Annales Henri Poincaré

, Volume 19, Issue 12, pp 3663–3742 | Cite as

The Free Boundary Schur Process and Applications I

  • Dan Betea
  • Jérémie Bouttier
  • Peter NejjarEmail author
  • Mirjana Vuletić
Open Access


We investigate the free boundary Schur process, a variant of the Schur process introduced by Okounkov and Reshetikhin, where we allow the first and the last partitions to be arbitrary (instead of empty in the original setting). The pfaffian Schur process, previously studied by several authors, is recovered when just one of the boundary partitions is left free. We compute the correlation functions of the process in all generality via the free fermion formalism, which we extend with the thorough treatment of “free boundary states.” For the case of one free boundary, our approach yields a new proof that the process is pfaffian. For the case of two free boundaries, we find that the process is not pfaffian, but a closely related process is. We also study three different applications of the Schur process with one free boundary: fluctuations of symmetrized last passage percolation models, limit shapes and processes for symmetric plane partitions and for plane overpartitions.



We thank Jinho Baik, Guillaume Barraquand, Philippe Biane, Elia Bisi, Alexei Borodin, Cédric Boutillier, Ivan Corwin, Philippe Di Francesco, Patrik Ferrari, Mikael de la Salle, Ole Warnaar, Michael Wheeler, and Nikos Zygouras for useful conversations. We also thank the anonymous referee for suggesting valuable improvements to the paper. Most of this work was done, while the first three authors were at the Département de mathématiques et applications, École normale supérieure, Paris. We also acknowledge hospitality and support from the Galileo Galilei Institute during the 2015 program on “Statistical Mechanics, Integrability and Combinatorics.” Part of this work was done, while D.B. was visiting the ENS de Lyon and László Erdős at IST Austria, and remerciements are due to both institutions and to László for their hosting. J.B. recently enjoyed the hospitality from the PCMI 2017 Research Program and from the ESI program on “Algorithmic and Enumerative Combinatorics.” We acknowledge financial support from the “Combinatoire à Paris” project funded by the City of Paris (D.B. and J.B.), from the Agence Nationale de la Recherche via the Grants ANR 12-JS02-001-01 “Cartaplus” and ANR-14-CE25-0014 “GRAAL” (J.B.), from Paris Sciences and Lettres and from the ERC Advanced Grant No. 338804 (P.N.).


