Skip to main content

Advertisement

Log in

S100A4 promotes inflammation but suppresses lipid accumulation via the STAT3 pathway in chronic ethanol-induced fatty liver

  • Original Article
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

S100A4, a member of the S100 calcium-binding protein family, has been identified in a subpopulation of liver macrophages and promotes liver fibrosis via hepatic stellate cell activation. However, the specific role of S100A4 in alcoholic liver disease (ALD) has not been well investigated. Here, S100A4 knockout (S100A4−/−) mice were used in a chronic-binge ethanol model for studying the role of S100A4 and its related molecular mechanism in ALD. S100A4 expression was increased in ethanol-induced liver tissues of wild-type (WT) mice. Macrophage-derived S100A4 promoted liver inflammation but suppressed lipid accumulation under the ethanol feeding condition. S100A4 deficiency promoted ethanol-induced liver injury and hepatic fat accumulation. Further mechanistic studies found that S100A4 inhibited liver fat accumulation mainly by activating the STAT3 pathway and downregulating lipogenic gene expression, especially that of SREBP-1c. In AML-12 cells, a STAT3 inhibitor abolished STAT3 levels and decreased the expression of SREBP1c. Furthermore, the administration of a neutralizing S100A4 antibody to WT mice significantly promoted ethanol-induced liver injury and fatty accumulation. Thus, S100A4 may represent a potential candidate target for the prevention and treatment of ethanol-induced fatty liver. In this study, we discovered the special role of S100A4 in alcoholic liver disease. S100A4 deficiency attenuated ethanol-induced hepatitis and promoted hepatic fat accumulation in ethanol-induced liver tissues. Further mechanistic studies have found that S100A4 promotes early alcoholic hepatitis mainly by activating the STAT3 pathway and its downstream proinflammatory gene expression. Interestingly, activation of the STAT3 pathway downregulates lipogenic gene expression, especially SREBP-1c.

Key messages

In this study, we discovered the special role of S100A4 in alcoholic liver disease. S100A4 deficiency attenuated ethanol-induced hepatitis and promoted hepatic fat accumulation in ethanol-induced liver tissues. Further mechanistic studies have found that S100A4 promotes early alcoholic hepatitis mainly by activating the STAT3 pathway and its downstream proinflammatory gene expression. Interestingly, activation of the STAT3 pathway downregulates lipogenic gene expression, especially SREBP-1c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ALD:

Alcoholic liver disease

WT:

Wild type

AFL:

Alcoholic fatty liver

ACC1:

Acetyl-CoA carboxylase 1

FAS:

Fatty acid synthase

SCD1:

Stearoyl-coenzyme A desaturase 1

SREBP:

Sterol regulatory element-binding protein

ChREBP:

Carbohydrate-response element-binding protein

IFN-γ:

Interferon-γ

IL:

Interleukin

TNF-α:

Tumor necrosis factor-α

MIP-2:

Macrophage inflammatory protein 2

GM-CSF:

Granulocyte-macrophage colony-stimulating factor

GRO-α:

Growth-regulated oncogene-α

MCP-1:

Monocyte chemoattractant protein-1

ALT:

Alanine transaminase

AST:

Aspartate aminotransferase

Cho:

Cholesterol

TG:

Triglyceride

EMT:

Epithelial-mesenchymal transition

Ly6G:

Lymphocyte antigen 6 complex locus G6D

MPO:

Myeloperoxidase

CYP2E1:

Cytochromep450-2E1

SOD:

Superoxide dismutase1

CAT:

Catalase

TGF-β:

Transforming growth factor β

Col1α1:

Type I collagen alpha-1

TIMP-1:

The tissue inhibitor of metalloproteinases-1

MMP-9:

Matrix metalloproteinase-9

References

  1. Louvet A, Mathurin P (2015) Alcoholic liver disease: mechanisms of injury and targeted treatment. Nat Rev Gastroenterol Hepatol 12(4):231–242

    Article  PubMed  Google Scholar 

  2. Mathurin P, Bataller R (2015) Trends in the management and burden of alcoholic liver disease. J Hepatol 62(1 Suppl):S38–S46

