Skip to main content
Log in

A comprehensive review of educational articles on structural and multidisciplinary optimization

  • Review Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Ever since the publication of the 99-line topology optimization MATLAB code (top99) by Sigmund in 2001, educational articles have emerged as a popular category of contributions within the structural and multidisciplinary optimization (SMO) community. The number of educational papers in the field of SMO has been growing rapidly in recent years. Some educational contributions have made a tremendous impact on both research and education. For example, top99 (Sigmund in Struct Multidisc Optim 21(2):120–127, 2001) has been downloaded over 13,000 times and cited over 2000 times in Google Scholar. In this paper, we attempt to provide a systematic and comprehensive review of educational articles and codes in SMO, including topology, sizing, and shape optimization and building blocks. We first assess the papers according to the adopted methods, which include density-based, level-set, ground structure, and more. We then provide comparisons and evaluations on the codes from several key aspects, including techniques, efficiency, usability, readability, environment, and compatibility. In addition, we conduct numerical experiments on the reviewed codes using the benchmark cantilever beam example to provide feedback on the overall user experience. With a systematic review and comparison, this paper aims to offer insights on the educational values and practicality for employing these codes. We try to provide not only guidance for beginners to approach various optimization methods, but also a dictionary to direct readers to effectively target the relevant codes and building blocks based on their demands. Finally, based on the findings in this review paper, we provide some perspectives and recommendations for future educational contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aage N, Nobel-Jørgensen M, Andreasen CS, Sigmund O (2013) Interactive topology optimization on hand-held devices. Struct Multidisc Optim 47(1):1–6

    Google Scholar 

  • Aage N, Andreassen E, Lazarov BS (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidisc Optim 51(3):565–572

    MathSciNet  Google Scholar 

  • ABAQUS Inc (2021) ABAQUS. https://www.3ds.com/products-services/simulia/products/abaqus/

  • Allaire G, Pantz O (2006) Structural optimization with FreeFem++. Struct Multidisc Optim 32(3):173–181

    MathSciNet  MATH  Google Scholar 

  • Allaire G, Jouve F, Toader AM (2002) A level-set method for shape optimization. CR Math 334(12):1125–1130

    MathSciNet  MATH  Google Scholar 

  • Amir O (2015) Revisiting approximate reanalysis in topology optimization: on the advantages of recycled preconditioning in a minimum weight procedure. Struct Multidisc Optim 51(1):41–57

    Google Scholar 

  • Amir O, Aage N, Lazarov BS (2014) On multigrid-CG for efficient topology optimization. Struct Multidisc Optim 49(5):815–829

    MathSciNet  Google Scholar 

  • Andreasen CS, Elingaard MO, Aage N (2020) Level set topology and shape optimization by density methods using cut elements with length scale control. Struct Multidisc Optim 62(2):685–707

    MathSciNet  Google Scholar 

  • Andreassen E, Andreasen CS (2014) How to determine composite material properties using numerical homogenization. Comput Mater Sci 83:488–495

    Google Scholar 

  • Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidisc Optim 43(1):1–16

    MATH  Google Scholar 

  • Ansys Inc (2021) Ansys. https://www.ansys.com/

  • Bai J, Zuo W (2020) Hollow structural design in topology optimization via moving morphable component method. Struct Multidisc Optim 61(1):187–205

    Google Scholar 

  • Balay S, Abhyankar S, Adams M, Brown J, Brune P, Buschelman K, Dalcin L, Dener A, Eijkhout V, Gropp W, et al. (2019) PETSc users manual

  • Beckers P, Beckers B (2015) A 66 line heat transfer finite element code to highlight the dual approach. Comput Math Appl 70(10):2401–2413

    MathSciNet  MATH  Google Scholar 

  • Beirão da Veiga L, Brezzi F, Cangiani A, Manzini G, Marini LD, Russo A (2013) Basic principles of virtual element methods. Math Models Methods Appl Sci 23(01):199–214

    MathSciNet  MATH  Google Scholar 

  • Belotti R, Richiedei D, Trevisani A (2021) Multi-domain optimization of the eigen structure of controlled underactuated vibrating systems. Struct Multidisc Optim 63(1):499–514

    Google Scholar 

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Google Scholar 

  • Bendsøe MP, Sigmund O (1995) Optimization of structural topology, shape, and material, vol 414. Springer, New York

