Cellular and Molecular Life Sciences

, Volume 76, Issue 3, pp 473–493 | Cite as

An insight into gut microbiota and its functionalities

  • Atanu Adak
  • Mojibur R. KhanEmail author


Gut microbiota has evolved along with their hosts and is an integral part of the human body. Microbiota acquired at birth develops in parallel as the host develops and maintains its temporal stability and diversity through adulthood until death. Recent developments in genome sequencing technologies, bioinformatics and culturomics have enabled researchers to explore the microbiota and in particular their functions at more detailed level than before. The accumulated evidences suggest that though a part of the microbiota is conserved, the dynamic members vary along the gastrointestinal tract, from infants to elderly, primitive tribes to modern societies and in different health conditions. Though the gut microbiota is dynamic, it performs some basic functions in the immunological, metabolic, structural and neurological landscapes of the human body. Gut microbiota also exerts significant influence on both physical and mental health of an individual. An in-depth understanding of the functioning of gut microbiota has led to some very exciting developments in therapeutics, such as prebiotics, probiotics, drugs and faecal transplantation leading to improved health.


Gut microbiota Functions Health Therapeutics 



The authors are thankful to Department of Science and Technology, India and author A.A. is thankful to Department of Biotechnology, India for supporting with fellowship under Unit of Excellence Project (BT/550/NE/U-Excel/2014). The authors are also thankful to Dr. Josephine Brennan (Scientist, Department of Agriculture, Food and Marine, Ireland) for help in improving the English of the manuscript.


