Skip to main content
Log in

Introduction to the thematic issue on exploration for global uranium deposits: in memory of T. Kurtis Kyser

  • Preface
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

This thematic issue is in memory of Thomas Kurtis Kyser who died tragically in 2017. Kurt’s contribution to our understanding of the geochemistry of uranium deposits and the application of stable and radiogenic isotope studies to uranium ore systems is incalculable. His research on uranium deposits included the world-class unconformity-related uranium deposits from Canada, Australia, and Russia, and several other major types of uranium deposits worldwide such as Na-metasomatic deposit of Kurupung (Guyana) and Valhalla (Australia), volcanic-hosted deposits of Peru (Macusani), and vein-type uranium deposits from Beaverlodge district (Canada). He was the first to develop methods to use secondary dispersion of pathfinder elements to vector towards deeply buried uranium ore systems. These new geochemical and isotopic approaches are still successfully applied today. Kurt has been a pioneer in applying stable isotopic systems to characterize the paleofluid events associated with ore systems and to distinguish between barren and mineralized fluid pathways. Kurt was a prolific author with over 400 publications and over a hundred articles on uranium deposits. Kurt wrote three short courses for the Mineralogical Association of Canada dedicated to uranium deposits: Fluids and Basin Evolution (2000), Recent and not-so-Recent Developments in Uranium Deposits and Implications for Exploration (2008, in partnership with SGA), and Geology and Geochemistry of Uranium and Thorium Deposits (2015). However, his true legacy is the large number of undergraduate and graduate students, post-docs, and researchers that he taught, supervised, and mentored; most of whom are now working in industry, academia, and government institutions across the globe. He will be missed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alexandre P, Kyser K (2005) Effects of cationic substitutions and alteration in uraninite, and implications for the dating of uranium deposits. Can Min 43:1005–1017

    Article  Google Scholar 

  • Artinger R, Rabung T, Kim JI, Sachs S, Schmeide K, Heise KH, Bernhard G, Nitsche H (2002) Humic colloid-borne migration of uranium in sand columns. J Contam Hydrol 58:1–12

    Article  Google Scholar 

  • Bergen L, Fayek M (2012) Petrography and geochronology of the Pele Mountain quartz-pebble conglomerate uranium deposit, Elliot Lake District. Canada Am Min 97:1274–1283

    Article  Google Scholar 

  • Blundy J, Wood B (2003) Partitioning of trace elements between crystals and melts. Earth Plan Sci Lett 210:383–397

    Article  Google Scholar 

  • Bourdon B, Turner SP, Henderson GM, Lundstrom CC (2003) Introduction to U-series geochemistry. Rev Mineral Geochem 52:1–21

    Article  Google Scholar 

  • Bruno J, de Pablo J, Duro L, Figuerola E (1995) Experimental study and modeling of the U(VI)-Fe(OH)3 surface precipitation/coprecipitation equilibria. Geochim Cosmochim Acta 59:4113–4123

    Article  Google Scholar 

  • Burns PC (1999) The crystal chemistry of uranium. In: Burns, P.C., Finch, R.J. (Eds.), Uranium: mineralogy, geochemistry and the environment. Rev Mineral Mineral Soc Am 38: 23–90

  • Burron I, Costa G, Sharpe R, Fayek M, Gauert C, Hofmann A (2018) Evidence of a reducing Archean atmosphere from 3.2 Ga Witwatersrand Basin uraninite. Geology 46:295–298

    Article  Google Scholar 

  • Camacho A, Baadsgaard H, Černý P (2013) Radiogenic isotope systematics in the Winnipeg River Pegmatite district, Manitoba. II. The Tanco and Silverleaf pegmatites. Can Min 50:1775–1792

    Article  Google Scholar 

  • Champion DC, Smithies RH (2007) Geochemistry of Paleoarchean granites of the East Pilbara Terrane, Pilbara Craton, Western Australia; implications for early Archean crustal growth. Devel Precam Geol 15:369–409

    Article  Google Scholar 

  • Cuney M (2009) The extreme diversity of uranium deposits. Miner Deposita 44:3–9