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singal AK, Anand BS (2013) Recent trends in the epidemiology of alcoholic liver disease. Clin Liver Dis 2(2):53–56

    Article  Google Scholar 

  4. Purohit V, Gao B, Song BJ (2009) Molecular mechanisms of alcoholic fatty liver. Alcohol Clin Exp Res 33(2):191–205

    Article  CAS  PubMed  Google Scholar 

  5. Anstee QM, Daly AK, Day CP (2011) Genetics of alcoholic and nonalcoholic fatty liver disease. Semin Liver Dis 31(2):128–146

    Article  CAS  PubMed  Google Scholar 

  6. Kwon HJ, Won YS, Park O, Chang B, Duryee MJ, Thiele GE, Matsumoto A, Singh S, Abdelmegeed MA, Song BJ, Kawamoto T, Vasiliou V, Thiele GM, Gao B (2014) Aldehyde dehydrogenase 2 deficiency ameliorates alcoholic fatty liver but worsens liver inflammation and fibrosis in mice. Hepatology 60(1):146–157

    Article  CAS  PubMed  Google Scholar 

  7. O'Shea RS, Dasarathy S, McCullough AJ (2010) Alcoholic liver disease. Hepatology 51(1):307–328

    Article  PubMed  Google Scholar 

  8. Albano E (2008) Oxidative mechanisms in the pathogenesis of alcoholic liver disease. Mol Asp Med 29(1–2):9–16

    Article  CAS  Google Scholar 

  9. Gao B, Bataller R (2011) Alcoholic liver disease: pathogenesis and new therapeutic targets. Gastroenterology 141(5):1572–1585

    Article  CAS  PubMed  Google Scholar 

  10. Cederbaum AI (2012) Alcohol metabolism. Clinics in liver disease 16(4):667–685

    Article  PubMed  PubMed Central  Google Scholar 

  11. Ceni E, Mello T, Galli A (2014) Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World J Gastroenterol 20(47):17756–17772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Choi YJ, Shin HS, Choi HS, Park JW, Jo I, Oh ES, Lee KY, Lee BH, Johnson RJ, Kang DH (2014) Uric acid induces fat accumulation via generation of endoplasmic reticulum stress and SREBP-1c activation in hepatocytes. Lab Investig 94(10):1114–1125

    Article  CAS  PubMed  Google Scholar 

  13. Dentin R, Girard J, Postic C (2005) Carbohydrate responsive element binding protein (ChREBP) and sterol regulatory element binding protein-1c (SREBP-1c): two key regulators of glucose metabolism and lipid synthesis in liver. Biochimie 87(1):81–86

    Article  CAS  PubMed  Google Scholar 

  14. You M, Fischer M, Deeg MA, Crabb DW (2002) Ethanol induces fatty acid synthesis pathways by activation of sterol regulatory element-binding protein (SREBP). J Biol Chem 277(32):29342–29347

    Article  CAS  PubMed  Google Scholar 

  15. Boye K, Maelandsmo GM (2010) S100A4 and metastasis: a small actor playing many roles. Am J Pathol 176(2):528–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Strutz F, Okada H, Lo CW, Danoff T, Carone RL, Tomaszewski JE, Neilson EG (1995) Identification and characterization of a fibroblast marker: FSP1. J Cell Biol 130(2):393–405

    Article  CAS  PubMed  Google Scholar 

  17. Mishra SK, Siddique HR, Saleem M (2012) S100A4 calcium-binding protein is key player in tumor progression and metastasis: preclinical and clinical evidence. Cancer Metastasis Rev 31(1–2):163–172

    Article  CAS  PubMed  Google Scholar 

  18. Österreicher CH, Penz-Österreicher M, Grivennikov SI, Guma M, Koltsova EK, Datz C, Sasik R, Hardiman G, Karin M, Brenner DA (2011) Fibroblast-specific protein 1 identifies an inflammatory subpopulation of macrophages in the liver. Proc Natl Acad Sci 108(1):308–313

    Article  PubMed  Google Scholar 

  19. Zhang J, Chen L, Liu X, Kammertoens T, Blankenstein T, Qin Z (2013) Fibroblast-specific protein 1/S100A4-positive cells prevent carcinoma through collagen production and encapsulation of carcinogens. Cancer Res 73(9):2770–2781

