Skip to main content
Log in

Comparison of Sensitivity of Grasses (Lolium perenne L. and Festuca rubra L.) and Lettuce (Lactuca sativa L.) Exposed to Water Contaminated with Microcystins

  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

The effects of aqueous extracts from Microcysts aeruginosa strains (both microcystin-producers and non-microcystin producers) on germination and root growth were investigated for three economically important plant species: Festuca rubra L., Lolium perenne L., and Lactuca sativa L. There was a clear inhibition of root growth for L. sativa exposed to strains containing microcystins (5.9–56.4 μg L−1). The strain that produced the most pronounced effects contained the lowest concentration of microcystin suggesting that other cellular compounds may also affect growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Carmichael WW (1992) Cyanobacteria secondary metabolites–the cyanotoxins. J Appl Bact 72:445–459

    CAS  Google Scholar 

  • Codd GA, Edwards C, Beattie KA, Lawton LA, Campbell DL, Bell SG (1995) Toxins from blue-green algae. The Pringsheim lecture. In: Wiessner W, Schnepf E, Starr RC (eds) Algae, Environment and Human Affairs. Biopress, Bristol, pp 1–17

    Google Scholar 

  • Codd GA, Metcalf JS, Beattie KA (1999) Retention of Microcystis aeruginosa and microcystins by salad lettuce (Lactuca sativa) after spray irrigation with water containing cyanobacteria. Toxicon 37:1181–1185. doi:10.1016/S0041-0101(98)00244-X

    Article  CAS  Google Scholar 

  • Hamvas MM, Mathe C, Molnar E, Vasa G, Grigorsky I, Borbely G (2003) Microcystin–LR alters the growth, anthanocyanin content and single-stranded DNase enzyme activities in Sinapsis alba L. seedlings. Aquat Toxicol 61:1–9. doi:10.1016/S0166-445X(01)00273-9

    Article  Google Scholar 

  • Jones GJ, Orr PTY (1994) Release and degradation of microcystins following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake as determined by HPLC and protein phosphatase inhibition assay. Water Res 28:871–876. doi:10.1016/0043-1354(94)90093-0

    Article  CAS  Google Scholar 

  • Kós P, Gorzó G, Surányi G, Borbély G (1995) A simple and efficient method for isolation and measurement of cyanobacterial hepatotoxins by plant tests (Sinapsis alba L). Analyt Biochem 225:49–53. doi:10.1006/abio.1995.1106

    Article  Google Scholar 

  • Kuiper-Goodman T, Falconer I, Fitzgerald J (1999) Human health aspects. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN Spon, London, pp 113–153

    Google Scholar 

  • Kurki–Helasmo K, Meriluoto J (1998) Microcystin uptake inhibits growth and protein phosphatase activity in mustard (Sinapsis alba L.) seedlings. Toxicon 36:1921–1926. doi:10.1016/S0041-0101(98)00114-7

    Article  Google Scholar 

  • LeBlanc S, Pick FR, Rodriguez RA (2005) Allelopathic effects of the toxic cyanobacterium Microcystis aeruginosa on Duckweed, Lemna gibba L. Environ Toxicol 20(1):67–73. doi:10.1002/tox.20079

    Article  CAS  Google Scholar 

  • MacKintosh C, Beattie KA, Klumpp S, Cohen P, Cood GA (1990) Cyanobacterial microcysyin–LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192. doi:10.1016/0014-5793(90)80245-E

    Article  CAS  Google Scholar 

  • McElhiney J, Lawson LA, Leifert C (2001) Investigations into the inhibitory effects of microcystins on plant growth, and the toxicity of plant tissues following exposure. Toxicon 39:1411–1420. doi:10.1016/S0041-0101(01)00100-3

    Article  CAS  Google Scholar 

  • Mitrovic SM, Pflugmacher S, James KJ, Furey A (2004) Anatoxin-a elicits an increase in peroxidase and glutathione S-transferase activity in aquatic plants. Aquat Toxicol 68:185–192. doi:10.1016/j.aquatox.2004.03.017

    Article  CAS  Google Scholar 

  • Pflugmacher S (2002) Possible allelopathic effects of cyanotoxins with reference to microcystin–LR, in aquatic ecosystems. Environ Toxicol 17:407–413. doi:10.1002/tox.10071

    Article  CAS  Google Scholar 

  • Romanowska-Duda Z, Tarczynska M (2002) The influence of microcystin-LR and hepatotoxic cyanobacterial extract on the water plant Spirodela oligorrhiza. Environ Toxicol 17(5):434–440. doi:10.1002/tox.10076

    Article  CAS  Google Scholar 

  • Rositano J, Nicholson BC (1994) Water treatment techniques for removal of cyanobacterial toxins from water. Australian Centre for Water Quality Research, Salisbury, p 55

    Google Scholar 

  • Sivonen K, Jones G (1999) Cyanobacterial toxins. In: Chorus I, Bartram J (eds) Toxic cyanobacteria in water. E & FN Spon, London, pp 41–111

    Google Scholar 

  • Ueno Y, Nagata S, Tsusumi T, Hasegawa A, Yoshida F, Sutajjit M, Mebs D, Vasconcelos V (1996) Survey of microcystins in environmental water by a highly sensitive immunoassay based on monoclonal antibody. Nat Toxins 4:271–276

    CAS  Google Scholar 

  • Vasconcelos VM, Sivonen K, Evans WR, Carmichael WW, Namikoshi M (1995) Isolation and characterization of microcystins (heptapeptide hepatotoxins) from Portuguese strains of Microcystis aeruginosa Kutz emed Elekin. Arch Hydrobiol 134:295–305

    CAS  Google Scholar 

  • Weiss J, Liebert HP, Braune W (2000) Influence of microcystins-RR on growth and photosynthetic capacity of the duckweed Lemna minor L. J Appl Bot 74:100–105

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitor M. Vasconcelos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, S., Saker, M.L., Vale, M. et al. Comparison of Sensitivity of Grasses (Lolium perenne L. and Festuca rubra L.) and Lettuce (Lactuca sativa L.) Exposed to Water Contaminated with Microcystins. Bull Environ Contam Toxicol 83, 81–84 (2009). https://doi.org/10.1007/s00128-009-9763-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-009-9763-z

Keywords

Navigation