    Article  Google Scholar 

  • Cuney M, Kyser TK (2009) Recent and not-so recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada, Short Course Series 39:257

    Google Scholar 

  • Cuney M (2010) Evolution of uranium fractionation processes through time; driving the secular variation of uranium deposit types. Econ Geol 105:553–569

    Article  Google Scholar 

  • Cuney M (2011) Uranium and thorium: the extreme diversity of the resources of the world’s energy minerals. In: Sinding-Larsen R, Wellmer F-W (eds) Non-renewable resources. Springer, Geoscientific and Societal Challenges, p 270

    Google Scholar 

  • Dahlkamp FJ (1978) Classification of uranium deposits. Mineral Deposita 13:83–104

    Article  Google Scholar 

  • Dahlkamp FJ (1993) Uranium Ore Deposits. Springer-Verlag, Berlin, p 460

    Book  Google Scholar 

  • Dahlkamp FJ (2009a) Uranium Ore Deposits of the Americas. Springer-Verlag, Berlin, p 520

    Book  Google Scholar 

  • Dahlkamp FJ (2009b) Uranium Ore Deposits of the Asia. Springer-Verlag, Berlin, p 460

    Book  Google Scholar 

  • Deer WA, Howie RA, Zussman J (1992) An introduction to the rock-forming minerals. Harlow, United Kingdom (GBR): Longman Scientific Technical, pp. 696

  • Duff MC, Amrhein C, Bertsch PM, Hunter DB (1997) The chemistry of uranium in evaporation pond sediment in the San Joaquin Valley, California, USA, using X-ray fluorescence and XANES techniques. Geochim Cosmochim Acta 61:73–81

    Article  Google Scholar 

  • Duff MC, Hunter DB, Bertsch PM, Amrhein C (1999) Factors influencing uranium reduction and solubility in evaporation pond sediments. Biogeochemistry 45:95–114

    Google Scholar 

  • Eldursi K, Chi G, Bethune K, Li Z, Ledru P, Quirt D (2021) New insights from 2- and 3-D numerical modeling on fluid flow mechanisms and geological factors responsible for the formation of the world-class Cigar Lake uranium deposit, eastern Athabasca Basin, Canada. https://doi.org/10.1007/s00126-020-00979-5

  • Fayek M, Horita J, Ripley EM (2011) The oxygen isotopic composition of uranium minerals; a review. Ore Geol Rev 41:1–21

    Article  Google Scholar 

  • Finch R, Murakami T (1999) Systematics and paragenesis of uranium minerals. In: Burns, P.C., Finch, R. (Eds.), Uranium: mineralogy, geochemistry and the environment. Rev. Mineral., Mineralogical Society of America, 38, 91–180

  • Finch WI, Molina P, Naumov SS, Ruzicka V, Barthel F, Thoste V, Miller-Kahle E, Pecnik M, Tauchid M (2005) World distribution of uranium deposits, First Edition, IAEA, Scale 1:30,000,000

  • Frondel C (1958) Systematic mineralogy of uranium and thorium. U. S. Geological Survey Bulletin, Report: B1064, pp. 400

  • Garrels RM, Christ CL (1959) Behavior of uranium minerals during oxidation; Part 6. U. S. Geological Survey - Professional Paper, Report P0320:81–89

    Google Scholar 

  • Gauthier-Lafaye F, Holliger P, Blanc P-L (1996) Natural fission reactors in the Francevillian Basn, Gabon: a review of the conditions of results of a critical event in a geological system: Geochim. Cosmochim Acta 60:4831–4852

    Article  Google Scholar 

  • Gigon J, Mercadier J, Annesley IR, Richard A, Wygralak AS, Skirrow RG, Mernagh TP (2021) Uranium mobility and deposition over 1.3 Ga in the Westmoreland area (McArthur Basin, Australia). https://doi.org/10.1007/s00126-020-01031-2