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, New York

    MATH  Google Scholar 

  • Biyikli E, To AC (2015) Proportional topology optimization: a new non-sensitivity method for solving stress constrained and minimum compliance problems and its implementation in MATLAB. PLoS ONE 10(12):e0145041

    Google Scholar 

  • Bletzinger KU (2014) A consistent frame for sensitivity filtering and the vertex assigned morphing of optimal shape. Struct Multidisc Optim 49(6):873–895

    MathSciNet  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Meth Fluids 41(1):77–107

    MathSciNet  MATH  Google Scholar 

  • Burger M, Stainko R (2006) Phase-field relaxation of topology optimization with local stress constraints. SIAM J Control Optim 45(4):1447–1466

    MathSciNet  MATH  Google Scholar 

  • Challis VJ (2010) A discrete level-set topology optimization code written in Matlab. Struct Multidisc Optim 41(3):453–464

    MathSciNet  MATH  Google Scholar 

  • Chandrasekhar A, Suresh K (2021) TOuNN: Topology optimization using neural networks. Struct Multidisc Optim 63(3):1135–1149

    MathSciNet  Google Scholar 

  • Chandrasekhar A, Sridhara S, Suresh K (2021) AuTO: A framework for automatic differentiation in topology optimization. arXiv:210401965

  • Chen Q, Zhang X, Zhu B (2019) A 213-line topology optimization code for geometrically nonlinear structures. Struct Multidisc Optim 59(5):1863–1879

    MathSciNet  Google Scholar 

  • Chi H, Pereira A, Menezes IFM, Paulino GH (2020) Virtual element method (VEM)-based topology optimization: an integrated framework. Struct Multidisc Optim 62(3):1089–1114

    MathSciNet  Google Scholar 

  • Christiansen RE, Sigmund O (2021) Compact 200 line MATLAB code for inverse design in photonics by topology optimization: tutorial. J Opt Soc Am B 38(2):510–520

    Google Scholar 

  • Christiansen RE, Sigmund O (2021) Inverse design in photonics by topology optimization: tutorial. J Opt Soc Am B 38(2):496–509

    Google Scholar 

  • Chung H, Hwang JT, Gray JS, Kim HA (2019) Topology optimization in OpenMDAO. Struct Multidisc Optim 59(4):1385–1400

    MathSciNet  Google Scholar 

  • COMSOL AB (2021) COMSOL. https://www.comsol.com/

  • Coniglio S, Morlier J, Gogu C, Amargier R (2020) Generalized geometry projection: a unified approach for geometric feature based topology optimization. Arch Comput Methods Eng 27:1573–1610

    MathSciNet  Google Scholar 

  • Csébfalvi A (2017) Robust topology optimization: a new algorithm for volume-constrained expected compliance minimization with probabilistic loading directions using exact analytical objective and gradient. Periodica Polytechnica Civil Eng 61(1):154–163

    Google Scholar 

  • Da D, Xia L, Li G, Huang X (2018) Evolutionary topology optimization of continuum structures with smooth boundary representation. Struct Multidisc Optim 57(6):2143–2159

    MathSciNet  Google Scholar 

  • Dapogny C, Frey P, Omnes F, Privat Y (2018) Geometrical shape optimization in fluid mechanics using FreeFem++. Struct Multidisc Optim 58(6):2761–2788

    MathSciNet  Google Scholar 

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidisc Optim 49(1):1–38

    MathSciNet  Google Scholar 

  • Deng H, Vulimiri PS, To AC (2021) An efficient 146-line 3D sensitivity analysis code of stress-based topology optimization written in MATLAB. Optim Eng

  • Dong G, Tang Y, Zhao YF (2019) A 149 line homogenization code for three-dimensional cellular materials written in matlab. J Eng Mater Technol 141(1):011005

    Google Scholar 

  • Dunning PD (2020) On the co-rotational method for geometrically nonlinear topology optimization. Struct Multidisc Optim 62(5):2357–2374

    MathSciNet  Google Scholar 

  • Dzierzanowski G (2012) On the comparison of material interpolation schemes and optimal composite properties in plane shape optimization. Struct Multidisc Optim 46(5):693–710

    MathSciNet  MATH  Google Scholar 

  • Elham A, van Tooren MJ (2021) Discrete adjoint aerodynamic shape optimization using symbolic analysis with OpenFEMflow. Struct Multidisc Optim 63(5):2531–2551

