Machine Vision and Applications

, Volume 25, Issue 6, pp 1423–1468 | Cite as

Super-resolution: a comprehensive survey

Original Paper

Abstract

Super-resolution, the process of obtaining one or more high-resolution images from one or more low-resolution observations, has been a very attractive research topic over the last two decades. It has found practical applications in many real-world problems in different fields, from satellite and aerial imaging to medical image processing, to facial image analysis, text image analysis, sign and number plates reading, and biometrics recognition, to name a few. This has resulted in many research papers, each developing a new super-resolution algorithm for a specific purpose. The current comprehensive survey provides an overview of most of these published works by grouping them in a broad taxonomy. For each of the groups in the taxonomy, the basic concepts of the algorithms are first explained and then the paths through which each of these groups have evolved are given in detail, by mentioning the contributions of different authors to the basic concepts of each group. Furthermore, common issues in super-resolution algorithms, such as imaging models and registration algorithms, optimization of the cost functions employed, dealing with color information, improvement factors, assessment of super-resolution algorithms, and the most commonly employed databases are discussed.

Keywords

Super-resolution Hallucination  Reconstruction Regularization 

References

  1. 1.
    Gerchberg, R.W.: Super-resolution through error energy reduction. J. Mod. Opt. 21(9), 709–720 (1974)Google Scholar
  2. 2.
    Santis, P.D., Gori, F.: On an iterative method for super-resolution. J. Mod. Opt. 22(8), 691–695 (1975)Google Scholar
  3. 3.
    Tsai, R., Huang, T.: Multiframe image restoration and registration. In: Tsai, R.Y., Huang, T.S. (eds.) Advances in Computer Vision and Image Processing, vol. 1, pp. 317–339. JAI Press Inc., Stamford (1984)Google Scholar
  4. 4.
    Mjolsness, E.: Neural networks, pattern recognition, and fingerprint hallucination. PhD thesis, California Institute of Technology (1985).Google Scholar
  5. 5.
    Peleg, S., Keren, D., Schweitzer, L.: Improving image resolution using subpixel motion. Pattern Recognit. Lett. 5(3), 223–226 (1987)Google Scholar
  6. 6.
    Keren, D., Peleg, S., Brada, R.: Image sequence enhancement using subpixel displacements. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 742–746 (1988).Google Scholar
  7. 7.
    Stark, H., Oskoui, P.: High-resolution image recovery from image-plane arrays, using convex projections. J. Opt. Soc. Am. A 6(11), 1715–1726 (1989)Google Scholar
  8. 8.
    Irani, M., Peleg, S.: Super-resolution from image sequences. In: Proceedings of IEEE International Conference on Pattern Recognition, USA, pp. 115–120 (1990).Google Scholar
  9. 9.
    Kim, S., Bose, N., Valenzuela, H.M.: Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans. Acoust. Speech Signal Process. 38(6), 1013–1027 (1990)Google Scholar
  10. 10.
    Luttrell, S.P.: Bayesian autofocus/super-resolution theory. In: Proceedings of IEE Colloquium on Role of Image Processing in Defence and Military Electronics, pp. 1–6 (1990).Google Scholar
  11. 11.
    Aizawa, K., Komatsu, T., Saito, T.: Acquisition of very high resolution images using stereo cameras. Proc. SPIE Vis. Commun. Image Process. 1605, 318–328 (1991)Google Scholar
  12. 12.
    Hunt, B.R.: Imagery super-resolution: emerging prospects. Proceedings of SPIE on Applications of Digital Image Processing XIV, USA 1567, 600–608 (1991)Google Scholar
  13. 13.
    Irani, M., Peleg, S.: Improving resolution by image registration. CVGIP Graph. Mod. Image Process. 53, 231–239 (1991)Google Scholar
  14. 14.
    Irani, M., Peleg, S.: Image sequence enhancement using multiple motions analysis. In: Proceedings of International Conference on Computer Vision and Pattern Recognition, pp. 216–222 (1992).Google Scholar
  15. 15.
    Schatzberg, A., Devaney, A.J.: Super-resolution in diffraction tomography. Inverse Probl. 8, 149–164 (1992)MATHMathSciNetGoogle Scholar
  16. 16.
    Tekalp, A.M., Ozkan, M., Sezan, M.: High-resolution image reconstruction from lower-resolution image sequences and space-varying image restoration. Proceedings of the IEEE International Conference on Acousics, Speech and Signal Processing, USA III, 169–172 (1992)Google Scholar
  17. 17.
    Ur, H., Gross, D.: Improved resolution from sub-pixel shifted pictures. CVGIP Graph. Mod. Image Process. 54, 181–186 (1992)Google Scholar
  18. 18.
    Aghajan, H.K., Kailath, T.: Sensor array processing techniques for super-resolution multi-line-fitting and straight edge detection. IEEE Trans. Image Process. 2(4), 454–465 (1993)Google Scholar
  19. 19.
    Bose, N., Kim, H., Valenzuela, H.: Recursive implementation of total least squares algorithm for image reconstruction from noisy, undersampled multiframes. Proceedings of the IEEE Conference on Acoustics, Speech and Signal Processing, USA 5, 269–272 (1993)Google Scholar
  20. 20.
    Irani, M., Peleg, S.: Motion analysis for image enhancement: resolution, occlusion, and transparency. J. Vis. Commun. Image Represent. 4, 324–335 (1993)Google Scholar
  21. 21.
    Bose, N., Kim, H., Zhou, B.: Performance analysis of the TLS algorithm for image reconstruction from a sequence of undersampled noisy and blurred frames. Proceedings of the IEEE International Conference on Image Processing, USA III , 571–575 (1994)Google Scholar
  22. 22.
    Cheeseman, P., Kanefsky, B., Kraft, R., Stutz, J.: Super-resolved surface reconstruction from multiple images. Technical Report FIA9412, NASA (1994).Google Scholar
  23. 23.
    Fussfeld, E., Zeevi, Y.Y.: Super-resolution estimation of edge images. Proc. Int. Conf. Comput. Vis. Image Process. 1, 11–16 (1994).Google Scholar
  24. 24.
    Mann, S., Picard, R.: Virtual bellows: constructing high quality stills from video. In: Proceedings of the IEEE International Conference on Image Processing (1994).Google Scholar
  25. 25.
    Schultz, R.R., Stevenson, R.L.: A Bayesian approach to image expansion for improved definition. IEEE Trans. Image Process. 3(3), 233–242 (1994)Google Scholar
  26. 26.
    Walsh, D.O., Nielsen-Delaney, P.A.: A direct method for super-resolution. J. Opt. Soc. Am. A 11, 572–579 (1994)Google Scholar
  27. 27.
    Sauer, K.D., Borman, S., Bouman, C.A.: Parallel computation of sequential pixel updates in statistical tomographic reconstruction. Proceedings of the IEEE International Conference on Image Processing, USA 2, 93–96 (1995)Google Scholar
  28. 28.
    Shekarforoush, H., Berthod, M., Zerubia, J.: 3D super-resolution using generalized sampling expansion. Proceedings of the IEEE International Conference on Image Processing, USA 2, 300–303 (1995)Google Scholar
  29. 29.
    Bascle, B., Blake, A., Zisserman, A.: Motion deblurring and super-resolution from an image sequence. In: Proceedings of 4th European Conference on Computer Vision, UK, pp. 312–320 (1996).Google Scholar
  30. 30.
    Chiang, M.C., Boult, T.E.: Efficient image warping and super-resolution. In: Proceedings of 3rd IEEE Workshop on Applications of Computer Vision, USA, pp. 56–61 (1996).Google Scholar
  31. 31.
    Elad, M., Feuer, A.: Super-resolution reconstruction of an image. In: Proceedings of 19th IEEE Conference on Electrical and Electronics Engineers, Israel, pp. 391–394 (1996).Google Scholar
  32. 32.
    Miller, C., Hunt, B.R., Kendrick, R.L., Duncan, A.L.: Reconstruction and super-resolution of dilute aperture imagery, In: Proceedings of International Conference on Image Processing, Switzerland (1996).Google Scholar
  33. 33.
    Shekarforoush, H., Berthod, M., Zerubia, J., Werman, M.: Sub-pixel Bayesian estimation of albedo and height. Int. J. Comput. Vis. 19(3), 289–300 (1996)Google Scholar
  34. 34.
    Schultz, R.R., Stevenson, R.L.: Extraction of high-resolution frames from video sequences. IEEE Trans. Image Process. 5(6), 996–1011 (1996)Google Scholar
  35. 35.
    Tom, B.C., Katsaggelos, A.: Resolution enhancement of video sequences using motion compensation. Proceedings of the IEEE International Conference on Image Processing, Switzerland I, 713–716 (1996)Google Scholar
  36. 36.
    Chiang, M.C., Boult, T.E.: Imaging-consistent super-resolution. In: Proceedings of the DARPA Image Understanding Workshop (1997).Google Scholar
  37. 37.
    Chiang, M.C., Boult, T.E.: Local blur estimation and super-resolution. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, Puerto Rico, pp. 821–826 (1997).Google Scholar
  38. 38.
    Elad, M., Feuer, A.: Restoration of a single super-resolution image from several blurred, noisy, and under-sampled measured images. IEEE Trans. Image Process. 6(12), 1646–1658 (1997)Google Scholar
  39. 39.
    Eren, P.E., Sezan, M.I., Tekalp, A.M.: Robust object-based high-resolution image reconstruction from low-resolution video. IEEE Trans. Image Process. 6(10), 1446–1451 (1997)Google Scholar
  40. 40.
    Green, J.J., Hunt, B.R.: Super-resolution in a synthetic aperture imaging system. Proc. Int. Conf. Image Process. 1, 865–868 (1997)Google Scholar
  41. 41.
    Hardie, R.C., Barnard, K.J., Armstrong, E.E.: Joint MAP registration and high-resolution image estimation using a sequence of under sampled images. IEEE Trans. Image Process. 6, 1621–1633 (1997)Google Scholar
  42. 42.
    Hong, M.C., Kang, M.G., Katsaggelos, A.K.: A regularized multichannel restoration approach for globally optimal high resolution video sequence. SPIE VCIP 3024, 1306–1317 (1997)Google Scholar
  43. 43.
    Hong, M.C., Kang, M.G., Katsaggelos, A.K.: An iterative weighted regularized algorithm for improving the resolution of video sequences. Proc. Int.l Conf. Image Process. 2, 474–477 (1997).Google Scholar
  44. 44.
    Lorette, A., Shekarforoush, H., Zerubia, J.: Super-resolution with adaptive regularization. Proceedings of the IEEE International Conference on Image Processing, USA 1, 169–172 (1997)Google Scholar
  45. 45.
    Patti, A.J., Sezan, M.I., Tekalp, A.M.: Superresolution video reconstruction with arbitrary sampling lattices and nonzero aperture time. IEEE Trans. Image Proces. 6(8), 1064–1076 (1997)Google Scholar
  46. 46.
    Sheppard, D., Hunt, B.R., Marcellin, M.W.: Super-resolution of imagery acquired through turbulent atmosphere. In: Proceedings of 13th IEEE Conference on Signals, Systems and Computers, USA, vol. 1, pp. 81–85 (1997).Google Scholar
  47. 47.
    Borman, S., Stevenson, R.L.: Spatial resolution enhancement of low-resolution image sequences. A comprehensive review with directions for future research. Laboratory of Image and Signal Analysis, University of Notre Dame, Technical Report (1998).Google Scholar
  48. 48.
    Borman, S., Stevenson, R.L.: Super-resolution from image sequences: a review. In: Proceedings of Midwest Symposium on Circuits and Systems, pp. 374–378 (1998).Google Scholar
  49. 49.
    Calle, D., Montanvert, A.: Super-resolution inducing of an image. Proc. IEEE Int. Conf. Image Process. 3, 232–235 (1998)Google Scholar
  50. 50.
    Capel, D., Zisserman, A.: Automated mosaicing with super-resolution zoom. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, pp. 885–891 (1998).Google Scholar
  51. 51.
    Hardie, R.C., Barnard, K.J., Bognar, J.G., Armstrong, E.E., Watson, E.A.: High-resolution image reconstruction from a sequence of rotated and translated frames and its application to an infrared imaging system. Opt. Eng. 37(1), 247–260 (1998)Google Scholar
  52. 52.
    Pastina, D., Farina, A., Gunning, J., Lombardo, P.: Two-dimensional super-resolution spectral analysis applied to SAR images. IEE Proc. Radar Sonar Navig. 145(5), 281–290 (1998)Google Scholar
  53. 53.
    Patti, A., Altunbasak, Y.: Artifact reduction for POCS-based super-resolution with edge adaptive regularization and higher-order interpolants. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 217–221 (1998).Google Scholar
  54. 54.
    Pohl, C., Van Genderen, J.L.: Multisensor image fusion in remote sensing: concepts, methods and applications. Int. J. Remote Sens. 19(5), 823–854 (1998)Google Scholar
  55. 55.
    Schultz, R.R., Meng, L., Stevenson, R.L.: Subpixel motion estimation for super-resolution image sequence enhancement. J. Vis. Commun. Image Represent. 9(1), 38–50 (1998)Google Scholar
  56. 56.
    Zomet, A., Peleg, S.: Applying super-resolution to panoramic mosaics. In: Proceedings of 4th IEEE Workshop on Applications of Computer Vision (1998).Google Scholar
  57. 57.
    Baker, S., Kanade, T.: Hallucinating faces. Technical Report CMU-RI-TR-99-32. The Robotics Institute, Carnegie Mellon University, USA (1999).Google Scholar
  58. 58.
    Baker, S., Kanade, T.: Super-resolution optical flow. Technical Report CMU-RI-TR-99-36. The Robotics Institute, Carnegie Mellon University, USA (1999).Google Scholar
  59. 59.
    Bi, Z., Liu, Z.: Super resolution SAR imaging via parametric spectral estimation methods. IEEE Trans. Aerosp. Electron. Syst. 35(1), 267–281 (1999)Google Scholar
  60. 60.
    Borman, S., Stevenson, R.L.: Simultaneous multi-frame MAP super-resolution video enhancement using spatio temporal priors. In: Proceedings of IEEE International Conference on Image Processing, Japan, pp. 469–473 (1999).Google Scholar
  61. 61.
    Candocia, F.M., Principe, J.C.: Super-resolution of images based on local correlations. IEEE Trans. Neural Netw. 10(2), 372–380 (1999)Google Scholar
  62. 62.
    Elad, M., Feuer, A.: Super-resolution reconstruction of image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 21(9), 817–834 (1999)Google Scholar
  63. 63.
    Elad, M., Feuer, A.: Super-resolution reconstruction of continuous image sequences. Proceedings of International Conference on Image Processing, Japan 3, 459–463 (1999)Google Scholar
  64. 64.
    Elad, M., Feuer, A.: Super-resolution restoration of an image sequence: adaptive filtering approach. IEEE Trans. Image Process. 8, 387–395 (1999)Google Scholar
  65. 65.
    Freeman, W.T., Pasztor, E.C.: Learning to estimate scenes from images. In: Kearns, M.S., Solla, S.A., Cohn, D.A. (eds.) Advances in Neural Information Processing Systems, vol. 11. Cambridge (1999).Google Scholar
  66. 66.
    Freeman, W.T., Pasztor, E.: Markov networks for low-level vision. Mitsubishi Electric Research Laboratory Technical, Report TR99-08 (1999).Google Scholar
  67. 67.
    Hunt, B.R.: Super-resolution of imagery: understanding the basis for recovery of spatial frequencies beyond the diffraction limit. In: Proceedings of Information, Decision and Control, Australia (1999).Google Scholar
  68. 68.
    Nguyen, N., Milanfar, P., Golub, G.: Blind super-resolution with generalized cross-validation using gauss-type quadrature rules. In: Proceedings of the 33rd Asilomar Conference on Signals, Systems, and Computers (1999).Google Scholar
  69. 69.
    Pan, M.C., Lettington, A.H.: Efficient method for improving Poisson MAP super-resolution. Electron. Lett. 35, 803–805 (1999)Google Scholar
  70. 70.
    Shekarforoush, H., Chellappa, R.: Data-driven multi-channel super-resolution with application to video data. J. Opt. Soc. Am. A 16(3), 481–492 (1999)Google Scholar
  71. 71.
    Baker, S., Kanade, T.: Hallucinating faces. In: Proceedings of 4th IEEE International Conference on Automatic Face and Gesture Recognition, France, pp. 83–88 (2000).Google Scholar
  72. 72.
    Bhattacharjee, S., Sundareshan, M.K.: Modeling and extrapolation of prior scene information for set-theoretic restoration and super-resolution of diffraction-limited images. In: Proceedings of the IEEE International Conference on Image Processing, Canada (2000).Google Scholar
  73. 73.
    Capel, D., Zisserman, A.: Super-resolution enhancement of text image sequences. In: Proceedings of the International Conference on Pattern Recognition, Spain (2000).Google Scholar
  74. 74.