  1. 1.
    Aissen, M., Edrei, A., Schoenberg, I.J., Whitney, A.: On the generating functions of totally positive sequences. Proc. Natl. Acad. Sci. USA 37, 303–307 (1951)ADSMathSciNetCrossRefGoogle Scholar
  2. 2.
    Alexandrov, A., Zabrodin, A.: Free fermions and tau-functions. J. Geom. Phys. 67, 37–80 (2013). arXiv:1212.6049 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    Baik, J., Barraquand, G., Corwin, I., Suidan, T.: Facilitated exclusion process (2017). arXiv:1707.01923 [math.PR]
  4. 4.
    Baik, J., Barraquand, G., Corwin, I., Suidan, T.: Pfaffian Schur processes and last passage percolation in a half-quadrant. Ann. Probab. 46(6), 3015–3089 (2018)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Baik, J., Deift, P., Johansson, K.: On the distribution of the length of the longest increasing subsequence of random permutations. J. Am. Math. Soc. 12(4), 1119–1178 (1999). arXiv:math/9810105 [math.CO]MathSciNetCrossRefGoogle Scholar
  6. 6.
    Baik, J., Rains, E.M.: Symmetrized random permutations (1999). arXiv:math/9910019 [math.CO]
  7. 7.
    Baik, J., Rains, E.M.: Algebraic aspects of increasing subsequences. Duke Math. J. 109(1), 1–65 (2001). arXiv:math/9905083 [math.CO]MathSciNetCrossRefGoogle Scholar
  8. 8.
    Baik, J., Rains, E.M.: The asymptotics of monotone subsequences of involutions. Duke Math. J. 109(2), 205–281 (2001). arXiv:math/9905084 [math.CO]MathSciNetCrossRefGoogle Scholar
  9. 9.
    Barraquand, G., Borodin, A., Corwin, I., Wheeler, M.: Stochastic six-vertex model in a half-quadrant and half-line open ASEP. Duke Math. J. 167(13), 2457–2529 (2018)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Betea, D., Bouttier, J.: The periodic Schur process and free fermions at finite temperature (2018). arXiv:1807.09022 [math-ph]
  11. 11.
    Betea, D., Boutillier, C., Bouttier, J., Chapuy, G., Corteel, S., Vuletić, M.: Perfect sampling algorithm for Schur processes. Markov Process. Relat. Fields 24, 381–418 (2018). arXiv:1407.3764 [math.PR]MathSciNetzbMATHGoogle Scholar
  12. 12.
    Betea, D., Bouttier, J., Nejjar, P., Vuletić, M.: The free boundary Schur process and applications. Preprint (2017). arXiv:1704.05809v2 [math.PR]
  13. 13.
    Betea, D., Bouttier, J., Nejjar, P., Vuletić, M.: The free boundary Schur process and applications (extended abstract). Sém. Lothar. Combin., 78B:Art. 44, 12, 2017. Proceedings of the 29th Conference on Formal Power Series and Algebraic Combinatorics (London)Google Scholar
  14. 14.
    Borodin, A., Ferrari, P.L.: Anisotropic growth of random surfaces in \(2+1\) dimensions. Commun. Math. Phys. 325(2), 603–684 (2014). arXiv:0804.3035 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  15. 15.
    Borodin, A., Gorin, V.: Lectures on integrable probability. In: Probability and statistical physics in St. Petersburg, Volume 91 of Proc. Sympos. Pure Math., pp. 155–214. Amer. Math. Soc., Providence (2016). arXiv:1212.3351 [math.PR]
  16. 16.
    Borodin, A.: Periodic Schur process and cylindric partitions. Duke Math. J. 140(3), 391–468 (2007). arXiv:math/0601019 [math.CO]MathSciNetCrossRefGoogle Scholar
  17. 17.
    Borodin, A., Olshanski, G.: The ASEP and determinantal point processes. Commun. Math. Phys. 353(2), 853–903 (2017). arXiv:1608.01564 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  18. 18.
    Borodin, A., Rains, E.M.: Eynard–Mehta theorem, Schur process, and their Pfaffian analogs. J. Stat. Phys. 121(3–4), 291–317 (2005). arXiv:math-ph/0409059 ADSMathSciNetCrossRefGoogle Scholar
  19. 19.
