys. Soc. 70, 1079–1086 (1957)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support provided by FAPERJ (The Scientific Research Foundation of the State of Rio de Janeiro), CAPES and CNPq (National Council for Scientific and Technological Development).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Garcia.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, I.L., de Castro, J.A. & Garcia, A. On the prediction of temperature-dependent viscosity of multicomponent liquid alloys. Continuum Mech. Thermodyn. 31, 1369–1385 (2019). https://doi.org/10.1007/s00161-019-00753-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00753-7

Keywords

Navigation