    Chiang, M.C., Boult, T.E.: Efficient super-resolution via image warping. Image Vis. Comput. 18, 761–771 (2000)Google Scholar
  75. 75.
    Cohen, B., Dinstein, I.: Polyphase back-projection filtering for image resolution enhancement. IEE Proc. Vis. Image Signal Process. 147, 318–322 (2000)Google Scholar
  76. 76.
    Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. Int. J. Comput. Vis. 20(1), 25–47 (2000)Google Scholar
  77. 77.
    Gee, T.F., Karnowski, T.P., Tobin, K.W.: Multiframe combination and blur deconvolution of video data. Proc. SPIE Image Video Commun. Process. 3974, 788–795 (2000)Google Scholar
  78. 78.
    Nguyen, N.X.: Numerical algorithms for image super-resolution. PhD thesis, Stanford University (2000).Google Scholar
  79. 79.
    Nguyen, N., Milanfar, P.: An efficient wavelet-based algorithm for image super-resolution. In: Proceedings of the IEEE International Conference on Image Processing, vol. II, Canada, pp. 351–354 (2000).Google Scholar
  80. 80.
    Smelyanskiy, V., Cheeseman, P., Maluf, D., Morris, R.: Bayesian super-resolved surface reconstruction from images. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, USA (2000).Google Scholar
  81. 81.
    Zomet, A., Peleg, S.: Efficient super-resolution and applications to mosaics. In: Proceedings of IEEE International Conference on Pattern Recognition, Spain, pp. 579–583 (2000).Google Scholar
  82. 82.
    Baker, S., Kanade, T.: Super-resolution: reconstruction or recognition? In: Proceedings of IEEE EURASIP Workshop on Nonlinear Signal and Image Processing, USA (2001).Google Scholar
  83. 83.
    Bose, N.K., Lertrattanapanich, S., Koo, J.: Advances in superresolution using \(L\)-curve. Proc. Int. Symp. Circuits Syst. 2, 433–436 (2001)Google Scholar
  84. 84.
    Capel, D.P.: Image mosaicing and super-resolution. PhD thesis, University of Oxford (2001).Google Scholar
  85. 85.
    Capel, D.P., Zisserman, A.: Super-resolution from multiple views using learnt image models. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, USA 2, 627–634 (2001)Google Scholar
  86. 86.
    Dekeyser, F., Bouthemy, P., Perez, P.: A new algorithm for super-resolution from image sequences. In: Proceeding of International Conference on Computer Analysis of Images and Patterns, Germany, pp. 473–481 (2001).Google Scholar
  87. 87.
    Elad, M., Hel-Or, Y.: A fast super-resolution reconstruction algorithm for pure translational motion and common space-invariant blur. IEEE Trans. Image Process. 10(8), 1187–1193 (2001)MATHGoogle Scholar
  88. 88.
    Kim, H., Jang, J.H., Hong, K.S.: Edge-enhancing super-resolution using anisotropic diffusion. In: Proceedings of IEEE International Conference on Image Processing, Greece, pp. 130–133 (2001).Google Scholar
  89. 89.
    Lin, Z., Shum, H.Y.: On the fundamental limits of reconstruction-based super-resolution algorithms. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 1171–1176 (2001).Google Scholar
  90. 90.
    Liu, C., Shum, H.Y., Zhang, C.S.: A two-step approach to hallucinating faces: global parametric model and local nonparametric model. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA 1, 192–198 (2001)Google Scholar
  91. 91.
    Nguyen, N., Milanfar, P., Golub, G.: A computationally efficient super-resolution image reconstruction algorithm. IEEE Trans. Image Process. 10, 573–583 (2001)MATHMathSciNetGoogle Scholar
  92. 92.
    Nguyen, N., Milanfar, P., Golub, G.: Efficient generalized cross-validation with applications to parametric image restoration and resolution enhancement. IEEE Trans. Image Process. 10, 1299–1308 (2001)MATHMathSciNetGoogle Scholar
  93. 93.
    Patti, A.J., Altunbasak, Y.: Artifact reduction for set theoretic super-resolution image reconstruction with edge adaptive constraints and higher-order interpolants. IEEE Trans. Image Process. 10(1), 179–186 (2001)Google Scholar
  94. 94.
    Rajan, D., Chaudhuri, S.: Generalized interpolation and its applications in super-resolution imaging. Image Vis. Comput. 19, 957–969 (2001)Google Scholar
  95. 95.
    Rajan, D., Chaudhuri, S.: Generation of super-resolution images from blurred observations using Markov random fields. Proceedings of IEEE International Conference on Acoustics, Speech, Signal Processing, USA 3, 1837–1840 (2001)Google Scholar
  96. 96.
    Tatem, A.J., Lewis, H.G., Atkinson, P.M., Nixon, M.S.: Super-resolution target identification from remotely sensed images using a Hopfield neural network. IEEE Trans. Geosci. Remote Sens. 39(4), 781–796 (2001)Google Scholar
  97. 97.
    Zomet, A., Rav-Acha, A., Peleg, S.: Robust super-resolution. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, USA, vol. 1, pp. 645–650 (2001).Google Scholar
  98. 98.
    Altunbasak, Y., Patti, A.J., Mersereau, R.M.: Super-resolution still and video reconstruction from mpeg-coded video. IEEE Trans. Circuits Syst. Video Technol. 12, 217–226 (2002)Google Scholar
  99. 99.
    Baker, S., Kanade, T.: Limits on super-resolution and how to break them. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2002)Google Scholar
  100. 100.
    Baker, S., Kanade, T.: Super-resolution: limits and beyond. In: Chaudhuri, S. (ed.) Super-Resolution Imaging, ch. 10, pp. 244–276. Kluwer Academic, Norwell (MA) (2002).Google Scholar
  101. 101.
    Chaudhuri, S.: Super-Resolution Imaging. Kluwer Academic, Norwell (MA) (2002)Google Scholar
  102. 102.
    Freeman, W.T., Jones, T.R., Pasztor, E.C.: Example-based super-resolution. IEEE Comput. Graph. Appl. 22(2), 56–65 (2002)Google Scholar
  103. 103.
    Gilboa, G., Sochen, N.: Zeevi, Ye Y.: Forward-and-backward diffusion processes for adaptive image enhancement and denoising. IEEE Trans. Image Process. 11(7), 689–703 (2002)Google Scholar
  104. 104.
    Gunturk, B.K., Altunbasak, Y., Mersereau, R.M.: Multiframe resolution-enhancement methods for compressed video. IEEE Signal Process. Lett. 9, 170–174 (2002)Google Scholar
  105. 105.
    Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-based super-resolution for face recognition. Proceedings of International Conference on Image Processing, USA 2, 845–848 (2002)Google Scholar
  106. 106.
    Komatsu, T., Aizawa, K., Saito, T.: Resolution enhancement using multiple apertures. In: Chaudhuri, S. (ed.) Super-Resolution Imaging, pp. 171–193. Kluwer Academic, Norwell (MA) (2002)Google Scholar
  107. 107.
    Rajan, D., Chaudhuri, S.: An MRF-based approach to generation of super-resolution images from blurred observations. J. Math. Imaging Vis. 16(1), 5–15 (2002)MATHMathSciNetGoogle Scholar
  108. 108.
    Rajan, D., Chaudhuri, S.: Data fusion techniques for super-resolution imaging. Inf. Fusion 3(1), 25–38 (2002)MathSciNetGoogle Scholar
  109. 109.
    Rajan, D., Chaudhuri, S.: Super-resolution imaging using blur as a cue. In: Chaudhuri, S. (ed.) Super-Resolution Imaging, ch. 5, pp. 107–129. Kluwer, Norwell (2002).Google Scholar
  110. 110.
    Segall, C.A., Katsaggelos, A.K., Molina, R., Mateos, J.: Super-resolution from compressed video. In: Chaudhuri, S. (ed.) Super-Resolution Imaging, pp. 211–242. Kluwer, Boston (2002)Google Scholar
  111. 111.
    Storkey, A.J.: Dynamic structure super-resolution. Adv. Neural Inf. Process. Syst. 16, 1295–1302 (2002)Google Scholar
  112. 112.
    Tipping, M.E., Bishop, C.M.: Bayesian image super-resolution. Adv. Neural Inf. Process. Syst. 15, 1303–1310 (2002)Google Scholar
  113. 113.
    Tom, B.C., Galatsanos, N.P., Katsaggelos, A.K.: Reconstruction of a high resolution image from multiple low resolution images. In: Chaudhuri, S. (ed.) Super-Resolution Imaging, ch. 4, pp. 73–105, ch. 4, pp. 73–105. Kluwer, Norwell (2002).Google Scholar
  114. 114.
    Zhang, Y.: Problems in the fusion of commercial high resolution satellite images as well as Landsat 7 images and initial solutions. Proc. Int. Arch. Photogramm. Remote Sens. 34(4), 9–12 (2002)Google Scholar
  115. 115.
    Zhao, W., Sawhney, H.S.: Is super-resolution with optical flow feasible? In: Proceedings of European Conference on Computer Vision, Denmark (2002).Google Scholar
  116. 116.
    Zhao, W., Sawhney, H., Hansen, M., Samarasekera, S.: Super-fusion: a super-resolution method based on fusion. Proceedings of IEEE International Conference on Pattern Recognition, Canada 2, 269–272 (2002)Google Scholar
  117. 117.
    Zomet, A., Peleg, S.: Multi-sensor super-resolution. In: Proceedings of 6th IEEE Workshop on Applications of Computer Vision, USA, pp. 27–31 (2002).Google Scholar
  118. 118.
    Zomet, A., Peleg, S.: Super-resolution from multiple images having arbitrary mutual motion. In: Chaudhuri, S. (ed.) Super-Resolution Imaging, pp. 195–209. Kluwer Academic, Norwell (MA) (2002)Google Scholar
  119. 119.
    Abad, J., Vega, M., Molina, R., Katsaggelos, A.K.: Parameter estimation in super-resolution image reconstruction problems. In: Proceedings of the IEEE International Conference on Acoustic, Speech and Signal Processing, China, vol. 3, pp. 709–712 (2003).Google Scholar
  120. 120.
    Bertero, M., Boccacci, P.: Super-resolution in computational imaging. Micron 34, 265–273 (2003)Google Scholar
  121. 121.
    Bishop, C., Blake, A., Marthi, B.: Super-resolution enhancement of video. In: Proceedings of Artificial Intelligence and Statistics (2003).Google Scholar
  122. 122.
    Canel, G., Tekalp, A.M., Heinzelman, W.: Super-resolution recovery for multi-camera surveillance imaging. In: Proceedings of IEEE International Conference on Multimedia and Expo, USA, pp. 109–112 (2003).Google Scholar
  123. 123.
    Capel, D., Zisserman, A.: Computer vision applied to super-resolution. IEEE Signal Process. Mag. 20(3), 75–86 (2003)Google Scholar
  124. 124.
    Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Fast and robust super-resolution. Proceedings of IEEE International Conference on Image Processing, Spain 2, 291–294 (2003)Google Scholar
  125. 125.
    Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Robust shift and add approach to super-resolution. In: Proceedings of SPIE Conference on Applications of Digital Signal and Image Processing, USA, pp. 121–130 (2003).Google Scholar
  126. 126.
    Goldberg, N., Feuer, A., Goodwin, G.C.: Super-resolution reconstruction using spatio-temporal filtering. J. Vis. Commun. Image Represent. 14(4), 508–525 (2003)Google Scholar
  127. 127.
    Gunturk, B.K., Batur, A.U., Altunbasak, Y., Hayes, M.H., Mersereau, R.M.: Eigenface-domain based super-resolution for face recognition. IEEE Trans. Image Process. 12(5), 597–606 (2003)Google Scholar
  128. 128.
    Jiang, Z., Wong, T.T., Bao, H.: Practical super-resolution from dynamic video sequences. Proceedings of International Conference on Computer Vision and Pattern Recognition, Canada 2, 549–554 (2003)Google Scholar
  129. 129.
    Joshi, M.V., Chaudhuri, S.: A learning-based method for image super-resolution from zoomed observations. In: Proceedings of 5th International Conference on Advances in Pattern Recognition, India, pp. 179–182 (2003).Google Scholar
  130. 130.
    Miravet, C., Rodriguez, F.B.: A hybrid MLP-PNN architecture for fast image super-resolution. In: Proceedings of the International Conference on Neural Information Processing, Turkey, pp. 417–424 (2003).Google Scholar
  131. 131.
    Ng, M.K., Bose, N.K.: Mathematical analysis of super-resolution methodology. IEEE Signal Process. Mag. 20(3), 62–74 (2003)Google Scholar
  132. 132.
    Park, S.C., Park, M.K., Kang, M.G.: Super-resolution image reconstruction: a technical overview. IEEE Signal Process. Mag. 20(3), 21–36 (2003)Google Scholar
  133. 133.
    Pickup, L., Roberts, S., Zisserman, A.: A sampled texture prior for image super-resolution. In: Proceedings of 16th International conference on Advances in Neural Information Processing Systems (2003).Google Scholar
  134. 134.
    Rajan, D., Chaudhuri, S., Joshi, M.V.: Multi-objective super-resolution: concepts and examples. IEEE Signal Process. Mag. 20(3), 49–61 (2003)Google Scholar
  135. 135.
    Rajan, D., Chaudhuri, S.: Simultaneous estimation of super-resolved scene and depth map from low resolution observations. IEEE Trans. Pattern Anal. Mach. Intell. 25, 1102–1117 (2003)Google Scholar
  136. 136.
    Salari, E., Zhang, S.: Integrated recurrent neural network for image resolution enhancement from multiple image frames. IEE Vis. Image Signal Process. 150(5), 299–305 (2003)Google Scholar
  137. 137.
    Segall, C.A., Molina, R., Katsaggelos, A.K.: High-resolution images from low-resolution compressed video. IEEE Signal Process. Mag. 20(3), 37–48 (2003)Google Scholar
  138. 138.
    Sun, J., Zheng, N.N., Tao, H., Shum, H.Y.: Image hallucination with primal sketch priors. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition 2, 729–736 (2003)Google Scholar
  139. 139.
    Tappen, M.F., Russell, B.C., Freeman, W.T.: Exploiting the sparse derivative prior for super-resolution and image demosaicing. In: IEEE Workshop Statistical and Computational Theories of Vision (2003).Google Scholar
  140. 140.
    Tipping, M.E., Bishop, C.M.: Bayesian image super-resolution. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in Neural Information Processing Systems, vol. 15. MIT Press, USA (2003)Google Scholar
  141. 141.
    Vandewalle, P., Susstrunk, S.E., Vetterli, M.: Super-resolution images reconstructed from aliased images. Proceedings of SPIE Conference on Visual Communications and Image Processing, Switzerland 5150, 1398–1405 (2003)Google Scholar
  142. 142.
    Wang, X., Tang, X.: Face hallucination and recognition. In: Proceedings of 4th International Conference on Audio- and Video-based Personal Authentication (IAPR), UK, pp. 486–494 (2003).Google Scholar
  143. 143.
    Zhao, S., Han, H., Peng, S.: Wavelet-domain HMT-based image super-resolution. Proceedings of IEEE International Conference on Image Processing, Spain 2, 656–953 (2003)Google Scholar
  144. 144.
    Zweig, G.: Super-resolution Fourier transform by optimization, and ISAR imaging. In: IEE Proceedings on Radar, Sonar and Navigation, pp. 247–252 (2003).Google Scholar
  145. 145.
    Almansa, A., Durand, S., Rouge, B.: Measuring and improving image resolution by adaptation of the reciprocal cell. J. Math. Imaging Vis. 21, 235–279 (2004)MathSciNetGoogle Scholar
  146. 146.
    Begin, I., Ferrie F.P.: Blind super-resolution using a learning-based approach. In: Proceedings of IEEE International Conference on Pattern Recognition, UK, pp. 85–89 (2004).Google Scholar
  147. 147.
    Ben-Ezra, M., Nayar, S.: Jitter camera: High resolution video from a low resolution detector. Proceeding of IEEE International Conference on Computer Vision and Pattern Recognition, USA 2, 135–142 (2004)Google Scholar
  148. 148.
    Borman, S.: Topics in multiframe super-resolution restoration. PhD thesis, University of Notre Dame (2004).Google Scholar
  149. 149.
    Borman, S., Stevenson, R.: Linear models for multi-frame super-resolution restoration under non-affine registration and spatially varying psf. In: SPIE Electronic Imaging (2004).Google Scholar
  150. 150.
    Bose, N.K., Lertrattanapanich, S., Chappali, M.B.: Super-resolution with second generation wavelets. Signal Process. Image Commun. 19, 387–391 (2004)Google Scholar
  151. 151.
    Chang, H., Yeung, D.Y., Xiong, Y.: Super-resolution through neighbor embedding. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, USA 1, 275–282 (2004)Google Scholar
  152. 152.
    Cristani, M., Cheng, D.S., Murino, V., Pannullo, D.: Distilling information with super-resolution for video surveillance. In: Proceedings of the ACM 2nd International Workshop on Video Surveillance and Sensor Networks, USA (2004).Google Scholar
  153. 153.