    Article  CAS  PubMed  Google Scholar 

  20. Zhang J, Chen L, Xiao M, Wang C, Qin Z (2011) FSP1+ fibroblasts promote skin carcinogenesis by maintaining MCP-1-mediated macrophage infiltration and chronic inflammation. Am J Pathol 178(1):382–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bettum IJ, Vasiliauskaite K, Nygaard V, Clancy T, Pettersen SJ, Tenstad E, Maelandsmo GM, Prasmickaite L (2014) Metastasis-associated protein S100A4 induces a network of inflammatory cytokines that activate stromal cells to acquire pro-tumorigenic properties. Cancer Lett 344(1):28–39

    Article  CAS  PubMed  Google Scholar 

  22. Schmidt-Hansen B, Ornas D, Grigorian M, Klingelhofer J, Tulchinsky E, Lukanidin E, Ambartsumian N (2004) Extracellular S100A4(mts1) stimulates invasive growth of mouse endothelial cells and modulates MMP-13 matrix metalloproteinase activity. Oncogene 23(32):5487–5495

    Article  CAS  PubMed  Google Scholar 

  23. Fei F, Qu J, Zhang M, Li Y, Zhang S (2017) S100A4 in cancer progression and metastasis: a systematic review. Oncotarget 8(42):21–73239

    Article  Google Scholar 

  24. Donato R, Cannon BR, Sorci G, Riuzzi F, Hsu K, Weber DJ, Geczy CL (2013) Functions of S100 proteins. Curr Mol Med 13(1):34–57

    Article  Google Scholar 

  25. Chen L, Zhang J, Dai C, Liu X, Wang J, Gao Z, Guo H, Wang R, Lu S, Wang F, Zhang H, Chen H, Fan X, Wang S, Qin Z (2015) S100A4 promotes liver fibrosis via activation of hepatic stellate cells. J Hepatol 62(1):156–164

    Article  CAS  PubMed  Google Scholar 

  26. Zhang J, Song K, Wang J, Li Y, Liu S, Dai C, Chen L, Wang S, Qin Z (2018) S100A4 blockage alleviates agonistic anti-CD137 antibody-induced liver pathology without disruption of antitumor immunity. OncoImmunology 7(4):e1296996

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hou S, Jiao Y, Yuan Q, Zhai J, Tian T, Sun K, Chen Z, Wu Z, Zhang J (2018) S100A4 protects mice from high-fat diet-induced obesity and inflammation. Lab Investig 98(8):1025–1038

    Article  CAS  PubMed  Google Scholar 

  28. Ki SH, Park O, Zheng M, Morales-Ibanez O, Kolls JK, Bataller R, Gao B (2010) Interleukin-22 treatment ameliorates alcoholic liver injury in a murine model of chronic-binge ethanol feeding: role of signal transducer and activator of transcription 3. Hepatology 52(4):1291–1300

    Article  CAS  PubMed  Google Scholar 

  29. McEver RP, Baenziger NL, Majerus PW (1980) Isolation and quantitation of the platelet membrane glycoprotein deficient in Thrombasthenia using a monoclonal Hybridoma antibody. J Clin Invest 66(6):1311–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhang J, Jiao Y, Hou S, Tian T, Yuan Q, Hao H, Wu Z, Bao X (2017) S100A4 contributes to colitis development by increasing the adherence of Citrobacter rodentium in intestinal epithelial cells. Sci Rep 7(1):12099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  32. Kawada N, Kuroki T, Kobayashi K, Inoue M, Nakatani K, Kaneda K, Nagata K (1996) Expression of heat-shock protein 47 in mouse liver. Cell Tissue Res 284(2):341–346

    Article  CAS  PubMed  Google Scholar 

  33. Hou S, Tian T, Qi D, Sun K, Yuan Q, Wang Z, Qin Z, Wu Z, Chen Z, Zhang J (2018) S100A4 promotes lung tumor development through β-catenin pathway-mediated autophagy inhibition. Cell Death Dis 9(3):277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Xue CPD, Venkov C, Xu C, Neilson EG (2003) The gatekeeper effect of epithelial-mesenchymal transition regulates the frequency of breast cancer metastasis. Cancer Res 63(12):3386–3394