  1. 1.
    Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Natl Acad Sci USA 74(11):5088–5090Google Scholar
  2. 2.
    Rosenberg E, Zilber-Rosenberg I (2016) Microbes drive evolution of animals and plants: the hologenome concept. MBio 7(2):e01395-01315Google Scholar
  3. 3.
    Davies J (2001) In a map for human life, count the microbes, too. Science 291(5512):2316Google Scholar
  4. 4.
    NHW Group, Peterson J, Garges S, Giovanni M, McInnes P, Wang L et al (2009) The NIH Human Microbiome Project. Genome Res 19(12):2317–2323. Google Scholar
  5. 5.
    Relman DA, Falkow S (2001) The meaning and impact of the human genome sequence for microbiology. Trends Microbiol 9(5):206–208Google Scholar
  6. 6.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464(7285):59–65. Google Scholar
  7. 7.
    Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5):690–703Google Scholar
  8. 8.
    Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD et al (2016) Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature 533(7604):543–546. Google Scholar
  9. 9.
    Lagier JC, Khelaifia S, Alou MT, Ndongo S, Dione N, Hugon P et al (2016) Culture of previously uncultured members of the human gut microbiota by culturomics. Nat Microbiol 1:16203. Google Scholar
  10. 10.
    Lagier JC, Hugon P, Khelaifia S, Fournier PE, La Scola B, Raoult D (2015) The rebirth of culture in microbiology through the example of culturomics to study human gut microbiota. Clin Microbiol Rev 28(1):237–264. Google Scholar
  11. 11.
    Lau JT, Whelan FJ, Herath I, Lee CH, Collins SM, Bercik P et al (2016) Capturing the diversity of the human gut microbiota through culture-enriched molecular profiling. Genome Med 8(1):72. Google Scholar
  12. 12.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74(12):5463–5467Google Scholar
  13. 13.
    Metzker ML (2005) Emerging technologies in DNA sequencing. Genome Res 15(12):1767–1776. Google Scholar
  14. 14.
    Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S et al (2014) An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol 32(8):834–841. Google Scholar
  15. 15.
    Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G et al (2013) Richness of human gut microbiome correlates with metabolic markers. Nature 500(7464):541–546. Google Scholar
  16. 16.
    Liu L, Li Y, Li S, Hu N, He Y, Pong R et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364. Google Scholar
  17. 17.
    Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124(4):837–848. Google Scholar
  18. 18.
    Lederberg J (2000) Infectious history. Science 288(5464):287–293Google Scholar
  19. 19.
    Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R (2012) Diversity, stability and resilience of the human gut microbiota. Nature 489(7415):220–230. Google Scholar
  20. 20.
    Allesina S, Tang S (2012) Stability criteria for complex ecosystems. Nature 483(7388):205–208. Google Scholar
  21. 21.
    McNally L, Brown SP (2016) Microbiome***: Ecology of stable gut communities. Nat Microbiol 1:15016. Google Scholar
  22. 22.
    Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920. Google Scholar
  23. 23.
    Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR et al (2011) Enterotypes of the human gut microbiome. Nature 473(7346):174–180. Google Scholar
  24. 24.
    Knights D, Ward TL, McKinlay CE, Miller H, Gonzalez A, McDonald D et al (2014) Rethinking “enterotypes”. Cell Host Microbe 16(4):433–437Google Scholar
  25. 25.
    Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA et al (2011) Linking long-term dietary patterns with gut microbial enterotypes. Science 334(6052):105–108Google Scholar
  26. 26.
    Liang C, Tseng HC, Chen HM, Wang WC, Chiu CM, Chang JY et al (2017) Diversity and enterotype in gut bacterial community of adults in Taiwan. BMC Genom 18(Suppl 1):932. Google Scholar
  27. 27.
    Shapira M (2016) Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol Evol 31(7):539–549. Google Scholar
  28. 28.
    Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464(7290):908–912. Google Scholar
  29. 29.
    Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Transl Med 1(6):6ra14. Google Scholar
  30. 30.
    Kazor CE, Mitchell PM, Lee AM, Stokes LN, Loesche WJ, Dewhirst FE et al (2003) Diversity of bacterial populations on the tongue dorsa of patients with halitosis and healthy patients. J Clin Microbiol 41(2):558–563Google Scholar
  31. 31.
    Nardone G, Compare D (2015) The human gastric microbiota: Is it time to rethink the pathogenesis of stomach diseases? United Eur Gastroenterol J 3(3):255–260Google Scholar
  32. 32.
    El Aidy S, van den Bogert B, Kleerebezem M (2015) The small intestine microbiota, nutritional modulation and relevance for health. Curr Opin Biotechnol 32:14–20. Google Scholar
  33. 33.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M et al (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638. Google Scholar
  34. 34.
    Mariat D, Firmesse O, Levenez F, Guimaraes V, Sokol H, Dore J et al (2009) The Firmicutes/Bacteroidetes ratio of the human microbiota changes with age. BMC Microbiol 9(1):123. Google Scholar