    Boutillier, C., Bouttier, J., Chapuy, G., Corteel, S., Ramassamy, S.: Dimers on rail yard graphs. Ann. Inst. Henri Poincaré D 4, 479–539 (2017). arXiv:1504.05176 [math-ph]MathSciNetCrossRefGoogle Scholar
  20. 20.
    Boutillier, C., Mkrtchyan, S., Reshetikhin, N., Tingley, P.: Random skew plane partitions with a piecewise periodic back wall. Ann. Henri Poincaré 13(2), 271–296 (2012). arXiv:0912.3968 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  21. 21.
    Bouttier, J., Chapuy, G., Corteel, S.: From Aztec diamonds to pyramids: steep tilings. Trans. Am. Math. Soc. 369(8), 5921–5959 (2017). arXiv:1407.0665 [math.CO]MathSciNetCrossRefGoogle Scholar
  22. 22.
    Cerf, R., Kenyon, R.: The low-temperature expansion of the Wulff crystal in the 3D Ising model. Commun. Math. Phys. 222(1), 147–179 (2001)ADSMathSciNetCrossRefGoogle Scholar
  23. 23.
    Ciucu, M., Krattenthaler, C.: The interaction of a gap with a free boundary in a two dimensional dimer system. Commun. Math. Phys. 302(1), 253–289 (2011). arXiv:0912.2023 [math.CO]ADSMathSciNetCrossRefGoogle Scholar
  24. 24.
    Corteel, S., Savelief, C., Vuletić, M.: Plane overpartitions and cylindric partitions. J. Combin. Theory Ser. A 118(4), 1239–1269 (2011). arXiv:0903.2039 [math.CO]MathSciNetCrossRefGoogle Scholar
  25. 25.
    Di Francesco, P., Reshetikhin, N.: Asymptotic shapes with free boundaries. Commun. Math. Phys. 309(1), 87–121 (2012). arXiv:0908.1630 [math-ph]ADSMathSciNetCrossRefGoogle Scholar
  26. 26.
    Dolgachev, I.: Lectures on modular forms (1998).
  27. 27.
    Ferrari, P.L., Spohn, H.: Step fluctuations for a faceted crystal. J. Stat. Phys. 113(1–2), 1–46 (2003). arXiv:cond-mat/0212456 [cond-mat.stat-mech]MathSciNetCrossRefGoogle Scholar
  28. 28.
    Ghosal, P.: Correlation functions of the Pfaffian Schur process using Macdonald difference operators (2017). arXiv:1705.05859 [math.PR]
  29. 29.
    Jimbo, M., Miwa, T.: Solitons and infinite-dimensional Lie algebras. Publ. Res. Inst. Math. Sci. 19(3), 943–1001 (1983)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Johansson, K.: Shape fluctuations and random matrices. Commun. Math. Phys. 209(2), 437–476 (2000). arXiv:math/9903134 [math.CO]ADSMathSciNetCrossRefGoogle Scholar
  31. 31.
    Johansson, K.: Random matrices and determinantal processes. In: Mathematical Statistical Physics, pp. 1–55. Elsevier B.V., Amsterdam (2006). arXiv:math-ph/0510038
  32. 32.
    Kac, V.G.: Infinite-Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  33. 33.
    Kenyon, R.: Height fluctuations in the honeycomb dimer model. Commun. Math. Phys. 281(3), 675 (2008). arXiv:math-ph/0405052 ADSMathSciNetCrossRefGoogle Scholar
  34. 34.
    Kenyon, R., Okounkov, A.: Planar dimers and Harnack curves. Duke Math. J. 131(3), 499–524 (2006). arXiv:math/0311062 [math.AG]MathSciNetCrossRefGoogle Scholar
  35. 35.
    Kenyon, R., Okounkov, A.: Limit shapes and the complex Burgers equation. Acta Math. 199(2), 263–302 (2007). arXiv:math-ph/0507007 MathSciNetCrossRefGoogle Scholar
  36. 36.
    Kenyon, R., Okounkov, A., Sheffield, S.: Dimers and amoebae. Ann. Math. (2) 163(3), 1019–1056 (2006). arXiv:math-ph/0311005 MathSciNetCrossRefGoogle Scholar
  37. 37.
    Macdonald, I.G.: Symmetric functions and Hall polynomials. In: Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York, 2nd edn. With Contributions by A. Zelevinsky, Oxford Science Publications (1995)Google Scholar
  38. 38.
    Miwa, T., Jimbo, M., Date, E.: Solitons, volume 135 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge. Differential equations, symmetries and infinite-dimensional algebras, Translated from the 1993 Japanese original by Miles Reid (2000)Google Scholar