    Cui, J., Wang, Y., Huang, J., Tan, T., Sun, Z.: An iris image synthesis method based on PCA and super-resolution. Proceedings of IEEE International Conference on Pattern Recognition, UK 4, 471–474 (2004)Google Scholar
  154. 154.
    Dedeoglu, G., Kanade, T., August, J.: High-zoom video hallucination by exploiting spatio-temporal regularities. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, USA 2, 151–158 (2004)Google Scholar
  155. 155.
    Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Advances and challenges in super-resolution. Int. J. Imaging Syst. Technol. 14(2), 47–57 (2004)Google Scholar
  156. 156.
    Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: Dynamic demosaicing and color super-resolution video sequences. In: Proceedings of SPIE Conference on Image Reconstruction from Incomplete Data (2004).Google Scholar
  157. 157.
    Farsiu, S., Robinson, D., Elad, M., Milanfar, P.: ’Fast and robust multi-frame super-resolution. IEEE Trans. Image Process. 13(10), 1327–1344 (2004)Google Scholar
  158. 158.
    Farsiu, S., Elad, M., Milanfar, P.: Multi-frame demosaicing and super-resolution from under-sampled color images. In: Proceedings of SPIE Symposium on Electronic, Imaging, pp. 222–233 (2004).Google Scholar
  159. 159.
    Gonzalez-Audcana, M., Saleta, J.L., Catalan, R.G., Garcia, R.: Fusion of multispectral and panchromatic images using improved IHS and PCA mergers based on wavelet decomposition. IEEE Trans. Geosci. Remote Sens. 42(6), 1291–1299 (2004)Google Scholar
  160. 160.
    Gotoh, T., Okutomi, M.: Direct super-resolution and registration using raw CFA images. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA 2, 600–607 (2004)Google Scholar
  161. 161.
    Gunturk, B.K., Altunbasak, Y., Mersereau, R.M.: Super-resolution reconstruction of compressed video using transform-domain statistics. IEEE Trans. Image Process. 13(1), 33–43 (2004)Google Scholar
  162. 162.
    Jiji, C.V., Joshi, M.V., Chaudhuri, S.: Single-frame image super-resolution using learned wavelet coefficients. Int. J. Imaging Syst. Technol. 14(3), 105–112 (2004)Google Scholar
  163. 163.
    Joshi, M.V., Chaudhuri, S., Panuganti, R.: Super-resolution imaging: use of zoom as a cue. Image Vis. Comput. 22, 1185–1196 (2004)Google Scholar
  164. 164.
    Li, Y., Lin, X.: An improved two-step approach to hallucinating faces. In: Proceedings of 3rd International Conference on Image and Graphics, China, pp. 298–301 (2004).Google Scholar
  165. 165.
    Li, Y., Lin, X.: Face hallucination with pose variation. In: Proceedings of 6th IEEE International Conference on Automatic Face and Gesture Recognition, Korea, pp. 723–728 (2004).Google Scholar
  166. 166.
    Lin, Z., Shum, H.Y.: Fundamental limits of reconstruction-based super-resolution algorithms under local translation. IEEE Trans. Pattern Anal. Mach. Intell. 26, 83–97 (2004)Google Scholar
  167. 167.
    Pham, T.Q., Vliet, L.J.V.: Super-resolution Fusion using adaptive normalized averaging. In: Proceedings of ASCI (2004).Google Scholar
  168. 168.
    Robinson, D., Milanfar, D.: Statistical performance analysis of super-resolution image reconstruction. In: Proceedings of 38th Asilomar Conference on Signals, Systems and Computers, vol. 1, pp. 144–149 (2004).Google Scholar
  169. 169.
    Segall, C.A., Katsaggelos, A.K., Molina, R., Mateos, J.: Bayesian resolution enhancement of compressed video. IEEE Trans. Image Process. 13, 898 (2004)Google Scholar
  170. 170.
    Villena, S., Abad, J., Molina, R., Katsaggelos, A.K.: Estimation of high resolution images and registration parameters from low resolution observations. In: Iberoamerican Congress on Pattern Recognition, Mexico, pp. 509–516 (2004).Google Scholar
  171. 171.
    Wang, Z., Qi, F.: On ambiguities in super-resolution modeling. IEEE Signal Process. Lett. 11(8), 678–681 (2004)Google Scholar
  172. 172.
    Wang, C., Wang, R.S.: Super-resolution reconstruction of image sequence using multiple motion estimation fusion. J. Comput. Sci. Technol. 19(3), 405–412 (2004)Google Scholar
  173. 173.
    Wu, J., Trivedi, M., Rao, B.: Resolution enhancement by AdaBoost. Proceedings of IEEE International Conference on Pattern Recognition, USA 3, 893–896 (2004)Google Scholar
  174. 174.
    Ahrens, B.: Genetic algorithm optimization of superresolution parameters. In: Proceedings of ACM Conference on Genetic and Evolutionary Computation, USA, pp. 2083–2088 (2005).Google Scholar
  175. 175.
    Akgun, T., Altunbasak, Y., Mersereau, R.M.: Super-resolution reconstruction of hyperspectral images. IEEE Trans. Image Process. 14, 1860–1875 (2005)Google Scholar
  176. 176.
    Barreto, D., Alvarez, L., Abad, J.: Motion estimation techniques in super-resolution image reconstruction, a performance evaluation. In: Proceedings of Virtual Observatory: Plate Content Digitization, Archive Mining and Image Sequence Processing, Bulgaria, pp. 254–268 (2005).Google Scholar
  177. 177.
    Ben-Ezra, M., Zomet, A., Nayar, S.K.: Video super-resolution using controlled subpixel detector shifts. IEEE Trans. Pattern Anal. Mach. Intell. 27(6), 977–987 (2005)Google Scholar
  178. 178.
    Champagnat, F., Besnerais, G.L.: A Fourier interpretation of super-resolution techniques. Proceedings of IEEE International Conference on Image Processing, Italy 1, 865–868 (2005)Google Scholar
  179. 179.
    Chappalli, M., Bose, N.: Simultaneous noise filtering and super-resolution with second-generation wavelets. Signal Process. Lett. 12, 772–775 (2005)Google Scholar
  180. 180.
    Corduneanu, A., Platt, J.C.: Learning spatially-variable filters for super-resolution of text. Proceedings of IEEE International Conference on Image Processing, Italy 1, 849–852 (2005)Google Scholar
  181. 181.
    Donaldson, K., Myers, D.K.: Bayesian super-resolution of text in video with a text-specific bimodal prior. Int. J. Doc. Anal. Recognit. 7(2), 159–167 (2005)Google Scholar
  182. 182.
    Farsiu, S.: A fast and robust framework for image fusion and enhancement. PhD thesis, University of California, Santa Cruz (2005).Google Scholar
  183. 183.
    Farsiu, S., Elad, M., Milanfar, P.: Constrained, globally optimal, multi-frame motion estimation. In: IEEE/SP 13th Workshop on Statistical, Signal Processing, pp. 1396–1401 (2005).Google Scholar
  184. 184.
    Gevrekci, M., Gunturk, B.K.: Image acquisition modeling for super-resolution reconstruction. IEEE Int. Conf. Image Process. 2, 1058–1061 (2005)Google Scholar
  185. 185.
    Gupta, M.D., Rajaram, S., Petrovic, N., Huang, T.S.: Non-parametric image super-resolution using multiple images. In: Proceedings of IEEE International Conference on Image Processing, Italy (2005).Google Scholar
  186. 186.
    He, H., Kondi, L.P.: A regularization framework for joint blur estimation and super-resolution of video sequences. Proceedings of IEEE International Conference on Image Processing, Italy 3, 11–14 (2005)Google Scholar
  187. 187.
    Jia, K., Gong, S.: Face super-resolution using multiple occluded images of different resolutions. In: Proceedings of IEEE Advanced Video and Signal Based Surveillance, pp. 614–619, Italy (2005).Google Scholar
  188. 188.
    Jia, K., Gong, S.: Multi-modal face image super-resolutions in tensor space. In: Proceedings of IEEE Advanced Video and Signal Based Surveillance, Italy, pp. 264–269 (2005).Google Scholar
  189. 189.
    Jia, K., Gong, S.: Multi-modal tensor face for simultaneous super-resolution and recognition. Proceedings of International Conference on Computer Vision, China 2, 1683–1690 (2005)Google Scholar
  190. 190.
    Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Investigation into optical flow super-resolution for surveillance applications. In: Proceedings of APRS Workshop on Digital Image Computing, Australia, pp. 73–78 (2005).Google Scholar
  191. 191.
    Lin, D., Liu, W., Tang, X.: Layered local prediction network with dynamic learning for face super-resolution. Proceedings of IEEE International Conference on Image Processing, Italy 1, 885–888 (2005)Google Scholar
  192. 192.
    Liu, W., Lin, D., Tang, X.: Face hallucination through dual associative learning. Proceedings of IEEE International Conference on Image Processing, Italy 1, 873–876 (2005)Google Scholar
  193. 193.
    Liu, W., Lin, D., Tang, X.: Hallucinating faces: Tensorpatch super-resolution and coupled residue compensation. Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, USA 2, 478–484 (2005)Google Scholar
  194. 194.
    Liu, W., Lin, D., Tang, X.: Neighbor combination and transformation for hallucinating faces.In: Proceedings of IEEE International Conference on Multimedia and Expo, The Netherlands (2005).Google Scholar
  195. 195.
    Mancas-Thillou, C., Mirmehdi, M.: Super-resolution text using the Teager filter. In: Proceedings of 1st International Workshop on Camera-Based Document Analysis and Recognition, Korea, pp. 10–16 (2005).Google Scholar
  196. 196.
    Miravet, C., Rodrguez, F.B.: Accurate and robust image super-resolution by neural processing of local image representations. Proceedings of International Conference on Artificial Neural Networks, Poland 1, 499–505 (2005)Google Scholar
  197. 197.
    Ng, M.K., Yau, A.C.: Super-resolution image restoration from blurred low-resolution images. J. Math. Imaging Vis. 23(3), 367–378 (2005)MathSciNetGoogle Scholar
  198. 198.
    Papathanassiou, C., Petrou, M.: Super-resolution: an overview. Proceedings of International Symposium on Geoscience and Remote Sensing, Korea 8, 5655–5658 (2005)Google Scholar
  199. 199.
    Park, J., Kwon, Y., Kim, J.H.: An example-based prior model for text image super-resolution. In: Proceedings of IEEE 8th International Conference on Document Analysis and Recognition, vol. 1, pp. 374–378 (2005).Google Scholar
  200. 200.
    Peng, S., Pan, G., Wu, Z.: Learning-based super-resolution of 3D face model. Proceedings of IEEE International Conference on Image Processing, Italy 2, 382–385 (2005)Google Scholar
  201. 201.
    Prendergast, R.S., Nguyen, T.Q.: Improving frequency domain super-resolution via undersampling model. Proceedings of IEEE International Conference on Image Processing, Italy 1, 853–856 (2005)Google Scholar
  202. 202.
    Roth, S., Black, M.J.: Fields of experts: a framework for learning image priors. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA (2005).Google Scholar
  203. 203.
    Rubert, C., Fonseca, L., Velho, L.: Learning based super-resolution using YUV model for remote sensing images. In: Proceedings of Workshop of Theses and Dissertations in Computer Graphics and Image Processing (2005).Google Scholar
  204. 204.
    Sasaharay, R., Hasegawaz, H., Yamaday, I., Sakaniway, K.: A color super-resolution with multiple nonsmooth constraints by hybrid steepest descent method. Proceedings of IEEE International Conference on Image Processing, Italy 1, 857–860 (2005)Google Scholar
  205. 205.
    Shechtman, E., Caspi, Y., Irani, M.: Space-time super-resolution. IEEE Trans. Pattern Anal. Mach. Intell. 27(4), 531–545 (2005)Google Scholar
  206. 206.
    Su, C., Huang, L.: Facial expression hallucination. In: Proceedings of 7th IEEE Workshop on Application of Computer Vision, vol. 1, pp. 93–98 (2005).Google Scholar
  207. 207.
    Su, K., Tian, Q., Que, Q., Sebe, N., Ma, J.: Neighborhood issue in single-frame image super-resolution. In: Proceedings of IEEE International Conference on Multimedia and Expo, The Netherlands (2005).Google Scholar
  208. 208.
    Su, C., Zhuang, Y., Huang, L., Wu, F.: Steerable pyramid based face hallucination. Pattern Recognit. 38, 813–824 (2005)Google Scholar
  209. 209.
    Tian, J., Ma, K.K.: A MCMC approach for Bayesian super-resolution image reconstruction. Proceedings of IEEE International Conference on Image Processing, Italy 1, 45–48 (2005)Google Scholar
  210. 210.
    Tian, J., Ma, K.K.: A new state-space approach for super-resolution image sequence reconstruction. Proceedings of IEEE International Conference on Image Processing, Italy 1, 881–884 (2005)Google Scholar
  211. 211.
    Vandewalle, P., Sbaiz, L., Vetterli, M., Sustrunk, S.: Super-resolution from highly undersampled images. Proceedings of IEEE International Conference on Image Processing, Italy 1, 889–892 (2005)Google Scholar
  212. 212.
    Wang, Z., Qi, F.: Analysis of multiframe super-resolution reconstruction for image anti-aliasing and deblurring. Image Vis Comput 23, 393–404 (2005)MATHMathSciNetGoogle Scholar
  213. 213.
    Wang, X., Tang, X.: Hallucinating face by eigentransformation. IEEE Trans. Syst. Man Cybern. 35(3), 425–434 (2005)Google Scholar
  214. 214.
    Wang, Q., Tang, X., Shum, H.: Patch based blind image super-resolution. In: Proceedings of 10th International Conference on Computer Vision, vol. 1, pp. 709–716 (2005).Google Scholar
  215. 215.
    Woods, N.A., Galatsanos, N.P.: Non-stationary approximate Bayesian super-resolution using a hierarchical prior model. Proceedings of IEEE International Conference on Image Processing, Italy 1, 37–40 (2005)Google Scholar
  216. 216.
    Ye, G., Pickering, M., Frater, M., Arnold, J.: A robust approach to super-resolution sprite generation. Proceedings of IEEE International Conference on Image Processing, Italy 1, 897–900 (2005)Google Scholar
  217. 217.
    Zhang, D., Li, H., Du, M.: Fast MAP-based multiframe super-resolution image reconstruction. Image Vis. Comput. 23, 671–679 (2005)Google Scholar
  218. 218.
    Zibetti, M.V.W., Mayer, J.: Simultaneous super-resolution for video sequences. Proceedings of IEEE International Conference on Image Processing, Italy 1, 877–880 (2005)Google Scholar
  219. 219.
    Baboulaz, L., Dragotti, P.L.: Distributed acquisition and image super-resolution based on continuous moments from samples. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 3309–3312 (2006).Google Scholar
  220. 220.
    Begin, I., Ferrie, F.P.: Comparison of super-resolution algorithms using image quality measures. In: Proceedings of 3rd Canadian Conference on Computer and Robot Vision, Canada, p. 72 (2006).Google Scholar
  221. 221.
    Bose, N.K., Ng, M.K., Yau, A.C.: A fast algorithm for image super-resolution from blurred observations. EURASIP J. Adv. Signal Process. 35726, 14 (2006)Google Scholar
  222. 222.
    Callic, G.M., Llopis, R.P., Lpez, S., Lopez, J.F., Nunez, A., Sethuraman, R., Sarmiento, R.: Low-cost super-resolution algorithms implementation over a HW/SW video compression platform. EURASIP J. Adv. Signal Process. 84614, 29 (2006)Google Scholar
  223. 223.
    Choi, B., Ra, J.B.: Region-based super-resolution using multiple blurred and noisy under-sampled images. Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Toulouse 2, 609–612 (2006)Google Scholar
  224. 224.
    Chung, J., Haber, E., Nagy, J.: Numerical methods for coupled super-resolution. Inverse Probl. 22(4), 1261–1272 (2006)MATHMathSciNetGoogle Scholar
  225. 225.
    Costa, G.H., Bermudez, J.C.M.: On the design of the LMS algorithm for robustness to outliers in super-resolution video reconstruction. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1737–1740 (2006).Google Scholar
  226. 226.
    Farsiu, S., Elad, M., Milanfar, P.: A practical approach to super-resolution. In: Proceedings of SPIE: Visual Communications and Image Processing, USA (2006).Google Scholar
  227. 227.
    Farsiu, S., Elad, M., Milanfar, P.: Multiframe demosaicing and super-resolution of color images. IEEE Trans. Image Process. 15(1), 141–159 (2006)Google Scholar
  228. 228.
    Farsiu, S., Elad, M., Milanfar, P.: Video-to-video dynamic super-resolution for grayscale and color sequences. EURASIP J. Appl. Signal Process. 61859, 15 (2006)Google Scholar
  229. 229.
