Skip to main content

Fullerenes: Thermomechanics, Doping, Electrical Conductivity

  • Reference work entry
Encyclopedia of Thermal Stresses

Overview

Fullerenes, the allotropic variety of carbon, have many interesting thermophysical properties. Their behaviors during thermodynamical processes are very sensitive on doping by foreign atoms. The position of an impurity in the fullerene cage decides which electrical conductivity phase (conducting, semiconducting, superconducting) it is in. Fullerenes are also able to form a molecular crystal. There are three possibilities to implant impurities into a fullerene structure. The first one concerns addition of an alkali or rare earth metal ion into interior of the cage. The next is based on the substitutional doping of an impurity atom in a different valence state that replaces a carbon atom on the surface of the fullerene cage. The last method concerns implanting a foreign atom into the interstitial position of the fullerene molecular crystal. States of that allotropic variety of carbon depend strongly on many external influences like temperature, heat flux, concentration, mass...

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 3,999.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 549.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dresselhaus MS, Dresselhaus G, Saito R (1993) Superconducting properties of fullerenes. In: Ginsberg DM (ed) Physical properties of high temperature superconductors IV. World Scientific, Singapore, pp 471–564

    Google Scholar 

  2. Kratschner W (1991) How we come to produce C60–fullerite. Z Phys D 19:405–408

    Google Scholar 

  3. Orlando TP, Delin KA (1991) Foundations of applied superconductivity. Addison-Wesley, New York

    Google Scholar 

  4. Ghaleb AF (1990) A phenomenological model for elastic superconductors. In: Hsieh RKT (ed) Mechanical modelling of new electromagnetic materials. Elsevier, Amsterdam, pp 11–18

    Google Scholar 

  5. Zhou S-A, Miya K (1990) A macroscopic theory of magnetoelastic superconductors. Int J Appl Electrom Mat 1:1–13

    Google Scholar 

  6. Zhou S-A, Miya K (1990) A nonequilibrium theory of thermoelastic superconductors. Int J Appl Electromagn Mat 2:21–38

    Google Scholar 

  7. Van De Ven AAF (1991) A note on ‘A nonequilibrium theory of thermoelastic superconductors’ by S.-A. Zhou And K. Miya. Int J Appl Electromag Mat 2:169–175

    Google Scholar 

  8. Maugin GA (1992) Thermodynamically compatible model for high-temperature elastic superconductors. Atti Accad Pelorit Pericol Classe I Sci Fis Mat Nat LXX:175–185

    Google Scholar 

  9. Maugin GA (1993) Irreversible thermodynamics of deformable high-temperature superconductors. In: Anthony K-H, Wagner H-J (eds) Continuum models of discrete systems – 7. Mater Sci Forum 123–125:49–58

    Google Scholar 

  10. Yeh CS, Chen KC (1993) A phenomenological theory for elastic superconductors. Continuum Mech Thermodyn 5:127–144

    MATH  MathSciNet  Google Scholar 

  11. Eringen AC (1991) Memory-dependent nonlocal electromagnetic elastic solids and superconductivity. J Math Phys 32:787–796

    MATH  MathSciNet  Google Scholar 

  12. Ghaleb AF (1991) A phenomenological model for elastic superconductors. Int J Eng Sci 29:1121–1127

    Google Scholar 

  13. Maugin GA (1992) Irreversible thermodynamics of deformable superconductors. C R Acad Sci Paris Ser II 314:889–894

    Google Scholar 

  14. Maruszewski B (1988) Evolution equations of thermodiffusion in paramagnets. Int J Eng Sci 26:1217–1230

    MATH  Google Scholar 

  15. Drzewiecki A, Maruszewski B (2001) Doping and mass transfer in fullerenes. J Tech Phys 42(4):407–418

    MATH  Google Scholar 

  16. Restuccia L, Maruszewski B (1991) Diffusion and dislocation influences on the dynamics of elastic bodies. Int J Eng Sci 29:1053–1063

    MATH  Google Scholar 

  17. Maruszewski B (1987) Coupled evolution equations of deformable semiconductors. Int J Eng Sci 25:145–153

    Google Scholar 

  18. Maugin GA (1988) Continuum mechanics of electromagnetic solids. North-Holland, Amsterdam

    MATH  Google Scholar 

  19. Rymarz Cz (1993) Mechanics of continua [in Polish]. PWN, Warszawa

    Google Scholar 

  20. Liu I-S (1972) Method of Lagrange multipliers for exploitation of the entropy principle. Arch Rat Mech Anal 46:131–148

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bogdan Tadeusz Maruszewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this entry

Cite this entry

Maruszewski, B.T. (2014). Fullerenes: Thermomechanics, Doping, Electrical Conductivity. In: Hetnarski, R.B. (eds) Encyclopedia of Thermal Stresses. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2739-7_1030

Download citation

Publish with us

Policies and ethics