  39. 39.
    Nienhuis, B., Hilhorst, H.J., Blöte, H.W.J.: Triangular SOS models and cubic-crystal shapes. J. Phys. A 17(18), 3559–3581 (1984)ADSMathSciNetCrossRefGoogle Scholar
  40. 40.
    Okada, S.: An elliptic generalization of Schur’s Pfaffian identity. Adv. Math. 204(2), 530–538 (2006). arXiv:math/0412038 [math.CA]MathSciNetCrossRefGoogle Scholar
  41. 41.
    Okounkov, A.: Infinite wedge and random partitions. Sel. Math. (N.S.) 7(1), 57–81 (2001). arXiv:math/9907127 [math.RT]MathSciNetCrossRefGoogle Scholar
  42. 42.
    Okounkov, A., Reshetikhin, N.: Correlation function of Schur process with application to local geometry of a random 3-dimensional Young diagram. J. Am. Math. Soc. 16(3), 581–603 (electronic) (2003). arXiv:math/0107056 [math.CO]
  43. 43.
    Ortmann, J., Quastel, J., Remenik, D.: A Pfaffian representation for flat ASEP. Commun. Pure Appl. Math. 70(1), 3–89 (2017). arXiv:1501.05626 [math.PR]MathSciNetCrossRefGoogle Scholar
  44. 44.
    Panova, G.: Lozenge tilings with free boundaries. Lett. Math. Phys. 105(11), 1551–1586 (2015). arXiv:1408.0417 [math.PR]ADSMathSciNetCrossRefGoogle Scholar
  45. 45.
    Rains, E.M.: Correlation functions for symmetrized increasing subsequences (2000). arXiv:math/0006097 [math.CO]
  46. 46.
    Sasamoto, T., Imamura, T.: Fluctuations of the one-dimensional polynuclear growth model in half-space. J. Stat. Phys. 115, 749–803 (2004). arXiv:cond-mat/0307011 [cond-mat.stat-mech]ADSMathSciNetCrossRefGoogle Scholar
  47. 47.
    Stanley, R.P.: Enumerative combinatorics. Vol. 2, Volume 62 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge. With a foreword by Gian-Carlo Rota and appendix 1 by Sergey Fomin (1999)Google Scholar
  48. 48.
    Stembridge, J.R.: Nonintersecting paths, Pfaffians, and plane partitions. Adv. Math. 83(1), 96–131 (1990)MathSciNetCrossRefGoogle Scholar
  49. 49.
    Thoma, E.: Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzählbar unendlichen, symmetrischen Gruppe. Math. Z. 85, 40–61 (1964)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Tracy, C.A., Widom, H.: Level-spacing distributions and the Airy kernel. Commun. Math. Phys. 159(1), 151–174 (1994). arXiv:hep-th/9211141 ADSMathSciNetCrossRefGoogle Scholar
  51. 51.
    Vuletić, M.: The shifted Schur process and asymptotics of large random strict plane partitions. Int. Math. Res. Not. IMRN, (14):Art. ID rnm043, 53 (2007). arXiv:math-ph/0702068
  52. 52.
    Vuletić, M.: The Gaussian free field and strict plane partitions. In: 25th International Conference on Formal Power Series and Algebraic Combinatorics (FPSAC 2013), Discrete Math. Theor. Comput. Sci. Proc., AS, pp. 1041–1052. Assoc. Discrete Math. Theor. Comput. Sci., Nancy (2013)Google Scholar

Copyright information

© The Author(s) 2018

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 4.0 International License (, which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Authors and Affiliations

  • Dan Betea
    • 1
  • Jérémie Bouttier
    • 2
    • 3
  • Peter Nejjar
    • 4
    Email author
  • Mirjana Vuletić
    • 5
  1. 1.IRIFCNRS et Université Paris DiderotParis Cedex 13France
  2. 2.Institut de Physique Théorique Université Paris-Saclay, CEA, CNRSGif-sur-YvetteFrance
  3. 3.Univ Lyon, Ens de Lyon, Univ Claude Bernard, CNRS, Laboratoire de PhysiqueLyonFrance
  4. 4.IST AustriaKlosterneuburgAustria
  5. 5.Department of MathematicsUniversity of Massachusetts BostonBostonUSA

Personalised recommendations