    Gunturk, B.K., Gevrekci, M.: High-resolution image reconstruction from multiple differently exposed images. Signal Process. Lett. 13(4), 197–200 (2006)Google Scholar
  230. 230.
    He, H., Kondi, L.P.: An image super-resolution algorithm for different error levels per frame. IEEE Trans. Image Process. 15(3), 592–603 (2006)Google Scholar
  231. 231.
    He, Y., Yap, K.H., Chen, L., Chau, L.P.: Blind super-resolution image reconstruction using a maximum a posteriori estimation. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1729–1732 (2006).Google Scholar
  232. 232.
    Huang, Y., Long, Y.: Super-resolution using neural networks based on the optimal recovery theory. In: Proceedings of IEEE Signal Processing Society Workshop on Machine Learning for Signal Processing, USA, pp. 465–470 (2006).Google Scholar
  233. 233.
    Huang, Y., Long, Y.: Super-resolution using neural networks based on the optimal recovery theory. J. Comput. Electron. 5, 275–281 (2006)Google Scholar
  234. 234.
    Humblot, F., Muhammad-Djafari, A.: Super-resolution using hidden Markov model and Bayesian detection estimation framework. EURASIP J. Adv. Signal Process. 36971, 16 (2006)Google Scholar
  235. 235.
    Jia, K., Gong, S.: Hallucinating multiple occluded face images of different resolutions. Pattern Recognit. Lett. 27(15), 1768–1775 (2006)Google Scholar
  236. 236.
    Jia, K., Gong, S.: Multi-resolution patch tensor for facial expression hallucination. In: Proceedings of IEEE International Conference on Pattern Recognition, USA, pp. 395–402 (2006).Google Scholar
  237. 237.
    Jiji, C.V., Chaudhuri, S.: Single-frame image super-resolution through contourlet learning. EURASIP J. Adv. Signal Process. 73767, 11 (2006)Google Scholar
  238. 238.
    Joshi, M.V., Chaudhuri, S.: Simultaneous estimation of super-resolved depth map and intensity field using photometric cue. Comput. Vis. Image Underst. 101(1), 31–44 (2006)Google Scholar
  239. 239.
    Kennedy, J.A., Israel, O., Frenkel, A., Bar-Shalom, R., Azhari, H.: Super-resolution in PET imaging. IEEE Trans. Med. Imaging 25(2), 137–148 (2006)Google Scholar
  240. 240.
    Kondo, S., Toma, T.: Video coding with super-resolution post-processing. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 3141–3144 (2006).Google Scholar
  241. 241.
    Kong, D., Han, M., Xu, W., Tao, H., Gong, Y.: A conditional random field model for video super-resolution. In: Proceedings of IEEE International Conference on Pattern Recognition, China (2006).Google Scholar
  242. 242.
    Kramer, P., Hadar, O., Benois-Pineau, J., Domenger, J.P.: Use of motion information in super-resolution mosaicing. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 357–360 (2006).Google Scholar
  243. 243.
    Lerotic, M., Yang, G.Z.: The use of super-resolution in robotic assisted minimally invasive surgery. In: Medical Image Computing and Computer-Assisted Intervention, pp. 462–469 (2006).Google Scholar
  244. 244.
    Li, X.: Super-resolution for synthetic zooming. EURASIP J. Adv. Signal Process. 58195, 12 (2006)Google Scholar
  245. 245.
    Lian, H.: Variational local structure estimation for image super-resolution. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1721–1724 (2006).Google Scholar
  246. 246.
    Lv, J., Hao, P.: In-focus imaging by mosaicking and super-resolution. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 2689–2692 (2006).Google Scholar
  247. 247.
    Molina, R., Vegab, M., Mateos, J., Katsaggelos, A.K.: Parameter estimation in Bayesian reconstruction of multispectral images using super resolution techniques. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1749–1752 (2006).Google Scholar
  248. 248.
    Mudenagudi, U., Singla, R., Kalra, P., Banerjee, S.: Super-resolution using graph-cut. In: Proceedings of 7th Asian Conference on Computer Vision, India, pp. 385–394 (2006).Google Scholar
  249. 249.
    Or, S.H., Yu, Y.K., Wong, K.H., Chang, M.M.Y.: Resolution improvement from stereo images with 3d pose differences. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1733–1736 (2006).Google Scholar
  250. 250.
    Pan, G., Han, S., Wu, Z., Wang, Y. : Super-resolution of 3d face. In: Proceedings of 9th European Conference on Computer Vision, vol. 3952, pp. 389–401 (2006).Google Scholar
  251. 251.
    Patanavijit, V., Jitapunkul, S.: An iterative super-resolution reconstruction of image sequences using affine block-based registration. In: ACM International Symposium on Multimedia Over Wireless, Canada (2006).Google Scholar
  252. 252.
    Patanavijit, V., Jitapunkul, S.: An iterative super-resolution reconstruction of image sequences using fast affine block-based registration with BTV regularization. In: Proceedings of IEEE Asia Pacific Conference on Circuits and Systems, pp. 1717–1720 (2006).Google Scholar
  253. 253.
    Pickup, L.C., Capel, D.P., Roberts, S.J., Zisserman, A.: Bayesian image super-resolution, continued. Neural Inf. Process. Syst. 19, 1089–1096 (2006)Google Scholar
  254. 254.
    Rajaram, S., Gupta, M.D., Petrovic, N., Huang, T.S.: Learning based nonparametric image super-resolution. EURASIP J. Adv. Signal Process. 51306, 11 (2006)Google Scholar
  255. 255.
    Reibman, A.R., Bell, R.M., Gray, S.: Quality assessment for super-resolution image enhancement. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 2017–2020 (2006).Google Scholar
  256. 256.
    Robinson, D., Milanfar, P.: Statistical performance analysis of super-resolution. IEEE Trans. Image Process. 15(6), 1413–1428 (2006)Google Scholar
  257. 257.
    Sankaran, H.E., Gotchev, A., Egiazarian, K.: Efficient super-resolution reconstruction for translational motion using a near least squares resampling method. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1745–1748 (2006).Google Scholar
  258. 258.
    Sroubek, F., Flusser, J.: Resolution enhancement via probabilistic deconvolution of multiple degraded images. Pattern Recognit. Lett. 27, 287–293 (2006)Google Scholar
  259. 259.
    Stephenson, T.A., Chen, T.: Adaptive markov random fields for example-based super-resolution of faces. EURASIP J. Adv. Signal Process. 31062, 11 (2006)Google Scholar
  260. 260.
    Suresh, K.V., Rajagopalan, A.N.: Super-resolution in the presence of space-variant blur. In: Proceedings of IEEE International Conference on Pattern Recognition, USA, pp. 770–773 (2006).Google Scholar
  261. 261.
    Takeda, H.: Kernel regression for image processing and reconstruction. PhD thesis, University Of California, Santa Cruz (2006).Google Scholar
  262. 262.
    Tai, Y.-W., Tong, W.-S., Tang, C.-K.: Perceptually-inspired and edge-directed color image super-resolution. Proceedings of the International Conference on Computer Vision and Pattern Recognition 2, 1948–1955 (2006)Google Scholar
  263. 263.
    Tuan, P.Q.: Spatiotonal adaptivity in super-resolution of under-sampled image sequences. PhD thesis, Technische Universiteit Delft (2006).Google Scholar
  264. 264.
    van Eekeren, A.W.M., Schutte, K., Dijk, J., de Lange, D., van Vliet, L.: Super-resolution on moving objects and background. In: Proceedings of the IEEE International Conference on Image Processing, USA, pp. 2709–2712 (2006).Google Scholar
  265. 265.
    van Ouwerkerk, J.D.: Image super-resolution survey. Image Video Comput. 24(10), 1039–1052 (2006)Google Scholar
  266. 266.
    Vandewalle, P.: Super-resolution from unregistered aliased images. PhD thesis, Ecole Polytechnique Federale de Lauasnne (2006).Google Scholar
  267. 267.
    Vandewalle, P., Susstrunk, S., Vetterli, M.: A frequency domain approach to registration of aliased images with application to super-resolution. EURASIP J. Adv. Signal Process. 71459, 14 (2006)Google Scholar
  268. 268.
    Wang, C., Xue, P., Lin, W.: Improved super-resolution reconstruction from video. IEEE Trans. Circuits Syst. Video Technol. 16(11), 1411–1422 (2006)Google Scholar
  269. 269.
    Wu, J., Trivedi, M.M.: A regression model in TensorPCA subspace for face image super-resolution reconstruction. In: Proceedings of IEEE International Conference on Pattern Recognition, China (2006).Google Scholar
  270. 270.
    Yu, J., Bhanu, B.: Super-resolution restoration of facial images in video. In: Proceedings of IEEE 18th International Conference on Pattern Recognition, vol. 4, pp. 342–345 (2006).Google Scholar
  271. 271.
    Zhang, S.: Application of super-resolution image reconstruction to digital holography. EURASIP J. Adv. Signal Process. 90358, 7 (2006)Google Scholar
  272. 272.
    Zibetti, M.V.W., Mayer, J.: Outlier robust and edge-preserving simultaneous super-resolution. Proceedings of IEEE International Conference on Image Processing, USA 1, 1741–17441 (2006)Google Scholar
  273. 273.
    Agrawal, A., Raskar, R.: Resolving objects at higher resolution from a single motion-blurred image. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA (2007).Google Scholar
  274. 274.
    Baboulaz, L., Dragotti, P.L.: Local feature extraction for image super-resolution. In: Proceedings of IEEE International Conference on Image Processing, USA, p. 401 (2007).Google Scholar
  275. 275.
    Begin, I., Ferrie, F.P.: PSF recovery from examples for blind super-resolution. Proceedings of IEEE International Conference on Image Processing, USA 5, 421–424 (2007)Google Scholar
  276. 276.
    Chakrabarti, A., Rajagopalan, A., Chellappa, R.: Super-resolution of face images using kernel-based prior. IEEE Trans. Multimed. 9(4), 888–892 (2007)Google Scholar
  277. 277.
    Chantas, G.K., Galatsanos, N.P., Woods, N.: Super-resolution based on fast registration and maximum a posteriori reconstruction. IEEE Trans. Image Process. 16(7), 1821–1830 (2007)MathSciNetGoogle Scholar
  278. 278.
    Costa, G.H., Bermudez, J.C.M.: Statistical analysis of the LMS algorithm applied to super-resolution image reconstruction. IEEE Trans. Signal Process. 55(5), 2084–2095 (2007)MathSciNetGoogle Scholar
  279. 279.
    Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y.: Soft edge smoothness prior for alpha channel super resolution. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, USA (2007).Google Scholar
  280. 280.
    Dai, S., Han, M., Wu, Y., Gong, Y.: Bilateral back-projection for single image super resolution. In: Proceedings of IEEE International Conference on Multimedia and Expo, USA, pp. 1039–1042 (2007).Google Scholar
  281. 281.
    Datsenko, D., Elad, M.: Example-based single document image super-resolution: a global map approach with outlier rejection. J. Multidimens. Syst. Signal Process. 2, 103–121 (2007)MathSciNetGoogle Scholar
  282. 282.
    Debes, C., Wedi, T., Brown, C.L., Zoubir, A.M.: Motion estimation using a joint optimisation of the motion vector field and a super-resolution reference image. Proceedings of IEEE International Conference on Image Processing, USA 2, 479–500 (2007)Google Scholar
  283. 283.
    Ebrahimi, M., Vrscay, E.R.: Solving the inverse problem of image zooming using self examples. In: International Conference on Image Analysis and Recognition, pp. 117–130 (2007).Google Scholar
  284. 284.
    Eekeren, A.W.M.V., Schutte, K., Oudegeest, O.R., van Vliet, L.J.: Performance evaluation of super-resolution reconstruction methods on real-world data. EURASIP J. Adv. Signal Process. 43953, 11 (2007)Google Scholar
  285. 285.
    Elad, M., Datsenko, D.: Example-based regularization deployed to super-resolution reconstruction of a single image. Comput. J. 18(2), 103–121 (2007)MATHMathSciNetGoogle Scholar
  286. 286.
    Fan, W., Yeung, D.Y.: Image hallucination using neighbor embedding over visual primitive manifolds. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA 2, 1–7 (2007)Google Scholar
  287. 287.
    Fattal, R.: Image upsampling via imposed edge statistics. In: ACM Special Interest Group on Computer Graphics and Interactive Techniques, USA, vol. 26, no. 3, article 95, 8 pages (2007).Google Scholar
  288. 288.
    Fransens, R., Strecha, C., Gool, L.V.: Optical flow based super-resolution: a probabilistic approach. Comput. Vis. Image Underst. 106(1), 106–115 (2007)Google Scholar
  289. 289.
    Gevrekci, M., Gunturk, B.K.: Super resolution under photometric diversity of images. EURASIP J. Adv. Signal Process. 36076, 12 (2007)Google Scholar
  290. 290.
    Hardie, R.C.: A fast image super-resolution algorithm using an adaptive Wiener filter. IEEE Trans. Image Process. 16, 2953–2964 (2007)MathSciNetGoogle Scholar
  291. 291.
    He, Y., Yap, K.H., Chen, L., Chau, L.P.: A nonlinear least square technique for simultaneous image registration and super-resolution. IEEE Trans. Image Process. 16(11), 2830–2841 (2007)MathSciNetGoogle Scholar
  292. 292.
    Jiji, C.V., Chaudhuri, S., Chatterjee, P.: Single frame image super-resolution: should we process locally or globally? Multidimens. Syst. Signal Process. 18, 123–152 (2007)MATHMathSciNetGoogle Scholar
  293. 293.
    Katartzis, A., Petrou, M.: Robust Bayesian estimation and normalized convolution for super-resolution image reconstruction. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA (2007).Google Scholar
  294. 294.
    Katsaggelos, A.K., Molina, R., Mateos, J.: Super Resolution of Images and Video. Morgan & Claypool Publishers, USA (2007)Google Scholar
  295. 295.
    Keller, S.H., Lauze, F., Nielsen, M.: Motion compensated video super resolution. In: Sgallari, F., Murli, A., Paragios, N. (eds.) SSVM LNCS, vol. 4485, pp. 801–812 (2007).Google Scholar
  296. 296.
    Kimura, K., Nagai, T., Nagayoshi, H., Sako, H.: Simultaneous estimation of super-resolved image and 3d information using multiple stereo-pair images. Proceedings of IEEE International Conference on Image Processing, USA 5, 417–420 (2007)Google Scholar
  297. 297.
    Kopf, J., Cohen, M., Lischinski, D., Uyttendaele, M.: Joint bilateral upsampling. ACM Trans. Graph. 26(3) (2007)Google Scholar
  298. 298.
    Lin, F., Denman, S., Chandran, V., Sridharan, S.: Automatic tracking, super-resolution and recognition of human faces from surveillance video. In: Proceedings of IAPR Conference on Machine Vision Applications, Japan, pp. 37–40 (2007).Google Scholar
  299. 299.
    Lin, F., Fookes, C., Chandran, V., Sridharan, S.: Super-resolved faces for improved face recognition from surveillance video. In: Lee, S.W., Li, S.Z. (eds.) ICB. Lecture Notes in Computer Science, vol. 4642, pp. 1–10 (2007).Google Scholar
  300. 300.
    Lin, Z., He, J., Tang, X., Tang, C.K.: Limits of learning-based superresolution algorithms. In: Proceedings of IEEE International Conference on Computer Vision, Brazil (2007).Google Scholar
  301. 301.
    Liu, C., Shum, H.Y., Freeman, W.T.: Face hallucination: theory and practice. Int. J. Comput. Vis. 75(1), 115–134 (2007)Google Scholar
  302. 302.
    Lui, S., Wu, J., Mao, H., Lien, J.J.: Learning-based super-resolution system using single facial image and multi-resolution wavelet synthesis. Proceedings of Asian Conference on Computer Vision, Japan 4884, 96–105 (2007)Google Scholar
  303. 303.
    Martins, A.L.D., Homem, M.R.P., Mascarenhas, N.D.A.: Super-resolution image reconstruction using the ICM algorithm. Proceedings of IEEE International Conference on Image Processing, USA 4, 205–208 (2007)Google Scholar
  304. 304.
    Miravet, C., Rodriguez, F.B.: A two step neural network based algorithm for fast image super-resolution. Image Vis. Comput. 25, 1473–1499 (2007)Google Scholar
  305. 305.
    Mudenagudi, U., Gupta, A., Goel, L., Kushal, A., Kalra, P., Banerjee, S.: Super-resolution of images of 3d scenecs. In: Proceedings of the 8th Asian conference on Computer Vision, Japan, vol. 2, pp. 85–95 (2007).Google Scholar
  306. 306.
    Narayanan, B., Hardie, R.C., Barner, K.E., Shao, M.: A computationally efficient super-resolution algorithm for video processing using partition filters. IEEE Trans. Circuits Syst. Video Technol. 17(5), 621–634 (2007)Google Scholar
  307. 307.