    MathSciNet  Google Scholar 

  • Eschenauer HA, Kobelev VV, Schumacher A (1994) Bubble method for topology and shape optimization of structures. Struct Optim 8(1):42–51

    Google Scholar 

  • ESI Group (2021) Scilab. https://www.scilab.org/

  • Evgrafov A (2015) On Chebyshev’s method for topology optimization of Stokes flows. Struct Multidisc Optim 51(4):801–811

    MathSciNet  Google Scholar 

  • Fairclough H, He L, Pritchard T, Gilbert M (2021) LayOpt: an educational web-app for truss layout optimization. Struct Multidisc Optim

  • Fernández E, Collet M, Alarcón P, Bauduin S, Duysinx P (2019) An aggregation strategy of maximum size constraints in density-based topology optimization. Struct Multidisc Optim 60(5):2113–2130

    Google Scholar 

  • Ferrari F, Sigmund O (2020) A new generation 99 line Matlab code for compliance topology optimization and its extension to 3D. Struct Multidisc Optim 62(4):2211–2228

    MathSciNet  Google Scholar 

  • Ferrari F, Sigmund O, Guest JK (2021) Topology optimization with linearized buckling criteria in 250 lines of Matlab. Struct Multidisc Optim 63(6):3045–3066

    MathSciNet  Google Scholar 

  • Filomeno Coelho R, Tysmans T, Verwimp E (2014) Form finding & structural optimization: a project-based course for graduate students in civil and architectural engineering. Struct Multidisc Optim 49(6):1037–1046

    Google Scholar 

  • Fu YF, Rolfe B, Chiu LNS, Wang Y, Huang X, Ghabraie K (2020) SEMDOT: smooth-edged material distribution for optimizing topology algorithm. Adv Eng Softw 150:102921

    Google Scholar 

  • Gangl P, Sturm K, Neunteufel M, Schöberl J (2021) Fully and semi-automated shape differentiation in NGSolve. Struct Multidisc Optim 63(3):1579–1607

    MathSciNet  Google Scholar 

  • Gao J, Gao L, Luo Z, Li P (2019a) Isogeometric topology optimization for continuum structures using density distribution function. Int J Numer Meth Eng 119(10):991–1017

    MathSciNet  Google Scholar 

  • Gao J, Luo Z, Xia L, Gao L (2019) Concurrent topology optimization of multiscale composite structures in Matlab. Struct Multidisc Optim 60(6):2621–2651

    MathSciNet  Google Scholar 

  • Gao J, Wang L, Luo Z, Gao L (2021) IgaTop: an implementation of topology optimization for structures using IGA in MATLAB. Struct Multidisc Optim

  • Ghantasala A, Asl RN, Geiser A, Brodie A, Papoutsis E, Bletzinger KU (2021) Realization of a framework for simulation-based large-scale shape optimization using vertex morphing. J Optim Theory Appl 189(1):164–189

    MathSciNet  MATH  Google Scholar 

  • Giraldo-Londoño O, Paulino GH (2021a) PolyDyna: a Matlab implementation for topology optimization of structures subjected to dynamic loads. Struct Multidisc Optim 64:957–990

    MathSciNet  Google Scholar 

  • Giraldo-Londoño O, Paulino GH (2021b) PolyStress: a Matlab implementation for local stress-constrained topology optimization using the augmented Lagrangian method. Struct Multidisc Optim 63(4):2065–2097

    MathSciNet  Google Scholar 

  • Gray JS, Hwang JT, Martins JRRA, Moore KT, Naylor BA (2019) OpenMDAO: an open-source framework for multidisciplinary design, analysis, and optimization. Struct Multidisc Optim 59(4):1075–1104

    MathSciNet  Google Scholar 

  • Guo X, Zhang W, Zhong W (2014) Doing topology optimization explicitly and geometrically-a new moving morphable components based framework. J Appl Mech 81(8):1

    Google Scholar 

  • Haftka R, Jenkins D (1998) Classroom project in analytical and experimental optimization. Struct Optim 15(1):63–67

    Google Scholar 

  • Han H, Guo Y, Chen S, Liu Z (2021a) Topological constraints in 2D structural topology optimization. Struct Multidisc Optim 63(1):39–58

    Google Scholar 

  • Han Y, Xu B, Liu Y (2021b) An efficient 137-line MATLAB code for geometrically nonlinear topology optimization using bi-directional evolutionary structural optimization method. Struct Multidisc Optim 63(5):2571–2588