  • Grare A, Benedicto A, Mercadier J, Lacombe O, Trave A, Guilcher M, Richard A, Ledru P, Blain M, Robbins J, Lach P (2021) Structural controls and metallogenic model of polyphase uranium mineralization in the Kiggavik area (Nunavut, Canada). https://doi.org/10.1007/s00126-020-00957-x

  • Grenthe I, Stumm W, Laaksuharju M, Nilsson AC, Wikberg P (1992) Redox potentials and redox reactions in deep groundwater systems. Chem Geol 98:131–150

    Article  Google Scholar 

  • Guillaumont R, Fandhänel T, Fuger J, Grenthe I, Neck V, Palmer DA, Rand MH (2003) Update on the chemical thermodynamics of uranium, neptunium, plutonium, americium, and technecium. NEA-OECD, 5

  • Hazen RM, Ewing RC, Sverjensky DA (2009) Evolution of uranium and thorium minerals. Am Min 94:1293–1311

    Article  Google Scholar 

  • Hemingway BS (1982) Thermodynamic properties of selected uranium compounds and aqueous species at 298.15 K and 1 bar and at higher temperatures; preliminary models for the origin of coffinite deposits. Open-File Report - U. S. Geological Survey, Report: OF 82–0619, pp. 95

  • Holland HD (1984) The chemical evolution of the atmosphere and oceans. Princeton University Press, pp. 582

  • Hostetler PB, Garrels RM (1962) Transportation and precipitation of uranium and vanadium at low temperatures, with special reference to sandstone-type uranium deposits. Econ Geol 57:137–167

    Article  Google Scholar 

  • Hutchinson RW, Blackwell DJ (1984) Time, crustal evolution and generation of uranium deposits. In: De Vivo, B., Ippolito, F., Capaldi, G., Simpson, P.R. (Eds.), Uranium geochemistry, mineralogy, geology, exploration and resources. The Institute of Mining and Metallurgy, pp. 201

  • IAEA (2009) World distribution of uranium deposits (UDEPO) with uranium deposit classification. IAEA-TECDOC-1629, pp. 109

  • IAEA (2012) Uranium 2011: resources, production and demand. A joint review by the OECD Nuclear Energy Agency and the IAEA, NEA No. 7059, pp. 487

  • IAEA (2013) Geological classification of uranium deposits and description of selected examples, IAEA-TECDOC-1842, 978-92-0-101618-8

  • IAEA (2014) Uranium 2014: resources, production and demand. A joint review by the OECD nuclear energy agency and the IAEA, NEA No. 7209, pp. 504

  • IAEA (2016) Uranium 2016: resources, production and demand. A joint review by the OECD nuclear energy agency and the IAEA, NEA No. 7301, pp. 546

  • Kuptsova AV, Khudoley AK, Thomas D (2021) Geology, alteration system, and uranium metallogenic potential of Pasha-Ladoga Basin, Russia. https://doi.org/10.1007/s00126-019-00938-9

  • Kyser TK, Cuney M (2009) Geochemical characteristics of uranium and analytical methodologies. In: Cuney, M., Kyser, T.K. (Eds.), Recent and not-so recent developments in uranium deposits and implications for exploration. Mineralogical Association of Canada - Short course series, 39, 23–55

  • Langmuir D (1978) Uranium solution-mineral equilibria at low temperatures with applications to sedimentary ore deposits. Geochim Cosmochim Acta 42:547–570

    Article  Google Scholar 

  • Lauf R (2008) Introduction to radioactive minerals. Schiffer Publishing, Atglen, PA, U.S.A., p 144

    Google Scholar 

  • Li Z, Chi G, Bethune K, Eldursi K, Quirt D, Ledru P, Thomas D (2021) Interplay between thermal convection and compressional fault reactivation in the formation of unconformity-related uranium deposits. https://doi.org/10.1007/s00126-020-01011-6

  • Martz P, Mercadier J, Perret J, Villeneuve J, Deloule E, Cathelineau M, Quirt D, Doney A, Ledru P (2019) Post-crystallization alteration of natural uraninites: implications for dating, tracing and nuclear forensics. Geochim Cosmochim Acta 249:138–159

