Skip to main content
Log in

Time periodic traveling wave solutions for a Kermack–McKendrick epidemic model with diffusion and seasonality

  • Published:
Journal of Evolution Equations Aims and scope Submit manuscript

Abstract

In this paper, we study the time periodic traveling wave solutions for a Kermack–McKendrick SIR epidemic model with individuals diffusion and environment heterogeneity. In terms of the basic reproduction number \(R_0\) of the corresponding periodic ordinary differential model and the minimal wave speed \(c^*\), we establish the existence of periodic traveling wave solutions by the method of super- and sub-solutions, the fixed-point theorem, as applied to a truncated problem on a large but finite interval, and the limiting arguments. We further obtain the nonexistence of periodic traveling wave solutions for two cases involved with \(R_0\) and \(c^*\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.M. Anderson, Discussion: the Kermack–McKendrick epidemic threshold theorem, Bull. Math. Biol., 53(1991) 3–32.

    Article  Google Scholar 

  2. N. Bacaër, M. Gomes, On the Final Size of Epidemics with Seasonality, J. Math. Biol., 71(2009) 1954–1966.

    Article  MathSciNet  Google Scholar 

  3. I. Barbălat, Systèmes d’équations différentielles d’oscillations non linéaires, Rev. Math. Pures Appl., 4(1959) 267–269.

    MathSciNet  MATH  Google Scholar 

  4. N.S. Barnett, S.S. Dragomir, Some Landau type inequalities for functions whose derivatives are of locally bounded variation, Tamkang J. Math., 37(2006) 301–308.

    Article  MathSciNet  Google Scholar 

  5. F. Brauer, C. Castillo-Chavez, Mathematical Models in Population Biology and Epidemiology, Springer, New York, 2012.

    Book  Google Scholar 

  6. B. Buonomo, N. Chitnis, A. d’Onofrio, Seasonality in epidemic models: a literature review, Ricerche mat., 67(2018) 7–25.

    Article  MathSciNet  Google Scholar 

  7. D. Daners, P. Koch Medina, Abstract Evolution Equations, Periodic Problems and Applications, Pitman Research Notes in Mathematics Series, 279, Longman, Harlow, UK, 1992.

  8. S. Dowell, M.S. Ho, Seasonality of infectious diseases and severe acute respiratory syndrome-what we don’t know can hurt us, Lancet Infect. Dis., 4(2004) 704–08.

    Article  Google Scholar 

  9. A. Ducrot, T. Giltti, Convergence to a pulsating travelling wave for an epidemic reaction–diffusion system with non-diffusive susceptible population, J. Math. Biol., 69(2014) 533–552.

    Article  MathSciNet  Google Scholar 

  10. A. Ducrot, P. Magal, Travelling wave solutions for an infection-age structured model with diffusion, Proc. Roy. Soc. Edinb., 139(2009) 459–482.

    Article  MathSciNet  Google Scholar 

  11. A. Ducrot, P. Magal, S. Ruan, Travelling wave solutions in multigroup age-structured epidemic models, Arch. Ration. Mech. Anal., 195(2010) 311–331.

    Article  MathSciNet  Google Scholar 

  12. B. Farkas, S. Wegner, Variations on Barbalat’s Lemma, arXiv:1411.1611 (2014)

  13. J. Fang, X.-Q. Zhao, Bistable waves for monotone semiflows with applications, J. Euro. Math. Soc., 17(2015) 2243–2288.

    Article  MathSciNet  Google Scholar 

  14. J. Földes, P. Poláčik, On cooperative parabolic systems: Harnack inequalities and asymptotic symmetry, Discrete Contin. Dynam. Syst., 25(2009) 133–157.

    Article  MathSciNet  Google Scholar 

  15. A. Friedman, Partial differential equations of parabolic type, Prentice-Hall, Englewood Cliffs, N.J., 1964.

    MATH  Google Scholar 

  16. S.-C. Fu, Traveling waves for a diffusive SIR model with delay, J. Math. Anal. Appl., 435(2016) 20–37.

    Article  MathSciNet  Google Scholar 

  17. S.-C. Fu, J.-S. Guo, C.-C. Wu, Traveling wave solutions for a discrete diffusive epidemic model. J. Nonlinear Convex Anal., 17(2016) 1739–1751.

    MathSciNet  MATH  Google Scholar 

  18. S.-C. Fu, J.-C. Tsai, Wave propagation in predator-prey systems, Nonlinearity, 28(2015) 4389–4423.

    Article  MathSciNet  Google Scholar 

  19. H. Hethcote, Asymptotic behavior in a deterministic epidemic model, Bull. Math. Biol., 35(1973) 607–614.

    Article  Google Scholar 

  20. H. Hethcote, S. Levin, Periodicity in Epidemiological Models, in: S.A. Levin, T.G. Hallam, L. Gross (Eds.), Applied Mathematical Ecology, Biomathematics, vol. 18, Springer, Berlin, 1989.

    Google Scholar 

  21. H. Hethcote, J.A. Yorke, Gonorrhea Transmission Dynamics and Control, Lecture Notes in Biomath, 56, Springer-Verlag, Berlin, 1984.

    Book  Google Scholar 

  22. Y. Hosono, B. Ilyas, B. Existence of traveling waves with any positive speed for a diffusive epidemic model, Nonlinear World., 1(1994) 277–290.