    MathSciNet  Google Scholar 

  • He L, Gilbert M, Song X (2019) A Python script for adaptive layout optimization of trusses. Struct Multidisc Optim 60(2):835–847

    MathSciNet  Google Scholar 

  • Hecht F (2012) New development in FreeFem++. J Numer Math 20(3–4):251–266. https://doc.freefem.org/documentation/index.html

    MathSciNet  MATH  Google Scholar 

  • Homayouni-Amlashi A, Schlinquer T, Mohand-Ousaid A, Rakotondrabe M (2021) 2D topology optimization MATLAB codes for piezoelectric actuators and energy harvesters. Struct Multidisc Optim 63(2):983–1014

    MathSciNet  Google Scholar 

  • Huang X (2021) On smooth or 0/1 designs of the fixed-mesh element-based topology optimization. Adv Eng Softw 151:102942

    Google Scholar 

  • Huang X, Xie YM (2010) A further review of ESO type methods for topology optimization. Struct Multidisc Optim 41(5):671–683

    Google Scholar 

  • Huang ZL, Jiang C, Zhang Z, Zhang W, Yang TG (2019) Evidence-theory-based reliability design optimization with parametric correlations. Struct Multidisc Optim 60(2):565–580

    MathSciNet  Google Scholar 

  • Ibhadode O, Zhang Z, Bonakdar A, Toyserkani E (2021) IbIPP for topology optimization-an image-based initialization and post-processing code written in MATLAB. SoftwareX 14:100701

    Google Scholar 

  • Jasa JP, Hwang JT, Martins JRRA (2018) Open-source coupled aerostructural optimization using Python. Struct Multidisc Optim 57(4):1815–1827

    Google Scholar 

  • Jensen KE (2018) Topology optimization of stokes flow on dynamic meshes using simple optimizers. Comput Fluids 174:66–77

    MathSciNet  MATH  Google Scholar 

  • Kanno Y (2020) On three concepts in robust design optimization: absolute robustness, relative robustness, and less variance. Struct Multidisc Optim 62:979–1000

    MathSciNet  Google Scholar 

  • Keshavarzzadeh V, Kirby RM, Narayan A (2019) Parametric topology optimization with multiresolution finite element models. Int J Numer Meth Eng 119(7):567–589

    MathSciNet  Google Scholar 

  • Kharmanda G, Olhoff N, Mohamed A, Lemaire M (2004) Reliability-based topology optimization. Struct Multidisc Optim 26(5):295–307

    Google Scholar 

  • Kim C, Jung M, Yamada T, Nishiwaki S, Yoo J (2020) FreeFEM++ code for reaction-diffusion equation-based topology optimization: for high-resolution boundary representation using adaptive mesh refinement. Struct Multidisc Optim 62(1):439–455

    MathSciNet  Google Scholar 

  • Klarbring A (2015) Design optimization based on state problem functionals. Struct Multidisc Optim 52(2):417–425

    MathSciNet  Google Scholar 

  • Krogh C, Bak BL, Lindgaard E, Olesen AM, Hermansen SM, Broberg PH, Kepler JA, Lund E, Jakobsen J (2021) A simple MATLAB draping code for fiber-reinforced composites with application to optimization of manufacturing process parameters. Struct Multidisc Optim

  • Kumar T, Suresh K (2021) Direct Lagrange multiplier updates in topology optimization revisited. Struct Multidisc Optim 63(3):1563–1578

    Google Scholar 

  • Lagaros ND, Vasileiou N, Kazakis G (2019) A C# code for solving 3D topology optimization problems using SAP2000. Optim Eng 20(1):1–35

    MATH  Google Scholar 

  • Langelaar M (2017) An additive manufacturing filter for topology optimization of print-ready designs. Struct Multidisc Optim 55(3):871–883

    MathSciNet  Google Scholar 

  • Langtangen HP, Logg A (2017) Solving PDEs in python: the FEniCS tutorial I. Springer, New York

    MATH  Google Scholar 

  • Laurain A (2018) A level set-based structural optimization code using FEniCS. Struct Multidisc Optim 58(3):1311–1334

    MathSciNet  Google Scholar 

  • Lelièvre N, Beaurepaire P, Mattrand C, Gayton N, Otsmane A (2016) On the consideration of uncertainty in design: optimization—reliability—robustness. Struct Multidisc Optim 54(6):1423–1437