    Ng, M.K., Shen, H., Lam, E.Y., Zhang, L.: A total variation regularization based super-resolution reconstruction algorithm for digital video. EURASIP J. Adv. Signal Process. 74585, 16 (2007)Google Scholar
  308. 308.
    Patanavijit, V., Tae-O-Sot, S., Jitapunkul, S.: A robust iterative super-resolution reconstruction of image sequences using a Lorentzian Bayesian approach with fast affine block-based registration. Proceedings of IEEE International Conference on Image Processing, USA 5, 393–396 (2007)Google Scholar
  309. 309.
    Patanavijit, V., Jitapunkul, S.: A Lorentzian stochastic estimation for a robust iterative multiframe super-resolution reconstruction with Lorentzian-Tikhonov regularization. EURASIP J. Adv. Signal Process. 34821, 21 (2007)Google Scholar
  310. 310.
    Park, S.W., Savvides, M.: Breaking the limitation of manifold analysis for super-resolution of facial images. IEEE Int. Conf. Acoust. Speech. Signal Process. 1, 573–576 (2007)Google Scholar
  311. 311.
    Park, S.W., Savvides, M.: Robust super-resolution of face images by iterative compensating neighborhood relationships. In: Proceedings of the Biometrics Symposium, USA (2007).Google Scholar
  312. 312.
    Pickup, L.C.: Machine learning in multi-frame image super-resolution. PhD thesis, University of Oxford (2007).Google Scholar
  313. 313.
    Pickup, L.C., Capel, D.P., Roberts, S.J., Zisserman, A.: Bayesian methods for image super-resolution. Comput. J. 52, 101–113 (2007)Google Scholar
  314. 314.
    Pickup, L.C., Capel, D.P., Roberts, S.J., Zisserman, A.: Overcoming registration uncertainty in image super-resolution: maximize or marginalize? EURASIP J. Adv. Signal Process. 23565, 14 (2007)Google Scholar
  315. 315.
    Robinson, D., Farsiu, S., Milanfar, P.: Optimal registration of aliased images using variable projection with applications to super-resolution. Comput. J. 52(1), 31–42 (2007)Google Scholar
  316. 316.
    Shen, H.F., Zhang, L.P., Huang, B., Li, P.X.: A MAP approach for joint motion estimation, segmentation, and super-resolution. IEEE Trans. Image Process. 16(2), 479–490 (2007)MathSciNetGoogle Scholar
  317. 317.
    Suresh, K.V., Rajagopalan, A.N.: Super-resolution using motion and defocus cues. Proceedings of IEEE International Conference on Image Processing, USA 4, 213–216 (2007)Google Scholar
  318. 318.
    Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16(2), 349–366 (2007)MathSciNetGoogle Scholar
  319. 319.
    Thillou, C.M., Mirmehdi, M.: An introduction to super-resolution text. Adv. Pattern Recognit. 305–327 (2007)Google Scholar
  320. 320.
    Tong, C.S., Leung, K.T.: Super-resolution reconstruction based on linear interpolation of wavelet coefficients. Multidimens. Syst. Signal Process. 18, 153–171 (2007)MATHMathSciNetGoogle Scholar
  321. 321.
    Vandewalle, P., Sbaiz, L., Vandewalle, J., Vetterli, M.: Super-resolution from unregistered and totally aliased signals using subspace methods. IEEE Trans. Image Process. 55(7), 3687–3703 (2007)Google Scholar
  322. 322.
    Wheeler, F., Liu, X., Tu, P.: Multi-Frame Super-Resolution for Face Recognition. In: Proceeding of IEEE Conference on Biometrics: Theory, Applications and Systems, USA, pp. 27–29 (2007).Google Scholar
  323. 323.
    Yan, H., Liu, J., Sun, J., Sun, X.: ICA based super-resolution face hallucination and recognition. In: Proceedings of the 4th International Symposium on Neural Networks, vol. 2, pp. 1065–1071 (2007).Google Scholar
  324. 324.
    Yang, Q.X., Yang, R.G., Davis, J., Nister, D.: Spatial-depth super resolution for range images. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA (2007)Google Scholar
  325. 325.
    Yao, Y., Abidi, B., Kalka, N.D., Schimid, N., Adibi, M.: Super-resolution for high magnification face images. In: Proceedings of the SPIE Defense and Security Symposium, Biometric Technology for Human Identification (2007).Google Scholar
  326. 326.
    Yu, J., Bhanu, B., Xu, Y., Roy-Chowdhury, A.K.: Super-resolved facial texture under changing pose and illumination. Proceedings of IEEE International Conference on Image Processing, USA 3, 553–556 (2007)Google Scholar
  327. 327.
    Zhang, S.T., Lu, Y.H.: Image resolution enhancement using a Hopfield neural network. In: Proceedings of IEEE International Conference on Information Technology: New Generations (2007).Google Scholar
  328. 328.
    Zhuang, Y., Zhang, J., Wu, F.: Hallucinating faces: LPH super-resolution and neighbor reconstruction for residue compensation. Pattern Recognit. 40(11), 3178–3194 (2007)MATHGoogle Scholar
  329. 329.
    Zibetti, M.V.W., Mayer, J.: A robust and computationally efficient simultaneous super-resolution scheme for image sequences. IEEE Trans. Circuits Syst. Video Technol. 17(10), 1288–1300 (2007)Google Scholar
  330. 330.
    Ahmed, S., Rao, N.I., Ghafoor, A., Sheri, A.M.: Direct hallucination: direct locality preserving projections (DLPP) for face super-resolution. In: Proceedings of IEEE International Conference on Advanced Computer Theory and Engineering, Thailand, pp. 105–110 (2008).Google Scholar
  331. 331.
    Akgun, T.: Resolution enhancement using image statistics and multiple aliased observations. PhD thesis, Georgia Institute of Technology (2008).Google Scholar
  332. 332.
    Babacan, S.D., Molina, R., Katsaggelos, A.K.: Total variation super resolution using a variational approach. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 641–644 (2008).Google Scholar
  333. 333.
    Brandi, F., de Queiroz, R.L., Mukherjee, D.: Super-resolution of video using key frames and motion estimation. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 321–324 (2008).Google Scholar
  334. 334.
    Callico, G.M., Lopez, S., Sosa, O., Lopez, J.F., Sarmiento, R.: Analysis of fast block matching motion estimation algorithms for video super-resolution systems. IEEE Trans. Consum. Electron. 54(3), 1430–1438 (2008)Google Scholar
  335. 335.
    Costa, G.H., Bermudez, J.C.M.: Informed choice of the LMS parameters in super-resolution video reconstruction applications. IEEE Trans. Signal Process. 56(2), 555–564 (2008)MathSciNetGoogle Scholar
  336. 336.
    Cristobal, G., Gil, E., Sroubek, F., Flusser, J., Miravet, C., Rodrguez, F.B.: Superresolution imaging: a survey of current techniques. In: Advanced Signal Processing Algorithms, Architectures, and Implementations, vol. XVIII, pp. 70740C–70740C18 (2008).Google Scholar
  337. 337.
    Eekeren, A.W.M.V., Schutte, K., Vliet, L.J.V.: Super-resolution on small moving objects. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1248–1251 (2008).Google Scholar
  338. 338.
    El-Yamany, N.A., Papamichalis, P.E.: Using bounded-influence m-estimators in multi-frame super-resolution reconstruction: a comparative study. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 337–340 (2008).Google Scholar
  339. 339.
    Hennings-Yeomans, P.H., Baker, S., Kumar, B.: Recognition of low-resolution faces using multiple still images and multiple cameras. In: IEEE International Conference on Biometrics: Theory, Applications and Systems, USA, pp. 1–6 (2008).Google Scholar
  340. 340.
    Hennings-Yeomans, P.H., Baker, S., Kumar, B.: Simultaneous super-resolution and feature extraction for recognition of low-resolution faces. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA (2008).Google Scholar
  341. 341.
    Jia, K., Gong, S.: Generalized face super-resolution. IEEE Trans. Image Process. 17(6), 873–886 (2008)MathSciNetGoogle Scholar
  342. 342.
    Jiang, F., Wang, Y.: Facial aging simulation based on super-resolution in tensor space. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1648–1651 (2008).Google Scholar
  343. 343.
    Kim, K.I., Kwon, Y.: Example-based learning for single-image super-resolution. In: Proceedings of the DAGM symposium on Pattern Recognition, Germany (2008).Google Scholar
  344. 344.
    Kumar, B.G.V., Aravind, R.: Face hallucination using OLPP and kernel ridge regression. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 353–356 (2008).Google Scholar
  345. 345.
    Li, B., Chang, H., Shan, S., Chen, X., Gao, W.: Hallucinating facial images and features. In: Proceedings of IEEE International Conference on Pattern Recognition, USA (2008).Google Scholar
  346. 346.
    Li, F., Jia, X., Fraser, D.: Universal HMT based super resolution for remote sensing images. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 333–336 (2008).Google Scholar
  347. 347.
    Li, F., Yu, J., Chai, J.: A hybrid camera for motion deblurring and depth map super-resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA (2008).Google Scholar
  348. 348.
    Li, L., Wang, Y.D.: Face super-resolution using a hybrid model. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1153–1157 (2008).Google Scholar
  349. 349.
    Lin, Z., He, J., Tang, X., Tang, C.K.: Limits of learning-based super-resolution algorithms. Int. J. Comput. Vis. 80(3), 406–420 (2008)Google Scholar
  350. 350.
    Liu, J., Qiao, J., Wang, X., Li, Y.: Face hallucination based on independent component analysis. In: Proceedings of IEEE International Symposium on Circuits and Systems, USA, pp. 3242–3245 (2008).Google Scholar
  351. 351.
    Liu, H.Y., Zhang, Y.S., Ji, S.: Study on the methods of super-resolution image reconstruction. In: Proceedings of International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, China, vol. XXXVII, no. B2 (2008).Google Scholar
  352. 352.
    Malczewski, K., Stasinski, R.: Toeplitz-based iterative image fusion scheme for MRI. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 341–344 (2008).Google Scholar
  353. 353.
    Molina, R., Vega, M., Mateos, J., Katsaggelos, A.: Variational posterior distribution approximation in Bayesian super-resolution reconstruction of multispectral images. Appl. Comput. Harmon. Anal. 24(2), 251–267 (2008)MATHMathSciNetGoogle Scholar
  354. 354.
    Marquina, A., Osher, S.: Image super-resolution by TV-regularization and Bregman iteration. J. Sci. Comput. 37(3), 367–382 (2008)MATHMathSciNetGoogle Scholar
  355. 355.
    Pan, G., Han, S., Wu, Z.: Hallucinating 3D facial shapes. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA (2008).Google Scholar
  356. 356.
    Park, J.S., Lee, S.W.: An example-based face hallucination method for single-frame, low-resolution facial images. IEEE Trans. Image Process. 17(10), 1806–1816 (2008)MathSciNetGoogle Scholar
  357. 357.
    Patil, V.H., Bormane, D.S., Pawar, V.S.: Super-resolution using neural network. In: Proceedings of IEEE 2nd Asia International Conference on Modeling and Simulation, Malaysia (2008).Google Scholar
  358. 358.
    Peyre, G., Bougleux, S., Cohen, L.: Non-local regularization of inverse problems. In: Proceeding of European Conference on Computer Vision, France (2008).Google Scholar
  359. 359.
    Prendergast, R.S., Nguyen, T.Q.: A block-based super-resolution for video sequences. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1240–1243 (2008).Google Scholar
  360. 360.
    Robinson, M.D., Farsiu, S., Lo, J.Y., Toth, C.A.: Efficient restoration and enhancement of super-resolved X-ray images. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 629–632 (2008).Google Scholar
  361. 361.
    Sanguansat, P.: Face hallucination using bilateral-projection-based two-dimensional principal component analysis. In: Proceedings of IEEE International Conference on Computer and Electrical Engineering, Thailand, pp. 876–880 (2008).Google Scholar
  362. 362.
    Shan, Q., Li, Z., Jia, J., Tang, C.K.: Fast image/video upsampling. In: Proceedings of ACM Annual Conference Series SIGGRAPH, Computer Graphics, USA (2008).Google Scholar
  363. 363.
    Shao, W.Z., Wei, Z.H.: Edge-and-corner preserving regularization for image interpolation and reconstruction. Image Vis. Comput. 26, 1591–1606 (2008)Google Scholar
  364. 364.
    Shimizu, M., Yoshimura, S., Tanaka, M., Okutomi, M.: Super-resolution from image sequence under influence of hot-air optical turbulence. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA (2008).Google Scholar
  365. 365.
    Simonyan, K., Grishin, S., Vatolin, D., Popov, D.: Fast video super-resolution via classification. In: Proceedings of IEEE International Conference on Image Processing, USA, pp 349–352 (2008).Google Scholar
  366. 366.
    Sroubek, F., Cristobal, G., Flusser, J.: Simultaneous super-resolution and blind deconvolution. J. Phys. Conf. Ser. 124, 1–8 (2008)Google Scholar
  367. 367.
    Su, H., Tang, L., Tretter, D., Zhou, J.: A practical and adaptive framework for super-resolution. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1236–1239 (2008).Google Scholar
  368. 368.
    Sun, J., Sun, J., Xx, Z.B., Shum, H.Y.: Image super-resolution using gradient profile prior. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, USA (2008).Google Scholar
  369. 369.
    Tanaka, M., Yaguchi, Y., Okutomi, M.: Robust and accurate estimation of multiple motions for whole-image super-resolution. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 649–652 (2008).Google Scholar
  370. 370.
    Takeshima, H., Kaneko, T.: Image registration using subpixel-shifted images for super-resolution. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 2404–2407 (2008).Google Scholar
  371. 371.
    Vandewalle, P., Baboulaz, L., Dragotti, P.L., Vetterli, M.: Subspace-based methods for image registration and super-resolution. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 645–648 (2008).Google Scholar
  372. 372.
    Wang, Y., Fevig, R., Schultz, R.R.: Super-resolution mosaicking of UAV surveillance video. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 345–348 (2008).Google Scholar
  373. 373.
    Wang, X., Liu, J., Qiao, J., Chu, J., Li, Y.: Face hallucination based on CSGT and PCA. In: Advances in Neural Networks. Lecture Notes in Computer Science, vol. 5264, pp. 410–418 (2008).Google Scholar
  374. 374.
    Wang, Z., Miao, Z.: Feature-based super-resolution for face recognition. In: Proceedings of IEEE International Conference on Multimedia and Expo, Germany, pp. 1569–1572 (2008).Google Scholar
  375. 375.
    Wang, Z., Miao, Z., Zhang, C.: Extraction of high-resolution face image from low-resolution and variant illumination video Sequences. In: Proceedings of International Congress on Image and Signal Processing, China (2008).Google Scholar
  376. 376.
    Xiao, C.B., Jing, Y., Yi, X.: A high-efficiency super-resolution reconstruction algorithm from image/video sequences. In: Proceedings of IEEE International Conference on Signal-Image Technologies and Internet-based System, China, pp. 573–580 (2008).Google Scholar
  377. 377.
    Xiong, Z., Sun, X., Wu, F.: Super-resolution for low quality thumbnail images. In: Proceedings of IEEE International Conference on Multimediam and Expo, Germany, pp. 181–184 (2008).Google Scholar
  378. 378.
    Yamany, N.A., Papamichalis, P.E.: Robust color image super-resolution: an adaptive M-estimation framework. EURASIP J. Image Video Process. 763254, 12 (2008)Google Scholar
  379. 379.
    Yang, H., Gao, J., Wu, Z.: Blur identification and image super-resolution reconstruction using an approach similar to variable projection. IEEE Signal Process. Lett. 15, 289–292 (2008)Google Scholar
  380. 380.
    Yang, J., Tang, H., Ma, Y., Huang, T.: Face hallucination via sparse coding. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1264–1267 (2008).Google Scholar
  381. 381.
    Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution as sparse representation of raw image patches. In: Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition, USA (2008).Google Scholar
  382. 382.
    Yu, J., Bhanu, B.: Super-resolution of deformed facial images in video. In: Proceedings of IEEE International Conference on Image Processing, USA, pp. 1160–1163 (2008).Google Scholar
  383. 383.
    Zhang, X., Peng, S., Jiang, J.: An adaptive learning method for face hallucination using locality preserving projections. In: Proceedings of IEEE International Conference on Automatic Face and Gesture Recognition, The Netherlands (2008).Google Scholar
  384. 384.
    Baboulaz, L., Dragotti, P.: Exact feature extraction using finite rate of innovation principles with an application to image super-resolution. IEEE Trans. Image Process. 18(2), 281–298 (2009).Google Scholar
  385. 385.
    Belekos, S.P., Galatsanos, N.P., Babacan, S.D., Katsaggelos, A.K.: Maximum a posteriori super-resolution of compressed video using a new multichannel image prior. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 2797–2800 (2009).Google Scholar
  386. 386.
    Carcenac, M.: A modular neural network for super-resolution of human faces. Appl. Intell. 30(2), 168–186 (2009)Google Scholar
  387. 387.