    MathSciNet  MATH  Google Scholar 

  23. W. Huang, A geometric approach in the study of traveling waves for some classes of non-monotone reaction–diffusion systems, J. Differential Equations, 260(2016) 2190–2224.

    Article  MathSciNet  Google Scholar 

  24. A. Kallen, Thresholds and travelling waves in an epidemic model for rabies, Nonlinear Anal., 8(1984) 851–856.

    Article  MathSciNet  Google Scholar 

  25. A. Kallen, P. Arcuri, J.D. Murray, A simple model for the spread and control of rabies, J. Theor. Biol., 116(1985) 377–393.

    Article  MathSciNet  Google Scholar 

  26. W.O. Kermack, A.G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. B, 115(1927) 700–720.

    MATH  Google Scholar 

  27. E. Landau, Einige Ungleichungen für zweimal differentzierban funktionen, Proc. London Math. Soc., 13(1913) 43–49.

    MATH  Google Scholar 

  28. X. Liang, Y. Yi, X.-Q. Zhao, Spreading speeds and traveling waves for perioidc evolution systems, J. Differential Equations, 231(2006) 57–77.

    Article  MathSciNet  Google Scholar 

  29. Gary M. Second order parabolic differential equations, World Scientific Publishing Co., Inc., River Edge, NJ, 1996.

    Book  Google Scholar 

  30. W.P. London, J.A. Yorke, Recurrent outbreaks of measles, chickenpox and mumps I. Seasonal variation in contact rates, Am. J. Epidemiol., 98(1973) 453–468.

    Article  Google Scholar 

  31. A. Lunardi, Analytic Semigroups and Optimal Regularity in Parabolic Problems, Birkhäuser, Boston, 1995.

    Book  Google Scholar 

  32. J. Ma, Z. Ma, Epidemic threshold conditions for seasonally forced SEIR models, Math. Bio. Eng., 3(2006) 161–172.

    Article  MathSciNet  Google Scholar 

  33. X.-S. Wang, H. Wang, J. Wu, Traveling waves of diffusive predator-prey systems: Disease outbreak propagation, Discrete Contin. Dyn. Syst., 32(2012) 3303–3324.

    Article  MathSciNet  Google Scholar 

  34. Z.-C. Wang, J. Wu, Travelling waves of a diffusive Kermack–McKendrick epidemic model with non-local delayed transmission, Proc. Roy. Soc. Lond., 466(2010) 237–261.

    Article  MathSciNet  Google Scholar 

  35. Z.-C. Wang, L. Zhang, X.-Q. Zhao, Time periodic traveling waves for a periodic and diffusive SIR epidemic model, J. Dyn. Diff. Equat., 30(2018) 379–403.

    Article  MathSciNet  Google Scholar 

  36. C.-C. Wu, Existence of traveling waves with the critical speed for a discrete diffusive epidemic model. J. Differential Equations, 262(2017) 272–282.

    Article  MathSciNet  Google Scholar 

  37. F.-Y. Yang, W.-T. Li, Z.-C. Wang, Traveling waves in a nonlocal dispersal Kermack–McKendrick epidemic model, Discrete Contin. Dyn. Syst. Ser. B, 18(2013) 1969–1993.

    MathSciNet  MATH  Google Scholar 

  38. L. Zhang, S.-M. Wang, Critical periodic traveling waves for a periodic and diffusive epidemic model, accepted by Applicable Analysis, 2019.

  39. L. Zhang, Z.-C. Wang, X.-Q. Zhao, Propagation dynamics of a time periodic and delayed reaction–diffusion model without quasi-monotonicity, Trans. Amer. Math. Soc., 372(2019) 1751–1782.

    Article  MathSciNet  Google Scholar 

  40. T. Zhang, W. Wang, K. Wang, Minimal wave speed for a class of non-cooperative diffusion–reaction systems, J. Differential Equations, 260(2016) 2763–2791.

    Article  MathSciNet  Google Scholar 

  41. G. Zhao, S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka–Volterra competition system with diffusion, J. Math. Pures Appl. 95(2011) 627–671.

    Article  MathSciNet  Google Scholar 

  42. G. Zhao, S. Ruan, Time periodic traveling wave solutions for periodic advection–reaction–diffusion systems, J. Differential Equations, 257(2014), 1078–1147.

    Article  MathSciNet  Google Scholar 

  43. J. Zhou, L. Song, J. Wei, H. Xu, Critical traveling waves in a diffusive disease model, J. Math. Anal. Appl., 476(2019) 522–538.

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the anonymous referees for their insightful comments and suggestions which contributed to greatly improve the original version of the manuscript. Both Zhang and Wang’s research was supported by NNSF of China (11371179, 11731005, 11701242) and the Fundamental Research Funds for the Central Universities (lzujbky-2017-ot09, lzujbky-2017-27, lzujbky-2019-79), and Zhao’s research was supported in part by the NSERC of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Cheng Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, ZC. & Zhao, XQ. Time periodic traveling wave solutions for a Kermack–McKendrick epidemic model with diffusion and seasonality. J. Evol. Equ. 20, 1029–1059 (2020). https://doi.org/10.1007/s00028-019-00544-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00028-019-00544-2

Keywords

Mathematics Subject Classification

Navigation