    MathSciNet  Google Scholar 

  • Li HS, Cao ZJ (2016) Matlab codes of Subset Simulation for reliability analysis and structural optimization. Struct Multidisc Optim 54(2):391–410

    MathSciNet  Google Scholar 

  • Liang Y, Cheng G (2020) Further elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB code. Struct Multidisc Optim 61(1):411–431

    Google Scholar 

  • Lin H, Xu A, Misra A, Zhao R (2020) An ANSYS APDL code for topology optimization of structures with multi-constraints using the BESO method with dynamic evolution rate (DER-BESO). Struct Multidisc Optim 62(4):2229–2254

    MathSciNet  Google Scholar 

  • Liu K, Tovar A (2014) An efficient 3D topology optimization code written in Matlab. Struct Multidisc Optim 50(6):1175–1196

    MathSciNet  Google Scholar 

  • Liu Z, Korvink JG, Huang R (2005) Structure topology optimization: fully coupled level set method via FEMLAB. Struct Multidisc Optim 29(6):407–417

    MathSciNet  MATH  Google Scholar 

  • Liu H, Zong H, Tian Y, Ma Q, Wang MY (2019) A novel subdomain level set method for structural topology optimization and its application in graded cellular structure design. Struct Multidisc Optim 60(6):2221–2247

    MathSciNet  Google Scholar 

  • Loyola RA, Querin OM, Jiménez AG, Gordoa CA (2018) A sequential element rejection and admission (SERA) topology optimization code written in Matlab. Struct Multidisc Optim 58(3):1297–1310

    MathSciNet  Google Scholar 

  • Martin A, Deierlein GG (2020) Structural topology optimization of tall buildings for dynamic seismic excitation using modal decomposition. Eng Struct 216:110717

    Google Scholar 

  • Nguyen TT, Bærentzen JA, Sigmund O, Aage N (2020) Efficient hybrid topology and shape optimization combining implicit and explicit design representations. Struct Multidisc Optim 62(3):1061–1069

    Google Scholar 

  • Nie Z, Lin T, Jiang H, Kara LB (2021) TopologyGAN: topology optimization using generative adversarial networks based on physical fields over the initial domain. J Mech Des 143(3):031715

    Google Scholar 

  • Ning A (2021) Using blade element momentum methods with gradient-based design optimization. Struct Multidisc Optim

  • Nobel-Jørgensen M, Aage N, Nyman Christiansen A, Igarashi T, Andreas Bærentzen J, Sigmund O (2015) 3D interactive topology optimization on hand-held devices. Struct Multidisc Optim 51(6):1385–1391

    Google Scholar 

  • Nobel-Jørgensen M, Malmgren-Hansen D, Bærentzen JA, Sigmund O, Aage N (2016) Improving topology optimization intuition through games. Struct Multidisc Optim 54(4):775–781

    MathSciNet  Google Scholar 

  • Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Numer Meth Eng 65(7):975–1001

    MathSciNet  MATH  Google Scholar 

  • Osher S, Fedkiw R (2006) Level set methods and dynamic implicit surfaces, vol 153. Springer, New York

    MATH  Google Scholar 

  • Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulations. J Comput Phys 79(1):12–49

    MathSciNet  MATH  Google Scholar 

  • Otomori M, Yamada T, Izui K, Nishiwaki S (2015) Matlab code for a level set-based topology optimization method using a reaction diffusion equation. Struct Multidisc Optim 51(5):1159–1172

    MathSciNet  Google Scholar 

  • Overvelde JT (2012) The moving node approach in topology optimization. Delft University of Technology

  • Paganini A, Wechsung F (2021) Fireshape: a shape optimization toolbox for Firedrake. Struct Multidisc Optim 63(5):2553–2569

    MathSciNet  Google Scholar 

  • Pereira A, Talischi C, Paulino GH, Menezes IFM, Carvalho MS (2016) Fluid flow topology optimization in PolyTop: stability and computational implementation. Struct Multidisc Optim 54:1345–1364. https://doi.org/10.1007/s00158-014-1182-z

    Article  MathSciNet  Google Scholar 

  • Picelli R, Sivapuram R, Xie YM (2021) A 101-line MATLAB code for topology optimization using binary variables and integer programming. Struct Multidisc Optim 63(2):935–954

