Skip to main content

Extended thermodynamics, effective elastic coefficients and electromagnetoelastic waves in superconducting layer

Abstract

The paper deals with the analysis of an influence of the thermal field and its relaxation properties on the compressional and flexural magnetoelastic waves propagation in a vibrating superconducting layer. The investigations have been confined only to the vortex elastic field in the type-II superconductor. The description is based on the extended thermodynamical model of interactions. Contrary to the existing dynamical descriptions of electromagnetothermoelastic interactions in solids and/or in the magnetic vortex field of elastic character in the type-II superconductor, the influence of the thermal field on the electromagnetoelastic field (or electromagnetoelastic waves in such a medium) has been considered by the use of the effective elastic coefficients dependent on temperature and the relaxation time of the thermal field in low temperatures.

References

  1. 1.

    Alblas, J.B.: A note of the theory of thermoelastic damping. J. Therm. Stresses 4, 333–355 (1981)

    Article  Google Scholar 

  2. 2.

    Blatter, G., Feigelman, M.V., Geshkenbeim, V.B., Larkin, A.L., Vinokur, V.M.: Vortices in high-temperature superconductors. Rev. Mod. Phys. 66, 1125–1388 (1994)

    ADS  Article  Google Scholar 

  3. 3.

    Brandt, E.H.: The flux-line lattice in superconductors. Rep. Prog. Phys. 58, 1465–1594 (1995)

    ADS  Article  Google Scholar 

  4. 4.

    Cyrot, M., Pavuna, D.: Introduction to superconductivity and high-T\(_c\) materials. World Scientific, Singapore (1992)

    Google Scholar 

  5. 5.

    Eringen, A.C.: Continuum Physics, vol. III. Academic Press, London (1976)

    Google Scholar 

  6. 6.

    Eringen, A.C., Şuhubi, E.S.: Elastodynamics, vol. II. Academic Press, New York (1975)

    MATH  Google Scholar 

  7. 7.

    Maruszewski, B.: Nonlinear thermoelastic damping in circular plate. ZAMM 72, T75–T78 (1992)

    MATH  Google Scholar 

  8. 8.

    Maruszewski, B.T.: Superconducting fullerenes in a nonconventional thermodynamical model. Arch. Mech. 50, 497–508 (1998)

    MATH  Google Scholar 

  9. 9.

    Maruszewski, B.T.: On a nonclassical thermoviscomechanical stress in the vortex field in the type-II superconductor. Phys. Stat. Sol. (b) 244, 919–927 (2007)

    ADS  Article  Google Scholar 

  10. 10.

    Maruszewski, B.T.: Fullerenes: thermomechanics, doping, electrical conductivity. In: Hetnarski, R.B. (ed.) Encyclopedia of Thermal Stresses, vol. 4, pp. 1831–1841. Springer, Berlin (2014)

    Chapter  Google Scholar 

  11. 11.

    Maruszewski, B.T.: Unconventional thermodynamical model of processes in material structures. In: Anders, B., Kuczma, M. (eds.) Continuous Media with Microstructure. Springer, Berlin (2015)

    Google Scholar 

  12. 12.

    Maruszewski, B.T., Drzewiecki, A., Starosta, R.: Electromagnetoelastic waves in a vortex layer of a superconductor. J. Mech. Mater. Struct. 7, 297–307 (2012)

    Article  Google Scholar 

  13. 13.

    Maruszewski, B.T., Drzewiecki, A., Starosta, R.: Thermoelastic damping and thermal relaxation time in auxetics. Appl. Mech. Mater. 432, 215–220 (2013)

    Article  Google Scholar 

  14. 14.

    Maruszewski, B.T., Drzewiecki, A., Starosta, R.: On effective Young’s modulus and Poisson’s ratio of the auxetic thermoelastic material. Comput. Methods Sci. Technol. 22, 233–237 (2016)

    Article  Google Scholar 

  15. 15.

    Maruszewski, B.T., Drzewiecki, A., Starosta, R., Restuccia, L.: Thermoelastic damping in an auxetic rectangular plate with thermal relaxation: forced vibrations. J. Mech. Mater. Struct. 8, 403–413 (2013)

    Article  Google Scholar 

  16. 16.

    Maruszewski, B.T., Restuccia, L.: Mechanics of a vortex lattice in superconductors. Phenomenological approach. In: Maruszewski, B.T., Muschik, W., Radowicz, A. (eds.) Trends in Continuum Physics. World Scientific, Singapore (1999)

    Chapter  Google Scholar 

  17. 17.

    Maugin, G.A.: Non-equilibrium thermodynamics of electromagnetic solids. In: Muschik, W. (ed.) Non-equilibrium Thermodynamics with Applications to Solids, p. 214. Springer, Berlin (1993)

    Google Scholar 

  18. 18.

    Nowacki, W.: Thermoelasticity. Pergamon, Oxford (1962)

    MATH  Google Scholar 

  19. 19.

    van de Ven, A.A.F.: A note on ’a nonequilibrium theory of thermoelastic superconductors’ by S.-A. Zhou and K. Miya. Int. J. Appl. Electromagn. Mater. 2, 169–175 (1991)

    Google Scholar 

  20. 20.

    Zhou, S.A., Miya, K.: A nonequilibrium theory of thermoelastic superconductors. Int. J. Appl. Electromagn. Mater. 2, 21–38 (1991)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Malgorzata A. Jankowska.

Additional information

Communicated by Attila Imre.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maruszewski, B.T., Jankowska, M.A. & Starosta, R. Extended thermodynamics, effective elastic coefficients and electromagnetoelastic waves in superconducting layer. Continuum Mech. Thermodyn. 30, 1379–1386 (2018). https://doi.org/10.1007/s00161-017-0609-3

Download citation

Keywords

  • Thermodynamics of superconductors
  • Magnetic vortex waves
  • Effective elasticity