    Chan, T.M., Zhang, J.P., Pu, J., Huang, H.: Neighbor embedding based super-resolution algorithm through edge detection and feature selection. Pattern Recognit. Lett. 30, 494–502 (2009)Google Scholar
  388. 388.
    Costa, G.H., Bermudez, J.: Registration errors: are they always bad for super-resolution? IEEE Trans. Signal Process. 57(10), 3815–3826 (2009)MathSciNetGoogle Scholar
  389. 389.
    Edeler, T., Ohliger, K., Hussmann, S., Mertins, A.: Super resolution of time-of-flight depth images under consideration of spatially varying noise variance. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1185–1188 (2009).Google Scholar
  390. 390.
    Eekeren, A.W.M.V.: Super-resolution of moving objects in under-sampled image sequences. PhD thesis, Technische Universiteit Delft (2009).Google Scholar
  391. 391.
    Fan, N.: Super-resolution using regularized orthogonal matching Pursuit based on compressed sensing theory in the wavelet domain. In: Proceedings of International Conference on Computer Graphics, Imaging and Visualization, China, pp. 349–354 (2009).Google Scholar
  392. 392.
    Glasner, D., Bagon, S., Irani, M.: Super-resolution from a single image. In: Proceedings of IEEE International Conference on Computer Vision, Japan (2009).Google Scholar
  393. 393.
    Ginesu, G., Dess, T., Atzori, L., Giusto, D.D.: Super-resolution reconstruction of video sequences based on back-projection and motion estimation. In: Proceedings of International Conference on Mobile Multimedia Communications, UK (2009).Google Scholar
  394. 394.
    Guo, K., Yang, X., Zhang, R., Yu, S.: Learning super resolution with global and local constraints. In: Proceedings of IEEE International Conference on Multimedia and Expo, USA, pp. 590–593 (2009).Google Scholar
  395. 395.
    Han, C.C., Tasi, Y.S., Hsieh, C.T., Chou, C.H.: The interpolation of face/license-plate images using pyramid-based hallucination. In: Proceedings of International Carnahan Conference on Security Technology, Switzerland (2009).Google Scholar
  396. 396.
    He, Y., Yap, K.-H., Chen, L., Chau, L.-P.: A soft MAP framework for blind super-resolution image reconstruction. Image Vis. Comput. 27, 364–373 (2009)Google Scholar
  397. 397.
    Hsu, C.C., Lin, C.W., Hsu, C.T., Liao, H.Y.M.: Cooperative face hallucination using multiple references. In: Proceedings of IEEE International Conference on Multimedia and Expo, USA (2009).Google Scholar
  398. 398.
    Hung, K.W., Siu, W.C.: New motion compensation model via frequency classification for fast video super-resolution. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1193–1196 (2009).Google Scholar
  399. 399.
    Ito, S., Yamada, Y.: Improvement of spatial resolution in magnetic resonance imaging using quadratic phase modulation. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 2497–2500 (2009).Google Scholar
  400. 400.
    Ji, H., Fermuller, C.: Robust wavelet-based super-resolution reconstruction: theory and algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 31(4), 649–660 (2009)Google Scholar
  401. 401.
    Jun, Z., Xia, D., Tiangang, D.: A non-linear warping method for face hallucination based-on subdivision mesh. In: Proceedings of IEEE International Congress on Image and Signal Processing, China (2009).Google Scholar
  402. 402.
    Jung, M., Marquina, A., Vese, L.A.: Multiframe image restoration in the presence of noisy blur kernel. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1529–1532 (2009).Google Scholar
  403. 403.
    Kim, C., Choi, K., Beom Ra, J.: Improvement on learning-based super-resolution by adopting residual information and patch reliability. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1197–1200 (2009).Google Scholar
  404. 404.
    Li, B., Chang, H.: Aligning coupled manifolds for face hallucination. IEEE Signal Process. Lett. 16(11), 957–960 (2009)Google Scholar
  405. 405.
    Li, B., Chang, H., Shan, S., Chen, X.: Locality preserving constraints for super-resolution with neighbor embedding. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1189–1192 (2009).Google Scholar
  406. 406.
    Li, X., Lam, K.M., Qiu, G., Shen, L., Wang, S.: Example-based image super-resolution with class-specific predictors. J. Vis. Commun. Image Represent. 20(5), 312–322 (2009)Google Scholar
  407. 407.
    Dai, S., Han, M., Xu, W., Wu, Y., Gong, Y., Katsaggelos, A.K.: SoftCuts: a soft edge smoothness prior for color image super-resolution. IEEE Trans. Image Process. 18(5), 969–981 (2009)MathSciNetGoogle Scholar
  408. 408.
    Hu, Y., Shen, T., Lam, K.M.: Region-based Eigentransformation for face image hallucination. In: Proceedings of IEEE International Symposium on Circuits and Systems, Taiwan, pp. 1421–1424 (2009).Google Scholar
  409. 409.
    Krylov, A.S., Lukin, A.S., Nasonov, A.V.: Edge-preserving nonlinear iterative image resampling method. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 385–388 (2009).Google Scholar
  410. 410.
    Liang, Y., Lai, J.H., Zou, Y.X., Zheng, W.S., Yuen, P.C.: Face hallucination through KPCA. In: Proceedings of IEEE International Congress on Image and Signal Processing, China (2009).Google Scholar
  411. 411.
    Ma, Y.J., Zhang, H., Xue, Y., Zhang, S.: Super-resolution image reconstruction based on K-means-Markov network. Proceedings of IEEE International Conference on Natural Computation, China 1, 316–318 (2009)Google Scholar
  412. 412.
    Ma, X., Zhang, J., Qi, C.: Hallucinating faces: global linear modal based super-resolution and position based residue compensation. In: Image Analysis and Processing. Lecture Notes in Computer Science, vol. 5716, pp. 835–843 (2009).Google Scholar
  413. 413.
    Ma, X., Zhang, J., Qi, C.: An example-based two-step face hallucination method through coefficient learning. In: Image Analysis and Recognition. Lecture Notes in Computer Science, vol. 5627, pp. 471–480 (2009).Google Scholar
  414. 414.
    Ma, X., Zhang, J., Qi, C.: Position-based face hallucination method. In: Proceedings of IEEE International Conference on Multimedia and Expo, USA, pp. 290–293 (2009).Google Scholar
  415. 415.
    Mitzel, D., Pock, T., Schoenemann, T., Cremers, D.: Video super- resolution using duality based TV-L1 optical flow. In: DAGM-Symposium, pp. 432–441, (2009).Google Scholar
  416. 416.
    Orieux, F., Rodet, T., Giovannelli, J.-F.: Super-resolution with continuous scan shift. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1169–1172 (2009).Google Scholar
  417. 417.
    Patanavijit, V.: Super-resolution reconstruction and its future research direction. AU J. 12(3), 149–163 (2009)Google Scholar
  418. 418.
    Patel, D., Chaudhuri, S.: Performance analysis for image super-resolution using blur as a cue. In: Proceedings of IEEE International Conference on Advances in Pattern Recognition, India, pp. 73–76 (2009).Google Scholar
  419. 419.
    Protter, M., Elad, M.: Super-resolution with probabilistic motion estimation. IEEE Trans. Image Process. 18(8), 1899–1904 (2009)MathSciNetGoogle Scholar
  420. 420.
    Protter, M., Elad, M., Takeda, H., Milanfar, P.: Generalizing the nonlocal-means to super-resolution reconstruction. IEEE Trans. Image Process. 18(1), 36–51 (2009)MathSciNetGoogle Scholar
  421. 421.
    Sankur, B., Ozdemir, H.: Subjective evaluation of single frame super-resolution algorithms. In: Proceedings of European Signal Processing Conference, Scotland (2009).Google Scholar
  422. 422.
    Schuon, S., Theobalt, C., Davis, J., Thrun, S.: LidarBoost: depth superresolution for ToF 3D shape scanning. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 343–350 (2009).Google Scholar
  423. 423.
    Seong, Y.M., Park, H.: A high-resolution image reconstruction method from low-resolution image sequence. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1181–1184 (2009).Google Scholar
  424. 424.
    Sen, P., Darabi, S.: Compressive image super-resolution. In: Proceedings of 43rd IEEE Asilomar Conference on Signals, Systems and Computers, USA, pp. 1235–1242 (2009).Google Scholar
  425. 425.
    Shao, M., Wang, Y., Wang, Y.: A super-resolution based method to synthesize visual images from near infrared. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 2453–2456 (2009).Google Scholar
  426. 426.
    Shen, H., Li, S.: Hallucinating faces by interpolation and principal component analysis. In: Proceedings of International Symposium on Computational Intelligence and Design, China, pp. 295–298 (2009).Google Scholar
  427. 427.
    Takeda, H., Milanfar, P., Protter, M., Elad, M.: Super-resolution without explicit subpixel motion estimation. IEEE Trans. Image Process. 18(9), 1958–1975 (2009)MathSciNetGoogle Scholar
  428. 428.
    Tian, J., Ma, K.-K.: A state-space super-resolution approach for video reconstruction. Signal Image Video Process. 3(3), 217–240 (2009)MATHMathSciNetGoogle Scholar
  429. 429.
    Turgay, E., Akar, G.B.: Directionally adaptive super-resolution. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1201–1204 (2009).Google Scholar
  430. 430.
    Wang, Q., Song, X.: Joint image registration and super-resolution reconstruction based on regularized total least norm. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1537–1540 (2009).Google Scholar
  431. 431.
    Xiong, Z., Sun, X., Wu, F.: Web cartoon video hallucination. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 3941–3944 (2009).Google Scholar
  432. 432.
    Yang, J., Schonfeld, D.: New results on performance analysis of super-resolution image reconstruction. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 1517–1520 (2009).Google Scholar
  433. 433.
    Yap, K.H., He, Y., Tian, Y., Chau, L.P.: A nonlinear l1-norm approach for joint image registration and super-resolution. IEEE Signal Process. Lett. 16(11), 981–984 (2009)Google Scholar
  434. 434.
    Yeomans, P.H.H., Kumar, B.V.K.V., Baker, S.: Robust low-resolution face identification and verification using high-resolution features. In: Proceedings of IEEE International Conference on Image Processing, Egypt, pp. 33–36 (2009).Google Scholar
  435. 435.
    Zhao, H., Lu, Y., Zhai, Z.: Example-based facial sketch hallucination. In: Proceedings of International Conference on Computational Intelligence and Security, China, pp. 578–582 (2009).Google Scholar
  436. 436.
    Zhao, H., Lu, Y., Zhai, Z., Yang, G.: Example-based regularization deployed to face hallucination. Proceedings of International Conference on Computer Engineering and Technology, Singapore 1, 485–489 (2009)MATHGoogle Scholar
  437. 437.
    Adler, A., Hel-Or, Y., Elad, M.: A shrinkage learning approach for single image super-resolution with overcomplete representations. Proceedings of European Conference on Computer Vision, Greece 2, 622–635 (2010)Google Scholar
  438. 438.
    Amro, I., Mateos, J., Vega, M.: Bayesian super-resolution pansharpening using contourlets. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 809–812 (2010).Google Scholar
  439. 439.
    Anantrasirichai, N., Canagarajah, C.N.: Spatiotemporal super-resolution for lowbitrate H.264 video. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2809–2812 (2010).Google Scholar
  440. 440.
    Basavaraja, S.V., Bopardikar, A.S., Velusamy, S.: Detail warping based video super-resolution using image guides. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2009–2012 (2010).Google Scholar
  441. 441.
    Belekos, S.P., Galatsanos, N.P., Katsaggelos, A.K.: Maximum a posteriori video super-resolution using a new multichannel image prior. IEEE Trans. Image Process. 19(6), 1451–1464 (2010)MathSciNetGoogle Scholar
  442. 442.
    Bhushan, D.B., Sowmya, V., Soman, K.P.: Super-resolution blind reconstruction of low resolution images using framelets based fusion. In: Proceedings of International Conference on Recent Trends in Information, Telecommunication and Computing, India, pp. 100–104 (2010).Google Scholar
  443. 443.
    Boonim, K., Sanguansat, P.: Error estimation by regression model and Eigentransformation for face hallucination. In: Proceedings of International Conference on Pervasive Computing Signal Processing and Applications, China, pp. 873–878 (2010).Google Scholar
  444. 444.
    Boonim, K., Sanguansat, P.: The color face hallucination using Eigentransformation with error regression model. In: Proceedings of International Symposium on Communications and Information Technologies, China, pp. 424–429 (2010).Google Scholar
  445. 445.
    Cohen, Y.H., Fattal, R., Lischinski, D.: Image upsampling via texture hallucination. In: Proceedings of IEEE International Conference on Computational Photography, USA (2010).Google Scholar
  446. 446.
    Eekeren, A.W.M.V., Schutte, K., Vliet, L.J.V.: Multiframe super-resolution reconstruction of small moving objects. IEEE Trans. Image Process. 19(11), 2901–2912 (2010)MathSciNetGoogle Scholar
  447. 447.
    Faramarzi, E., Bhakta, V.R., Rajan, D., Christensen, M.P.: Super resolution results in panoptes, an adaptive multi-aperture folded architecture. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2833–2836 (2010).Google Scholar
  448. 448.
    Gajjar, P.P., Joshi, M.V.: New learning based super-resolution: use of DWT and IGMRF prior. IEEE Trans. Image Process. 19(5), 1201–1213 (2010)MathSciNetGoogle Scholar
  449. 449.
    Gajjar, P.P., Joshi, M.: Zoom based super-resolution: a fast approach using particle swarm optimization. In: Image and Signal Processing. Lecture Notes in Computer Science, vol. 6134, pp. 63–70 (2010).Google Scholar
  450. 450.
    Garcia, D.C., Dorea, C., de Queiroz, R.L.: Super-resolution for multiview images using depth information. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 1793–1796 (2010).Google Scholar
  451. 451.
    Gholipour, A., Estroff, J.A., Warfield, S.K.: Robust super-resolution volume reconstruction from slice acquisitions: application to fetal brain MRI. IEEE Trans. Med. Imaging 29(10), 1739–1758 (2010)Google Scholar
  452. 452.
    Giachetti, A.: Irradiance preserving image interpolation. In: Proceedings of International Conference on Pattern Recognition, Turkey, pp. 2218–2221 (2010).Google Scholar
  453. 453.
    Han, F., Fang, X., Wang, C.: Blind super-resolution for single image reconstruction. In: Proceedings of Pacific-Rim Symposium on Image and Video Technology, Singapore, pp. 399–403 (2010).Google Scholar
  454. 454.
    Han, H., Shan, S., Chen, X., Gao, W.: Gray-scale super-resolution for face recognition from low grayscale resolution face images. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2825–2828 (2010).Google Scholar
  455. 455.
    Harmeling, S., Sra, S., Hirsch, M., Scholkopf, B.: Multiframe blind deconvolution, super-resolution, and saturation correction via incremental EM. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 3313–3317 (2010).Google Scholar
  456. 456.
    Hsu, C.C., Lin, C.W., Hsu, C.T., Liao, H.Y.M., Yu, J.Y.: Face hallucination using Bayesian global estimation and local basis selection. In: Proceedings of IEEE International Workshop on Multimedia Signal Processing, France, pp. 449–453 (2010).Google Scholar
  457. 457.
    Hu, Y., Lam, K.M., Qiu, G., Shen, T., Tian, H.: Learning local pixel structure for face hallucination. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2797–2800 (2010).Google Scholar
  458. 458.
    Huang, H., Wu, N., Fan, X., Qi, C.: Face image super resolution by linear transformation. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 913–916 (2010).Google Scholar
  459. 459.
    Huanga, H., Hea, H., Fanb, X., Zhang, J.: Super-resolution of human face image using canonical correlation analysis. Pattern Recognit. 43(7), 2532–2343 (2010)Google Scholar
  460. 460.
    Iiyama, M., Kakusho, K., Minoh, M.: Super-resolution texture mapping from multiple view images. In: Proceedings of International Conference on Pattern Recognition, Turkey, pp. 1820–1823 (2010).Google Scholar
  461. 461.
    Islam, M.M., Asari, V.K., Islam, M.N., Karim, M.A.: Super-resolution enhancement technique for low resolution video. IEEE Trans. Consum. Electron. 56(2), 919–924 (2010)Google Scholar
  462. 462.
    Kang, Q.: Patch-based face hallucination with locality preserving projection. In: Proceedings of International Conference on Genetic and Evolutionary Computing, China, pp. 394–397 (2010).Google Scholar
  463. 463.
    Kim, C., Choi, K., Lee, H., Hwang, K., Ra, J.B.: Robust learning-based super-resolution. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2017–2020 (2010).Google Scholar
  464. 464.
    Kim, M., Ku, B., Chung, D., Shin, H., Kang, B., Han, D.K., Ko, H.: Robust dynamic super resolution under inaccurate motion estimation. In: Proceedings of IEEE International Conference on Advanced Video and Signal Based Surveillance, USA, pp. 323–328 (2010).Google Scholar
  465. 465.