    MathSciNet  Google Scholar 

  • Rathgeber F, Ham DA, Mitchell L, Lange M, Luporini F, McRae AT, Bercea GT, Markall GR, Kelly PH (2016) Firedrake: automating the finite element method by composing abstractions. ACM Trans Math Softw 43(3):1–27

    MathSciNet  MATH  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidisc Optim 37(3):217–237

    MathSciNet  MATH  Google Scholar 

  • Sanders ED, Pereira A, Aguiló MA, Paulino GH (2018) PolyMat: an efficient Matlab code for multi-material topology optimization. Struct Multidisc Optim 58(6):2727–2759

    MathSciNet  Google Scholar 

  • Sangree R, Carstensen JV, Gaynor AT, Zhu M, Guest JK (2015) Topology optimization as a teaching tool for undergraduate education in structural engineering. Struct Congr 2015:2632–2642

    Google Scholar 

  • Saxena A (2011) Topology design with negative masks using gradient search. Struct Multidisc Optim 44(5):629–649

    Google Scholar 

  • Schmidt S, Schulz V (2011) A 2589 line topology optimization code written for the graphics card. Comput Vis Sci 14(6):249–256

    MathSciNet  MATH  Google Scholar 

  • Schöberl J (2014) C++ 11 implementation of finite elements in NGSolve. Vienna University of Technology, Institute for Analysis and Scientific Computing, Vienna, p 30

    Google Scholar 

  • Sethian JA (1999) Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer vision, and materials science, vol 3. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Shaqfa M, Beyer K (2021) Pareto-like sequential sampling heuristic for global optimisation. Soft Computing

  • Sigmund O (2001) A 99 line topology optimization code written in Matlab. Struct Multidisc Optim 21(2):120–127

    Google Scholar 

  • Sigmund O (2011) On the usefulness of non-gradient approaches in topology optimization. Struct Multidisc Optim 43(5):589–596

    MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidisc Optim 48(6):1031–1055

    MathSciNet  Google Scholar 

  • Smith H, Norato JA (2020) A MATLAB code for topology optimization using the geometry projection method. Struct Multidisc Optim 62(3):1579–1594

    MathSciNet  Google Scholar 

  • Sokół T (2011) A 99 line code for discretized Michell truss optimization written in mathematica. Struct Multidisc Optim 43(2):181–190

    MATH  Google Scholar 

  • Sokolowski J, Zochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251–1272

    MathSciNet  MATH  Google Scholar 

  • Souza B, Yamabe P, Sá L, Ranjbarzadeh S, Picelli R, Silva E (2021) Topology optimization of fluid flow by using integer linear programming. Struct Multidisc Optim

  • Stolpe M (2010) On some fundamental properties of structural topology optimization problems. Struct Multidisc Optim 41(5):661–670

    MATH  Google Scholar 

  • Stolpe M (2016) Truss optimization with discrete design variables: a critical review. Struct Multidisc Optim 53(2):349–374

    MathSciNet  Google Scholar 

  • Stolpe M (2019) Fail-safe truss topology optimization. Struct Multidisc Optim 60(4):1605–1618

    MathSciNet  Google Scholar 

  • Suresh K (2010) A 199-line Matlab code for Pareto-optimal tracing in topology optimization. Struct Multidisc Optim 42(5):665–679

    MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes-a new method for structural optimization. Int J Numer Meth Eng 24(2):359–373

    MathSciNet  MATH  Google Scholar 

  • Talischi C, Paulino GH, Pereira A, Menezes IFM (2012a) PolyMesher: a general-purpose mesh generator for polygonal elements written in Matlab. Struct Multidisc Optim 45(3):309–328

    MathSciNet  MATH  Google Scholar 

  • Talischi C, Paulino GH, Pereira A, Menezes IFM (2012b) PolyTop: a Matlab implementation of a general topology optimization framework using unstructured polygonal finite element meshes. Struct Multidisc Optim 45(3):329–357

    MathSciNet  MATH  Google Scholar 

  • Tauzowski P, Blachowski B, Lógó J (2019) Functor-oriented topology optimization of elasto-plastic structures. Adv Eng Softw 135:102690

    Google Scholar 

  • Tavakoli R (2014) Multimaterial topology optimization by volume constrained Allen–Cahn system and regularized projected steepest descent method. Comput Methods Appl Mech Eng 276:534–565

    MathSciNet  MATH  Google Scholar 

  • Tavakoli R, Mohseni SM (2014) Alternating active-phase algorithm for multimaterial topology optimization problems: a 115-line MATLAB implementation. Struct Multidisc Optim 49(4):621–642