    CAS  PubMed  Google Scholar 

  35. Cui K, Yan G, Xu C, Chen Y, Wang J, Zhou R, Bai L, Lian Z, Wei H, Sun R, Tian Z (2015) Invariant NKT cells promote alcohol-induced steatohepatitis through interleukin-1beta in mice. J Hepatol 62(6):1311–1318

    Article  CAS  PubMed  Google Scholar 

  36. Arteel GE (2003) Oxidants and antioxidants in alcohol-induced liver disease. Gastroenterology 124(3):778–790

    Article  CAS  PubMed  Google Scholar 

  37. Venkov CD, Link AJ, Jennings JL, Plieth D, Inoue T, Nagai K, Xu C, Dimitrova YN, Rauscher FJ, Neilson EG (2007) A proximal activator of transcription in epithelial-mesenchymal transition. J Clin Invest 117(2):482–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6(5):392–401

    Article  CAS  PubMed  Google Scholar 

  39. Hansen MT, Forst B, Cremers N, Quagliata L, Ambartsumian N, Grum-Schwensen B, Klingelhofer J, Abdul-Al A, Herrmann P, Osterland M, Stein U, Nielsen GH, Scherer PE, Lukanidin E, Sleeman JP, Grigorian M (2015) A link between inflammation and metastasis: serum amyloid A1 and A3 induce metastasis, and are targets of metastasis-inducing S100A4. Oncogene 34(4):424–435

    Article  CAS  PubMed  Google Scholar 

  40. Yammani RR, Long D, Loeser RF (2009) Interleukin-7 stimulates secretion of S100A4 by activating the JAK/STAT signaling pathway in human articular chondrocytes. Arthritis Rheum 60(3):792–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kawaratani H, Tsujimoto T, Douhara A, Takaya H, Moriya K, Namisaki T, Noguchi R, Yoshiji H, Fujimoto M, Fukui H (2013) The effect of inflammatory cytokines in alcoholic liver disease. Mediat Inflamm 2013:495156

    Article  CAS  Google Scholar 

  42. Gao B, Wang H, Lafdil F, Feng D (2012) STAT proteins – key regulators of anti-viral responses, inflammation, and tumorigenesis in the liver. J Hepatol 57(2):430–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Miller AM, Wang H, Park O, Horiguchi N, Lafdil F, Mukhopadhyay P, Moh A, Fu XY, Kunos G, Pacher P, Gao B (2010) Anti-inflammatory and anti-apoptotic roles of endothelial cell STAT3 in alcoholic liver injury. Alcohol Clin Exp Res 34(4):719–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Horiguchi NWL, Mukhopadhyay P, Park O, Jeong WI, Lafdil F, Osei-Hyiaman D, Moh A, Fu XY, Pacher P, Kunos G, Gao B (2008) Cell type-dependent pro- and anti-inflammatory role of signal transducer and activator of transcription 3 in alcoholic liver injury. Gastroenterology 134(4):1148–1158

    Article  CAS  PubMed  Google Scholar 

  45. Haga S, Terui K, Zhang HQ, Enosawa S, Ogawa W, Inoue H, Okuyama T, Takeda K, Akira S, Ogino T, Irani K, Ozaki M (2003) Stat3 protects against Fas-induced liver injury by redox-dependent and -independent mechanisms. J Clin Investig 112(7):989–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China (81772497and 81370543) and the Natural Science Foundation of Beijing (7162116).

Author information

Authors and Affiliations

Authors

Contributions

Q.Y., Z.C., and J.Z. participated in the study design. Q.Y., S.H., J.Z., and Y.W. collected the data. Q.Y., Z.W., J.H., and J.Z. analyzed and interpreted the data. J.Z., Q.Y., and T.T. wrote the manuscript.

Corresponding author

Correspondence to Jinhua Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 7522 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Q., Hou, S., Zhai, J. et al. S100A4 promotes inflammation but suppresses lipid accumulation via the STAT3 pathway in chronic ethanol-induced fatty liver. J Mol Med 97, 1399–1412 (2019). https://doi.org/10.1007/s00109-019-01808-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00109-019-01808-7

Keywords

Navigation