    Kim, K.I., Kwon, Y.: Single-image super-resolution using sparse regression and natural image prior. IEEE Trans. Pattern Anal. Mach. Intell. 32(6), 1127–1133 (2010)MathSciNetGoogle Scholar
  466. 466.
    Kumar, B.G.V., Aravind, R.: Computationally efficient algorithm for face super-resolution using (2D)2-PCA based prior. IET Image Process. 4(2), 61–69 (2010)MathSciNetGoogle Scholar
  467. 467.
    Kumar, S., Nguyen, T.Q.: Total subset variation prior. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 77–80 (2010).Google Scholar
  468. 468.
    Lan, C., Hu, R., Han, Z., Wang, Z.: A face super-resolution approach using shape semantic mode regularization. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2021–2024 (2010).Google Scholar
  469. 469.
    Lee, I.H., Bose, N.K., Lin, C.W.: Locally adaptive regularized super-resolution on video with arbitrary motion. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 897–900 (2010).Google Scholar
  470. 470.
    Li, B., Chang, H., Shan, S.: Low-resolution face recognition via coupled locality preserving mappings. IEEE Signal Process. Lett. 17(1), 20–23 (2010)Google Scholar
  471. 471.
    Li, Y.R., Dai, D.Q., Shen, L.: Multiframe super-resolution reconstruction using sparse directional regularization. IEEE Trans. Circuits Syst. Video Technol. 20(7), 945–956 (2010)MathSciNetGoogle Scholar
  472. 472.
    Li, X., Hu, Y., Gao, X., Tao, D.: A multi-frame image super-resolution method. Signal Process. 90(2), 405–414 (2010)MATHGoogle Scholar
  473. 473.
    Liang, Y., Lai, J.H., Xie, X., Liu, W.: Face hallucination under an image decomposition perspective. In: Proceedings of International Conference on Pattern Recognition, Turkey, pp. 2158–2161 (2010).Google Scholar
  474. 474.
    Liu, S., Brown, M.S., Kim, S.J., Tai, Y.W.: Colorization for single image super resolution. Proceedings of European Conference on Computer Vision, Greece 4, 323–336 (2010)Google Scholar
  475. 475.
    Ma, X., Huang, H., Wang, S., Qi, C.: A simple approach to multiview face hallucination. IEEE Signal Process. Lett. 17(6), 579–582 (2010)Google Scholar
  476. 476.
    Maa, X., Zhang, J., Qi, C.: Hallucinating face by position-patch. Pattern Recognit. 43, 2224–2236 (2010)Google Scholar
  477. 477.
    Mallat, S., Yu, G.: Super-resolution with sparse mixing estimators. IEEE Trans. Image Process. 19(11), 2889–2900 (2010)MathSciNetGoogle Scholar
  478. 478.
    Miraveta, C., Rodrigueza, F.B.: A PCA-based super-resolution algorithm for short image sequences. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2025–2028 (2010).Google Scholar
  479. 479.
    Mochizuki, Y., Kameda, Y., Imiya, A., Sakai, T., Imaizumi, T.: An iterative method for superresolution of optical flow derived by energy minimisation. In: Proceedings of International Conference on Pattern Recognition, Turkey, pp. 2270–2273 (2010).Google Scholar
  480. 480.
    Nasonov, A.V., Krylov, A.S.: Fast super-resolution using weighted median filtering. In: Proceedings of International Conference on Pattern Recognition, Turkey, pp. 2230–2233 (2010).Google Scholar
  481. 481.
    Nasrollahi, K., Moeslund, T.B.: Finding and improving the key-frames of long video sequences for face recognition. In: Proceedings of IEEE Conference on Biometrics: Theory, Applications and System, USA (2010).Google Scholar
  482. 482.
    Nasrollahi, K., Moeslund, T.B.: Hallucination of super-resolved face images. In: Proceedings of IEEE 10th International Conference on Signal Processing, China (2010).Google Scholar
  483. 483.
    Nasrollahi, K., Moeslund, T.B.: Hybrid super-resolution using refined face-logs. In: Proceedings of IEEE 2nd International Conference on Image Processing Theory, Tools and Applications, France (2010).Google Scholar
  484. 484.
    Nguyen, C.D., Ardabilian, M., Chen, L.: Unifying approach for fast license plate localization and super-resolution. In: Proceedings of International Conference on Pattern Recognition, Turkey, pp. 376–380 (2010).Google Scholar
  485. 485.
    Omer, O.A., Tanaka, T.: Image superresolution based on locally adaptive mixed-norm. J. Electr. Comput. Eng. 2010(435194), 4 (2010)Google Scholar
  486. 486.
    Ozcelikkale, A., Akar, G.B., Ozaktas, H.M.: Super-resolution using multiple quantized images. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2029–2032 (2010).Google Scholar
  487. 487.
    Pan, Q., Gao, C., Liu, N.: Single frame image super-resolution based on sparse geometric similarity. J. Inf. Comput. Sci. 7(3), 799–805 (2010)Google Scholar
  488. 488.
    Robinson, M.D., Toth, C.A., Lo, J.Y., Farsiu, S.: Efficient Fourier-wavelet super-resolution. IEEE Trans. Image Process. 19(10), 2669–2681 (2010)MathSciNetGoogle Scholar
  489. 489.
    Rousseau, F.: A non-local approach for image super-resolution using intermodality priors. Med. Image Anal. 14, 594–605 (2010)Google Scholar
  490. 490.
    Sadaka, N.G., Karam, L.J.: Super-resolution using a wavelet-based adaptive wiener filter. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 3309–3312 (2010).Google Scholar
  491. 491.
    Song, H., Zhang, L., Wang, P., Zhang, K., Li, X.: An adaptive L1–L2 hybrid error model to super-resolution. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2821–2824 (2010).Google Scholar
  492. 492.
    Shen, M., Wang, C., Xue, P., Lin, W.: Performance of reconstruction-based super-resolution with regularization. J. Vis. Commun. Image Represent. 21, 640–650 (2010)Google Scholar
  493. 493.
    Shen, M., Xue, P.: Low-power video acquisition with super-resolution reconstruction for mobile devices. IEEE Trans. Consum. Electron. 56(4), 2520–2529 (2010)Google Scholar
  494. 494.
    Sun, J., Zhu, J.J., Tappen, M.F.: Context-constrained hallucination for image super-resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA (2010).Google Scholar
  495. 495.
    Tai, Y.W., Liu, S., Brown, M.S., Lin, S.: Super resolution using edge prior and single image detail synthesis. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 2400–2407 (2010).Google Scholar
  496. 496.
    Tanveer, M., Iqbal, N.: A Bayesian approach to face hallucination using DLPP and KRR. In: Proceedings of International Conference on Pattern Recognition, Turkey, pp. 2154–2157 (2010).Google Scholar
  497. 497.
    Tian, J., Ma, K.K.: Stochastic super-resolution image reconstruction. J. Vis. Commun. Image Represent. 21(3), 232–244 (2010)Google Scholar
  498. 498.
    Tian, L., Suzuki, A., Koike, H.: Task-oriented evaluation of super-resolution techniques. In: Proceedings of International Conference on Pattern Recognition, Turkey, pp. 493–496 (2010).Google Scholar
  499. 499.
    Wang, J., Zhua, S., Gonga, Y.: Resolution enhancement based on learning the sparse association of image patches. Pattern Recognit. Lett. 31, 1–10 (2010)Google Scholar
  500. 500.
    Xiong, Z., Sun, X., Wu, F.: Robust web image/video super-resolution. IEEE Trans. Image Process. 19(9), 2017–2028 (2010)MathSciNetGoogle Scholar
  501. 501.
    Yamaguchi, T., Fukuda, H., Furukawa, R., Kawasaki, H., Sturm, P.: Video deblurring and super-resolution technique for multiple moving objects. In: Proceedings of Asian Conference on Computer Vision, New Zeeland (2010).Google Scholar
  502. 502.
    Yan, Z., Lu, Y., Yan, H.: Reducing the spiral CT slice thickness using super resolution. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 593–596 (2010).Google Scholar
  503. 503.
    Yan, H., Sun, J., Du, L.: Face hallucination based on independent residual features. In: Proceedings of IEEE International Conference on Image and Signal Processing, China, pp. 1074–1077 (2010).Google Scholar
  504. 504.
    Yang, M.C., Chu, C.T., Wang, Y.C.F.: Learning sparse image representation with support vector regression for single-image super-resolution. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 1973–1976 (2010).Google Scholar
  505. 505.
    Yang, X., Su, G., Chen, J., Moon, Y.: Restoration of low resolution car plate images using PCA based image super-resolution. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2789–2792 (2010).Google Scholar
  506. 506.
    Yang, J., Wright, J., Huang, T., Ma, Y.: Image super-resolution via sparse representation. IEEE Trans. Image Process. 19(11), 2861–2873 (2010)MathSciNetGoogle Scholar
  507. 507.
    Yoshikawa, A., Suzuki, S., Goto, T., Hirano, S., Sakurai, M.: Super resolution image reconstruction using total variation regularization and learning-based method. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 1993–1996 (2010).Google Scholar
  508. 508.
    Yuan, Q., Zhang, L., Shen, H., Li, P.: Adaptive multiple-frame image super-resolution based on U-curve. IEEE Trans. Image Process. 19(12), 3157–3170 (2010)MathSciNetGoogle Scholar
  509. 509.
    Zhang, L., Zhang, H., Shen, H., Li, P.: A super-resolution reconstruction algorithm for surveillance images. Signal Process. 90(3), 848–859 (2010)MATHMathSciNetGoogle Scholar
  510. 510.
    Zheng, H., Bouzerdoum, A., Phung, S.L.: Wavelet based nonlocal-means super-resolution for video sequences. In: Proceedings of IEEE International Conference on Image Processing, Hong Kong, pp. 2817–2020 (2010).Google Scholar
  511. 511.
    Zou, W.W.W., Yuen, P.C.: Learning the relationship between high and low resolution images in kernel space for face super resolution. In: Proceedings of International Conference on Pattern Recognition, Turkey, pp. 1153–1155 (2010).Google Scholar
  512. 512.
    Arycan, Z., Frossard, P.: Joint registration and super-resolution with omnidirectional images. IEEE Trans. Image Process. 20(11), 3151–3162 (2011)MathSciNetGoogle Scholar
  513. 513.
    Babacan, S.D., Molina, R., Katsaggelos, A.K.: Variational Bayesian super resolution. IEEE Trans. Image Process. 20(4), 984–999 (2011)MathSciNetGoogle Scholar
  514. 514.
    Chainais, P., Koenig, E., Delouille, V., Hochedez, J.F.: Virtual super resolution of scale invariant textured images using multifractal stochastic processes. J. Math. Imaging Vis. 39, 28–44 (2011)MATHMathSciNetGoogle Scholar
  515. 515.
    Cheng, M.H., Chen, H.Y., Leou, J.J.: Video super-resolution reconstruction using a mobile search strategy and adaptive patch size. Signal Process. 91, 1284–1297 (2011)Google Scholar
  516. 516.
    Choi, K., Kim, C., Kang, M.H., Ra, J.B.: Resolution improvement of infrared images using visible image information. IEEE Trans. Image Process. 18(10), 611–614 (2011)Google Scholar
  517. 517.
    Demirel, H., Anbarjafari, G.: Image resolution enhancement by using discrete and stationary wavelet decomposition. IEEE Trans. Image Process. 20(5), 1458–1460 (2011)MathSciNetGoogle Scholar
  518. 518.
    Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1856 (2011)Google Scholar
  519. 519.
    Gao, X., Wang, Q., Li, X., Tao, D., Zhang, K.: Zernike-moment-based image super resolution. IEEE Trans. Image Process. 20(10), 2738–2747 (2011)MathSciNetGoogle Scholar
  520. 520.
    Giachetti, A., Asuni, N.: Real-time artifact-free image upscaling. IEEE Trans. Image Process. 20(10), 2760–2768 (2011)MathSciNetGoogle Scholar
  521. 521.
    He, H., Siu, W.C.: Single image super-resolution using Gaussian process regression. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 449–456 (2011).Google Scholar
  522. 522.
    He, R., Zhang, Z.: Locally affine patch mapping and global refinement for image super-resolution. Pattern Recognit. 44, 2210–2219 (2011)Google Scholar
  523. 523.
    Hu, Y., Lam, K.M., Qiu, G., Shen, T.: From local pixel structure to global image super-resolution: a new face hallucination framework. IEEE Trans. Image Process. 20(2), 433–445 (2010)MathSciNetGoogle Scholar
  524. 524.
    Hu, Y., Lam, K.M., Shen, T., Wang, W.: A novel kernel-based framework for facial-image hallucination. Image Vis. Comput. 29, 219–229 (2011)Google Scholar
  525. 525.
    Huang, K., Hu, R., Han, Z., Lu, T., Jiang, J., Huang, K., Wang, F.: A face super-resolution method based on illumination invariant feature. In: Proceedings of IEEE International Conference on Multimedia Technology, China (2011).Google Scholar
  526. 526.
    Huang, H., Wu, N.: Fast facial image super-resolution via local linear transformations for resource-limited applications. IEEE Trans. Circuits Syst. Video Technol. 21(10), 1363–1377 (2011)Google Scholar
  527. 527.
    Jung, M., Bresson, X., Chan, T.F., Vese, L.A.: Nonlocal Mumford-Shah regularizers for color image restoration. IEEE Trans. Image Process. 20(6), 1583–1598 (2011)MathSciNetGoogle Scholar
  528. 528.
    Jung, C., Jiao, L., Liu, B., Gong, M.: Position-patch based face hallucination using convex optimization. IEEE Signal Process. Lett. 18(6), 367–369 (2011)Google Scholar
  529. 529.
    Karam, L.J., Sadaka, N.G., Ferzli, R., Ivanovski, Z.A.: An efficient selective perceptual-based super-resolution estimator. IEEE Trans. Image Process. 20(12), 3470–3482 (2011)MathSciNetGoogle Scholar
  530. 530.
    Keller, S.H., Lauze, F., Nielsen, M.: Video super-resolution using simultaneous motion and intensity calculations. IEEE Trans. Image Process. 20(7), 1870–1884 (2011)MathSciNetGoogle Scholar
  531. 531.
    Kramer, P., Benois-Pineau, J., Domenger, J.: Local object-based super-resolution mosaicing from low-resolution video. Signal Process. 91, 1771–1780 (2011)Google Scholar
  532. 532.
    Liu, C., Sun, D.: A bayesian approach to adaptive video super resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 209–216 (2011).Google Scholar
  533. 533.
    Lu, J., Min, D., Pahwa, R.S., Do, M.N.: A revisit to MRF-based depth map super-resolution and enhancement. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 985–988 (2011).Google Scholar
  534. 534.
    Milanfar, P.: Super-Resolution Imaging. CRC Press, USA, Taylor & Francis Group, London (2011)Google Scholar
  535. 535.
    Mochizuki, Y., Kameda, Y., Imiya, A., Sakai, T., Imaizumi, T.: Variational method for super-resolution optical flow. Signal Process. 91, 1535–1567 (2011)MATHGoogle Scholar
  536. 536.
    Mudenagudi, U., Banerjee, S., Kalra, P.K.: Space-time super-resolution using graph-cut optimization. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 995–1008 (2011)Google Scholar
  537. 537.
    Nasrollahi, K.: From face detection to face super-resolution using face quality assessment. PhD thesis, Aalborg University, Denmark (2011).Google Scholar
  538. 538.
    Nasrollahi, K., Moeslund, T.B.: Extracting a good quality frontal face image from a low-resolution video sequence. IEEE Trans. Circuits Syst. Video Technol. 21(10), 1353–1362 (2011)Google Scholar
  539. 539.
    Omer, O.A., Tanaka, T.: Region-based weighted-norm with adaptive regularization for resolution enhancement. Digit. Signal Process. Lett. 21, 508–516 (2011)Google Scholar
  540. 540.
    Patel, V., Modi, C.K., Paunwala, C.N., Patnaik, S.: Hybrid approach for single image super resolution using ISEF and IBP. In: Proceedings of International Conference on Communication Systems and Network Technologies, India (2011).Google Scholar
  541. 541.
    Petrou, M., Jaward, M.H., Chen, S., Briers, M.: Super-resolution in practice: the complete pipeline from image capture to super-resolved subimage creation using a novel frame selection method. Mach. Vis. Appl. 23(3), 441–459 (2012)Google Scholar
  542. 542.
    Purkait, P., Chanda, B.: Morphologic gain-controlled regularization for edge-preserving super-resolution image reconstruction. Signal Image Video Process. 7(5), 925–938 (2013)Google Scholar
  543. 543.
    Shahar, O., Faktor, A., Irani, M.: Space-time super-resolution from a single video. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 3353–3360 (2011).Google Scholar
  544. 544.
    Shen, M., Xue, P., Wang, C.: Down-sampling based video coding using super-resolution technique. IEEE Trans. Circuits Syst. Video Technol. 21(6), 755–765 (2011)Google Scholar
  545. 545.