    MathSciNet  Google Scholar 

  • Tcherniak D, Sigmund O (2001) A web-based topology optimization program. Struct Multidisc Optim 22(3):179–187

    Google Scholar 

  • Tyburec M, Zeman J, Doškář M, Kružík M, Lepš M (2021) Modular-topology optimization with wang tilings: an application to truss structures. Struct Multidisc Optim 63(3):1099–1117

    MathSciNet  Google Scholar 

  • van Dijk NP, Maute K, Langelaar M, van Keulen F (2013) Level-set methods for structural topology optimization: a review. Struct Multidisc Optim 48(3):437–472

    MathSciNet  Google Scholar 

  • Wallin M, Ristinmaa M, Askfelt H (2012) Optimal topologies derived from a phase-field method. Struct Multidisc Optim 45(2):171–183

    MathSciNet  MATH  Google Scholar 

  • Wang ZP, Kumar D (2017) On the numerical implementation of continuous adjoint sensitivity for transient heat conduction problems using an isogeometric approach. Struct Multidisc Optim 56(2):487–500

    MathSciNet  Google Scholar 

  • Wang MY, Zhou S (2004) Phase field: a variational method for structural topology optimization. CMES 6(6):547

    MathSciNet  MATH  Google Scholar 

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246

    MathSciNet  MATH  Google Scholar 

  • Wang F, Lazarov BS, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidisc Optim 43(6):767–784

    MATH  Google Scholar 

  • Wei P, Li Z, Li X, Wang MY (2018) An 88-line MATLAB code for the parameterized level set method based topology optimization using radial basis functions. Struct Multidisc Optim 58(2):831–849

    MathSciNet  Google Scholar 

  • Wein F, Dunning PD, Norato JA (2020) A review on feature-mapping methods for structural optimization. Struct Multidisc Optim 62:1597–1638

    MathSciNet  Google Scholar 

  • Wolfram (2021) Mathmatica. https://www.wolfram.com/mathematica/

  • Wu J, Sigmund O, Groen JP (2021) Topology optimization of multi-scale structures: a review. Struct Multidisc Optim 63:1455–1480

    MathSciNet  Google Scholar 

  • Xia L, Breitkopf P (2015) Design of materials using topology optimization and energy-based homogenization approach in Matlab. Struct Multidisc Optim 52(6):1229–1241

    MathSciNet  Google Scholar 

  • Xia L, Xia Q, Huang X, Xie YM (2018) Bi-directional evolutionary structural optimization on advanced structures and materials: a comprehensive review. Arch Comput Methods Eng 25(2):437–478

    MathSciNet  MATH  Google Scholar 

  • Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Google Scholar 

  • Xing J, Xu P, Yao S, Zhao H, Zhao Z, Wang Z (2021) A novel weighted graph representation-based method for structural topology optimization. Adv Eng Softw 153:102977

    Google Scholar 

  • Yaghmaei M, Ghoddosian A, Khatibi MM (2020) A filter-based level set topology optimization method using a 62-line matlab code. Struct Multidisc Optim 62(2):1001–1018

    MathSciNet  Google Scholar 

  • Yago D, Cante J, Lloberas-Valls O, Oliver J (2021) Topology optimization using the unsmooth variational topology optimization (UNVARTOP) method: an educational implementation in MATLAB. Struct Multidisc Optim 63(2):955–981

    MathSciNet  Google Scholar 

  • Yamada T, Izui K, Nishiwaki S, Takezawa A (2010) A topology optimization method based on the level set method incorporating a fictitious interface energy. Comput Methods Appl Mech Eng 199(45–48):2876–2891

    MathSciNet  MATH  Google Scholar 

  • Zegard T, Paulino GH (2014) GRAND - Ground structure based topology optimization for arbitrary 2D domains using MATLAB. Struct Multidisc Optim 50(5):861–882

    MathSciNet  Google Scholar 

  • Zegard T, Paulino GH (2015) GRAND3 - Ground structure based topology optimization for arbitrary 3D domains using MATLAB. Struct Multidisc Optim 52(6):1161–1184

    Google Scholar 

  • Zegard T, Paulino GH (2016) Bridging topology optimization and additive manufacturing. Struct Multidisc Optim 53(1):175–192

    Google Scholar 

  • Zeng Z, Ma F (2020) An efficient gradient projection method for structural topology optimization. Adv Eng Softw 149:102863