    Article  Google Scholar 

  • Moyes LN, Parkman RH, Charnock JM, Vaughan DJ, Livens FR, Hughes CR, Braithwaite A (2000) Uranium uptake from aqueous solution by interaction with goethite, lepidocrocite, muscovite, and mackinawite; an X-ray absorption spectroscopy study. Environ Sci Tech 34:1062–1068

    Article  Google Scholar 

  • Nash JT, Granger HC, Adams SS (1981) Geology and concepts of genesis of important types of uranium deposits. In Economic Geology 75th Anniversary Volume, 63–117.Northrop, H.R., Goldhaber, M.B., Landis, G.P., Unruh, J.W., 1990a. Genesis of the tabular-type vanadium-uranium deposits of the Henry Basin, Utah; Part I, Geochemical and mineralogical evidence for the sources of ore-forming fluids. Econ Geol 85:215–236

    Google Scholar 

  • Ono S, Fayek M (2010) Decoupling of O and Pb isotope systems of uraninite in the early Proterozoic Conglomerates in the Elliot Lake district. Chem Geol 288:1–13

    Article  Google Scholar 

  • Schindler M, Hawthorne FC, Freund MS, Burns PC (2009) XPS spectra of uranyl minerals and synthetic compounds; I, the U 4f spectrum. Geochim Cosmochim Acta 73:2471–2487

    Article  Google Scholar 

  • Shabaga BM, Fayek M, Quirt D, Jefferson C, Ledru P (2021) Geochemistry and Geochronology of the Kiggavik Uranium Deposit, Nunavut, Canada. Mineral Deposit. https://doi.org/10.1007/s00126-020-01001-8

  • Sharpe R, Fayek M (2011) The world’s oldest observed primary uraninite. Can Min 49:1199–1210

    Article  Google Scholar 

  • Shock EL, Sassani DC, Betz H (1997) Uranium in geologic fluids; estimates of standard partial molal properties, oxidation potentials, and hydrolysis constants at high temperatures and pressures. Geochim Cosmochim Acta 61:4245–4266

    Article  Google Scholar 

  • Skirrow RG, Jaireth S, Huston DL, Bastrakov EN, Schofield A, van der Wielen SE, Barnicoat AC (2009) Uranium mineral systems; processes, exploration criteria and a new deposit framework. Rec Geosci Aus. 44p

  • Skirrow RG (2009) New views of Australia’s uranium mineral systems. Aus Geo News 95:3–6

    Google Scholar 

  • Suzuki Y, Banfield JF (1999) Geomicrobiology of uranium. Rev Mineral 38:393–432

    Google Scholar 

  • Vanderhaeghe O, Anne-Sylvie A-M, Mbaguedje D, Eglinger A, Ohnenstetter M, Isseini M, Cuney M, Poujol M, Van Lichtervelde M (2021) Uranium mineralization associated with late magmatic ductile to brittle deformation and Na-/Na-Ca-metasomatism of the Pan-African A-type Zabili syntectonic pluton (Mayo-Kebbi massif, SW Chad). https://doi.org/10.1007/s00126-020-00999-1

  • Vochten R, van Haverbeke L (1990) Transformation of schoepite into the uranyl oxide hydrates; becquerelite, billietite and wolsendorfite. Mineral Petrol 43:65–72

    Article  Google Scholar 

  • Waite TD, Davis JA, Payne TE, Waychunas GA, Xu N (1994) Uranium(VI) adsorption to ferrihydrite; application of a surface complexation model. Geochim Cosmochim Acta 58:5465–5478

    Article  Google Scholar 

  • World Uranium Mining Production. London: World Nuclear Association. May 2020.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mostafa Fayek.

Additional information

Editorial handling: G. Beaudoin

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fayek, M., Cuney, M. & Mercadier, J. Introduction to the thematic issue on exploration for global uranium deposits: in memory of T. Kurtis Kyser. Miner Deposita 56, 1239–1244 (2021). https://doi.org/10.1007/s00126-021-01072-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-021-01072-1

Navigation