    Song, B.C., Jeong, S.C., Choi, Y.: Video super-resolution algorithm using bi-directional overlapped block motion compensation and on-the-fly dictionary training. IEEE Trans. Circuits Syst. Video Technol. 21(3), 274–285 (2011)Google Scholar
  546. 546.
    Sun, J., Sun, J., Xu, Z., Shum, H.Y.: Gradient profile prior and its applications in image super-resolution and enhancement. IEEE Trans. Circuits Syst. Video Technol. 20(6), 1529–1542 (2011)Google Scholar
  547. 547.
    Szydzik, T., Callico, G.M., Nunez, A.: Efficient FPGA implementation of a high-quality super-resolution algorithm with real-time performance. IEEE Trans. Consum. Electron. 57(2), 664–672 (2011)Google Scholar
  548. 548.
    Tian, Y., Yap, K.H., He, Y.: Vehicle license plate super-resolution using soft learning prior. Multimed, Tools Appl 60(3), 519–535 (2012)Google Scholar
  549. 549.
    Wu, W., Liu, Z., He, X.: Learning-based super resolution using kernel partial least squares. Signal Process. Image Commun. 29, 394–406 (2011)Google Scholar
  550. 550.
    Yang, Y., Wang, Z.: A new image super-resolution method in the wavelet domain. In: Proceedings of IEEE International Conference on Image and Graphics, China, pp. 163–167 (2011).Google Scholar
  551. 551.
    Zhang, W., Cham, W.K.: Hallucinating face in the DCT domain. IEEE Trans. Image Process. 20(10), 2769–2779 (2011)MathSciNetGoogle Scholar
  552. 552.
    Zibetti, M.V.W., Bazan, F.S.V., Mayer, J.: Estimation of the parameters in regularized simultaneous super-resolution. Pattern Recognit. Lett. 32, 69–78 (2011)Google Scholar
  553. 553.
    Bengtsson, T., Gu, I. Y-H., Viberg, M., Lindstrom, K.: Regularized optimization for joint super-resolution and high dynamic range image reconstruction in a perceptually uniform domain. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 1097–1100 (2012).Google Scholar
  554. 554.
    Bevilacqua, M., Roumy, A., Guillemot, C., Morel, M-L. A.: Neighbor embedding based single-image super-resolution using semi-nonnegative matrix factorization. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 1289–1292 (2012).Google Scholar
  555. 555.
    Bouzari, H.: An improved regularization method for artifact rejection in image super-resolution. Signal Image Video Process. 6, 125–140 (2012)Google Scholar
  556. 556.
    Chen, J., Yanez, J.N., Achim, A.: Video super-resolution using generalized Gaussian Markov random fields. IEEE Signal Process. Lett. 19(2), 63–69 (2012)Google Scholar
  557. 557.
    Fookes, C., Lin, F., Chandran, V., Sridharan, S.: Evaluation of image resolution and super-resolution on face recognition performance. J. Vis. Commun. Image Represent. 23, 75–93 (2012)Google Scholar
  558. 558.
    Gao, X., Zhang, K., Tao, D., Li, X.: Image super-resolution with sparse neighbor embedding. IEEE Trans. Image Process. 21(7), 3194–3205 (2012)MathSciNetGoogle Scholar
  559. 559.
    Gao, X., Zhang, K., Tao, D., Li, X.: Joint learning for single image super-resolution via a coupled constraint. IEEE Trans. Image Process. 21(2), 469–480 (2012)MathSciNetGoogle Scholar
  560. 560.
    Ho, T.C., Zeng, B.: Image super-resolution by curve fitting in the threshold decomposition domain. J. Vis. Commun. Image Represent. 23, 208–221 (2012)Google Scholar
  561. 561.
    Huhle, B., Schairer, T., Jenke, P., Straber, W.: Fusion of range and color images for denoising and resolution enhancement with a non-local filter. Comput. Vis. Image Underst. 114, 1336–1345 (2012)Google Scholar
  562. 562.
    Hui, Z., Lam, J.-M.: An efficient local-structure-based face-hallucination method. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 1265–1268 (2012).Google Scholar
  563. 563.
    Hung, E.M., de Queiroz, R.L., Brandi, F., de Oliveira, K.F., Mukherjee, D.: Video super-resolution using codebooks derived from key-frames. IEEE Trans. Circuits Syst. Video Technol. 22(9), 1321–1331 (2012)Google Scholar
  564. 564.
    Hung, K.-W., Siu, W.-C.: Single image super-resolution using iterative Wiener filter. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 1269–1272 (2012).Google Scholar
  565. 565.
    Islam, R., Lambert, A.J., Pickering, M.R.: Super resolution of 3d MRI images using a Gaussian scale mixture model constraint. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 849–852 (2012).Google Scholar
  566. 566.
    Islam, R., Lambert, A.J., Pickering, M.R.: Super resolution of 3d MRI images using a bivariate Laplacian mixture model constraint. In: Proceedings of IEEE International Symposium on Biomedical Imaging, Spain, pp 1499–1502 (2012).Google Scholar
  567. 567.
    Islam, M.M., Islam, M.N., Asari, V.K., Karim, M.A.: Single image super-resolution in frequency domain. In: Proceedings of IEEE Southwest Symposium on Image Analysis and Interpretation, USA, pp. 53–56 (2012).Google Scholar
  568. 568.
    Ito, I., Kiya, H.: A new technique of non-iterative super-resolution without boundary distortion. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 1273–1275 (2012).Google Scholar
  569. 569.
    Jiang, J., Hu, R., Han, Z., Huang, J., Lu, T.: Efficient single image super-resolution via graph embedding. In: Proceedings of IEEE International Conference on Multimedia and Expo, Australia (2012).Google Scholar
  570. 570.
    Jiang, J., Hu, R., Han, Z., Lu, T., Huang, J.: A super-resolution method for low-quality face image through RBF-PLS regression and neighbor embedding. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan (2012).Google Scholar
  571. 571.
    Jiang, J., Hu, R., Han, Z., Lu, T., Huang, J.: Surveillance face hallucination via variable selection and manifold learning. In: Proceedings of IEEE International Symposium on Circuits and Systems, Korea, pp. 2681–2683 (2012).Google Scholar
  572. 572.
    Jiang, J., Hu, R., Han, Z., Lu, T., Huang, J.: Position-patch based face hallucination via locality-constrained representation. In: Proceedings of IEEE International Conference on Multimedia and Expo, Australia (2012).Google Scholar
  573. 573.
    Jing, G., Shi, Y., Kong, D., Ding, W., Yin, B.: Image super-resolution based on multi-space sparse representation. Multimed. Tools Appl. 70(2), 741–755 (2014)Google Scholar
  574. 574.
    Kim, D., Yoon, K.: High quality depth map up-sampling robust to edge noise of range sensors. In: Proceedings of IEEE International Conference on Image Processing, pp. 553–556 (2012).Google Scholar
  575. 575.
    Katsuki, T., Inoue, M.: Posterior mean super-resolution with a compound Gaussian Markov random field prior. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 841–844 (2012).Google Scholar
  576. 576.
    Katsuki, T., Inoue, M.: Posterior mean super-resolution with a causal Gaussian Markov random field prior. IEEE Trans. Image Process. 21(7), 3182–3193 (2012)MathSciNetGoogle Scholar
  577. 577.
    Kulkarni, N., Nagesh, P., Gowda, R., Li, B.: Understanding compressive sensing and sparse representation-based super-resolution. IEEE Trans. Circuits Syst. Video Technol. 22(5), 778–789 (2012)Google Scholar
  578. 578.
    Li, D., Simske, S.: Fast single image super-resolution by self-trained filtering. In: Perception and Machine Intelligence. Lecture Notes in Computer Science, Advanced Intelligent Computing Theories and Applications with Aspects of Artificial Intelligence, vol. 6839, pp. 469–475 (2012).Google Scholar
  579. 579.
    Li, Y., Xue, T., Sun, L., Liu, J.: Joint example-based depth map super-resolution. In: Proceedings of IEEE International Conference on Multimedia and Expo, Australia (2012).Google Scholar
  580. 580.
    Lu, X., Yuan, H., Yan, P., Yuan, Y., Li, X.: Geometry constrained sparse coding for single image super-resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 1648–1655 (2012).Google Scholar
  581. 581.
    Ma, L., Zhao, D., Gao, W.: Learning-based image restoration for compressed images. Signal Process. Image Commun. 27(1), 54–65 (2012)Google Scholar
  582. 582.
    Morin, R., Basarab, A., Kouame, D.: Alternating direction method of multipliers framework for super-resolution in ultrasound imaging. In: Proceedings of IEEE International Symposium on Biomedical Imaging, Spain (2012).Google Scholar
  583. 583.
    Nasir, H., Stankovic, V., Marshall, S.: Singular value decomposition based fusion for super-resolution image reconstruction. Signal Process. Image Commun. 27, 180–191 (2012)Google Scholar
  584. 584.
    Naleer, H.M.M., Lu, Y.: A new two-step face hallucination through block of coefficients. In: Proceedings of IEEE International Conference on Computer Science and Automation Engineering, China (2012).Google Scholar
  585. 585.
    Nema, M.K., Rakshit, S., Chaudhuri, S.: Fast computation of edge model representation for image sequence super-resolution. Lecture Notes in Computer Science, Perception and Machine Intelligence 7143, 252–259 (2012)Google Scholar
  586. 586.
    Nguyen, K., Sridharan, S., Denman, S., Fookes, C.: Feature-domain super-resolution framework for Gabor-based face and iris recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 2642–2649 (2012).Google Scholar
  587. 587.
    Ogawa, Y., Ariki, Y., Takiguchi, T.: Super-resolution by GMM based conversion using self-reduction image. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 1285–1288 (2012).Google Scholar
  588. 588.
    Panagiotopoulou, A., Anastassopoulos, V.: Super-resolution image reconstruction techniques: trade-offs between the data-fidelity and regularization terms. Inf. Fusion 13, 185–195 (2012)Google Scholar
  589. 589.
    Pelletier, S., Cooperstock, J.R.: Preconditioning for edge-preserving image super resolution. IEEE Trans. Image Process. 21(1), 67–79 (2012)MathSciNetGoogle Scholar
  590. 590.
    Peng, Y., Yang, F., Dai, Q., Xu, W., Vetterli, M.: Super-resolution from unregistered aliased images with unknown scalings and shifts. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 857–860 (2012).Google Scholar
  591. 591.
    Purkait, P., Chanda, B.: Super resolution image reconstruction through Bregman iteration using morphologic regularization. IEEE Trans. Image Process. 21(9), 4029–4039 (2012)MathSciNetGoogle Scholar
  592. 592.
    Singh, M., Lu, C., Basu, A., Mandal, M.: Choice of low resolution sample sets for efficient super-resolution signal reconstruction. J. Vis. Commun. Image Represent. 23, 194–207 (2012)Google Scholar
  593. 593.
    Su, H., Wu, Y., Zhou, J.: Super-resolution without dense flow. IEEE Trans. Image Process. 21(4), 1782–1795 (2012)MathSciNetGoogle Scholar
  594. 594.
    Su, H., Tang, L., Wu, Y., Tretter, D., Zhou, J.: Spatially adaptive block-based super-resolution. IEEE Trans. Image Process. 21(3), 1031–1045 (2012)MathSciNetGoogle Scholar
  595. 595.
    Sun, L., Hays, H.: Super-resolution from Internet-scale scene matching. In: Proceedings of IEEE International Conference on Computational Photography, USA, pp. 1–12 (2012).Google Scholar
  596. 596.
    Tang, Y., Yuan, Y., Yan, P., Li, X.: Greedy regression in sparse coding space for single-image super-resolution. J. Vis Commun. Image Represent. (2012) (in press).Google Scholar
  597. 597.
    Tian, Y., Yap, K.-H.: Multi-frame super-resolution from observations with zooming motion. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 1257–1260 (2012).Google Scholar
  598. 598.
    Wang, J., Zhu, S.: Resolution-invariant coding for continuous image super-resolution. Neurocomputing 82, 21–28 (2012)Google Scholar
  599. 599.
    Wu, B., Li, C., Zhan, X.: Integrating spatial structure in super-resolution mapping of hyper-spectral image. Procedia Eng. 29, 1957–1962 (2012)Google Scholar
  600. 600.
    Yan, H., Sun, J., Zhang, C.: Low-resolution face recognition with variable illumination based on differential images. In: Proceedings on International Conference on Intelligent Information Hiding and Multimedia, Signal Processing, pp. 146–149 (2012).Google Scholar
  601. 601.
    Yang, M.-C., Huang, D.-A., Tsai, C.-Y., Wang, Y.-C. F.: Self-learning of edge-preserving single image super-resolution via contourlet transform. In: IEEE International Conference on Multimedia and Expo, Australia (2012).Google Scholar
  602. 602.
    Yang, S., Wang, M., Chen, Y., Sun, Y.: Single-image super-resolution reconstruction via learned geometric dictionaries and clustered sparse coding. IEEE Trans. Image Process. 21(9), 4016–4028 (2012)MathSciNetGoogle Scholar
  603. 603.
    Yang, J., Wang, Z., Lin, Z., Cohen, S., Huang, T.: Coupled dictionary training for image super-resolution. IEEE Trans. Image Process. 21(8), 3467–3478 (2012)MathSciNetGoogle Scholar
  604. 604.
    Yldrm, D., Gungor, O.: A novel image fusion method using IKONOS satellite images. J. Geod. Geoinf. 1(1), 27–34 (2012)Google Scholar
  605. 605.
    Yin, H., Li, S., Fang, L.: Simultaneous image fusion and super-resolution using sparse representation. Inf. Fusion (2012) (in press).Google Scholar
  606. 606.
    Yoshida, T., Takahashi, T., Deguchi, D., Ide, I., Murase, H.: Robust face super-resolution using free-form deformations for low-quality surveillance video. In: Proceedings of IEEE International Conference on Multimedia and Expo, Australia (2012).Google Scholar
  607. 607.
    Yuan, Q., Zhang, L., Shen, H.: Multiframe super-resolution employing a spatially weighted total variation model. IEEE Trans. Circuits Syst. Video Technol. 22(3), 379–392 (2012)Google Scholar
  608. 608.
    Zeng, X., Huang, H.: Super-resolution method for multiview face recognition from a single image per person using nonlinear mappings on coherent features. IEEE Signal Process. Lett. 19(4), 195–198 (2012)MathSciNetGoogle Scholar
  609. 609.
    Zhang, K., Gao, X., Tao, D., Li, X.: Multi-scale dictionary for single image super-resolution. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 1114–1121 (2012).Google Scholar
  610. 610.
    Zhang, D., He, J., Du, M.: Morphable model space based face super-resolution reconstruction and recognition. Image Vis. Comput. 30(2), 100–108 (2012)Google Scholar
  611. 611.
    Zhang, X., Jiang, J., Peng, S.: Commutability of blur and affine warping in super-resolution with application to joint estimation of triple-coupled variables. IEEE Trans. Image Process. 21(4), 1796–1808 (2012)MathSciNetGoogle Scholar
  612. 612.
    Zhang, X., Tang, M., Tong, R.: Robust super resolution of compressed video. Vis. Comput. 28(12), 1167–1180 (2012)Google Scholar
  613. 613.
    Zhang, H., Zhang, Y., Li, H., Huang, T.S.: Generative Bayesian image super resolution with natural image prior. IEEE Trans. Image Process. 21(9), 4054–4067 (2012)MathSciNetGoogle Scholar
  614. 614.
    Zhang, H., Zhang, L., Shen, H.: A super-resolution reconstruction algorithm for hyper spectral images. Signal Process. 92(9), 2082–2096 (2012)MathSciNetGoogle Scholar
  615. 615.
    Zhang, Y., Wu, G., Yap, P.-T., Feng, Q., Lian, J., Chen, W., Shen, D.: Reconstruction of super-resolution lung 4d-CT using patch-based sparse representation. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, USA, pp. 925–931 (2012).Google Scholar
  616. 616.
    Zhou, F.: A coarse-to-fine subpixel registration method to recover local perspective deformation in the application of image super-resolution. IEEE Trans. Image Process. 21(1), 53–66 (2012)MathSciNetGoogle Scholar
  617. 617.
    Zhu, S., Zeng, B., Yan, S.: Image super-resolution via low-pass filter based multi-scale image decomposition. In: Proceedings of IEEE International Conference on Multimedia and Expo, Australia (2012).Google Scholar
  618. 618.
    Zhuo, Y., Liu, J., Ren, J., Guo, Z.: Nonlocal based super resolution with rotation invariance and search window relocation. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, Japan, pp. 853–857 (2012).Google Scholar
  619. 619.
    Zou, W.W.W., Yuen, P.C.: Very low resolution face recognition problem. IEEE Trans. Image Process. 21(1), 327–340 (2012)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Visual Analysis of People LaboratoryAalborg UniversityAalborgDenmark

Personalised recommendations