    Google Scholar 

  • Zhang S, Norato JA, Gain AL, Lyu N (2016a) A geometry projection method for the topology optimization of plate structures. Struct Multidisc Optim 54:1173–1190

    MathSciNet  Google Scholar 

  • Zhang W, Yuan J, Zhang J, Guo X (2016b) A new topology optimization approach based on Moving Morphable Components (MMC) and the ersatz material model. Struct Multidiscip Optim 53(6):1243–1260

    MathSciNet  Google Scholar 

  • Zhang X, Ramos AS, Paulino GH (2017) Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme. Struct Multidiscip Optim 55(6):2045–2072

    MathSciNet  Google Scholar 

  • Zhang XS, Paulino GH, Ramos AS (2018) Multimaterial topology optimization with multiple volume constraints: combining the ZPR update with a ground-structure algorithm to select a single material per overlapping set. Int J Numer Meth Eng 114(10):1053–1073

    MathSciNet  Google Scholar 

  • Zhao Y, Hoang VN, Jang GW, Zuo W (2021) Hollow structural topology optimization to improve manufacturability using three-dimensional moving morphable bars. Adv Eng Softw 152:102955

    Google Scholar 

  • Zhang ZD, Ibhadode O, Bonakdar A, Toyserkani E (2021) TopADD: a 2D/3D integrated topology optimization parallel-computing framework for arbitrary design domains. Struct Multidisc Optim

  • Zhou M, Rozvany G (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336

    Google Scholar 

  • Zhou M, Sigmund O (2017) On fully stressed design and p-norm measures in structural optimization. Struct Multidisc Optim 56(3):731–736

    MathSciNet  Google Scholar 

  • Zhou M, Sigmund O (2021) Complementary lecture notes for teaching the 99/88-line topology optimization codes. Struct Multidisc Optim. https://doi.org/10.1007/s00158-021-03004-z

    Article  Google Scholar 

  • Zhou S, Cadman J, Chen Y, Li W, Xie YM, Huang X, Appleyard R, Sun G, Li Q (2012) Design and fabrication of biphasic cellular materials with transport properties—a modified bidirectional evolutionary structural optimization procedure and MATLAB program. Int J Heat Mass Transf 55(25–26):8149–8162

    Google Scholar 

  • Zhou M, Lian H, Sigmund O, Aage N (2018) Shape morphing and topology optimization of fluid channels by explicit boundary tracking. Int J Numer Meth Fluids 88(6):296–313

    MathSciNet  Google Scholar 

  • Zhu B, Zhang X, Li H, Liang J, Wang R, Li H, Nishiwaki S (2021) An 89-line code for geometrically nonlinear topology optimization written in FreeFEM. Struct Multidisc Optim 63(2):1015–1027

    MathSciNet  Google Scholar 

  • Zuo ZH, Xie YM (2015) A simple and compact Python code for complex 3D topology optimization. Adv Eng Softw 85:1–11

    Google Scholar 

Download references

Acknowledgements

The authors would like to devote this paper to Dr. Rafi Hafka. Rafi was exemplary as an educator throughout his legendary research career. It is not a coincidence that most educational papers have appeared in the SMO journal. This publication genre was deliberately cultivated by Haftka, and also his predecessor Rozvany, as Editor-in-Chief of the journal. It is most fitting and gratifying to have this review included in the Special Issue dedicated to our mentor and dear friend Rafi Haftka. The authors would like to acknowledge the following financial supports. C. Wang, Z. Zhao, and X.S. Zhang were supported by the U.S. National Science Foundation (NSF) CAREER Award CMMI-2047692. O. Sigmund was supported by the Villum Foundation through the Villum Investigator Project “InnoTop”. The information provided in this paper is the sole opinion of the authors and does not necessarily reflect the view of the sponsoring agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojia Shelly Zhang.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Replication of results

All results in this paper are generated by codes and data from source references. Readers are encouraged to download papers and codes of interest from original publications.

Additional information

Responsible Editor: Gengdong Cheng

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue dedicated to Dr. Raphael T. Haftka

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhao, Z., Zhou, M. et al. A comprehensive review of educational articles on structural and multidisciplinary optimization. Struct Multidisc Optim 64, 2827–2880 (2021). https://doi.org/10.1007/s00158-021-03050-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-021-03050-7

Keywords

Navigation