  35. 35.
    Hollister EB, Gao C, Versalovic J (2014) Compositional and functional features of the gastrointestinal microbiome and their effects on human health. Gastroenterology 146(6):1449–1458. Google Scholar
  36. 36.
    Perez-Muñoz ME, Arrieta M-C, Ramer-Tait AE, Walter J (2017) A critical assessment of the “sterile womb” and “in utero colonization” hypotheses: implications for research on the pioneer infant microbiome. Microbiome 5(1):48Google Scholar
  37. 37.
    Satokari R, Gronroos T, Laitinen K, Salminen S, Isolauri E (2009) Bifidobacterium and Lactobacillus DNA in the human placenta. Lett Appl Microbiol 48(1):8–12. Google Scholar
  38. 38.
    Farage MA, Miller KW, Sobel JD (2010) Dynamics of the vaginal ecosystem–hormonal influences. Infect Dis Res Treat 3:1Google Scholar
  39. 39.
    Aagaard K, Riehle K, Ma J, Segata N, Mistretta TA, Coarfa C et al (2012) A metagenomic approach to characterization of the vaginal microbiome signature in pregnancy. PLoS One 7(6):e36466. Google Scholar
  40. 40.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107(26):11971–11975. Google Scholar
  41. 41.
    Pacheco AR, Barile D, Underwood MA, Mills DA (2015) The impact of the milk glycobiome on the neonate gut microbiota. Annu Rev Anim Biosci 3(1):419–445Google Scholar
  42. 42.
    Koenig JE, Spor A, Scalfone N, Fricker AD, Stombaugh J, Knight R et al (2011) Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci USA 108(Suppl 1):4578–4585. Google Scholar
  43. 43.
    Wang F, Yu T, Huang G, Cai D, Liang X, Su H et al (2015) Gut microbiota community and its assembly associated with age and diet in Chinese centenarians. J Microbiol Biotechnol 25(8):1195–1204Google Scholar
  44. 44.
    Biagi E, Franceschi C, Rampelli S, Severgnini M, Ostan R, Turroni S et al (2016) Gut microbiota and extreme longevity. Curr Biol 26(11):1480–1485. Google Scholar
  45. 45.
    Derrien M, Belzer C, de Vos WM (2017) Akkermansia muciniphila and its role in regulating host functions. Microb Pathog 106:171–181. Google Scholar
  46. 46.
    Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S (2017) Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 28:199–212Google Scholar
  47. 47.
    Han B, Sivaramakrishnan P, Lin CJ, Neve IAA, He J, Tay LWR et al (2017) Microbial genetic composition tunes host longevity. Cell 169(7):1249–1262 e1213. Google Scholar
  48. 48.
    Goodrich JK, Waters JL, Poole AC, Sutter JL, Koren O, Blekhman R et al (2014) Human genetics shape the gut microbiome. Cell 159(4):789–799. Google Scholar
  49. 49.
    Richards AL, Burns MB, Alazizi A, Barreiro LB, Pique-Regi R, Blekhman R et al (2016) Genetic and transcriptional analysis of human host response to healthy gut microbiota. mSystems 1(4):e00067-16. Google Scholar
  50. 50.
    Turpin W, Espin-Garcia O, Xu W, Silverberg MS, Kevans D, Smith MI et al (2016) Association of host genome with intestinal microbial composition in a large healthy cohort. Nat Genet 48(11):1413–1417. Google Scholar
  51. 51.
    Davenport ER, Cusanovich DA, Michelini K, Barreiro LB, Ober C, Gilad Y (2015) Genome-wide association studies of the human gut microbiota. PLoS One 10(11):e0140301. Google Scholar
  52. 52.
    Wacklin P, Mäkivuokko H, Alakulppi N, Nikkilä J, Tenkanen H, Räbinä J et al (2011) Secretor genotype (FUT2 gene) is strongly associated with the composition of Bifidobacteria in the human intestine. PLoS One 6(5):e20113Google Scholar
  53. 53.
    Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D et al (2018) Environment dominates over host genetics in shaping human gut microbiota. Nature 555:210–215Google Scholar
  54. 54.
    Baas-Becking LGM (1934) Geobiologie; of inleiding tot de milieukunde. WP Van Stockum and Zoon NVGoogle Scholar
  55. 55.
    Schnorr SL, Candela M, Rampelli S, Centanni M, Consolandi C, Basaglia G et al (2014) Gut microbiome of the Hadza hunter-gatherers. Nat Commun 5:3654. Google Scholar
  56. 56.
    Rampelli S, Schnorr SL, Consolandi C, Turroni S, Severgnini M, Peano C et al (2015) Metagenome sequencing of the Hadza hunter-gatherer gut microbiota. Curr Biol 25(13):1682–1693. Google Scholar
  57. 57.
    Singh RK, Chang HW, Yan D, Lee KM, Ucmak D, Wong K et al (2017) Influence of diet on the gut microbiome and implications for human health. J Transl Med 15(1):73. Google Scholar
  58. 58.
    Zhang J, Guo Z, Xue Z, Sun Z, Zhang M, Wang L et al (2015) A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J 9(9):1979–1990. Google Scholar
  59. 59.
    Dehingia M, Devi KT, Talukdar NC, Talukdar R, Reddy N, Mande SS et al (2015) Gut bacterial diversity of the tribes of India and comparison with the worldwide data. Sci Rep 5:18563. Google Scholar
  60. 60.
    Dehingia M, Sen S, Bhaskar B, Joishy TK, Deka M, Talukdar NC et al (2017) Ethnicity influences gut metabolites and microbiota of the tribes of Assam, India. Metabolomics 13(6):69. Google Scholar
  61. 61.
    Adak A, Maity C, Ghosh K, Pati BR, Mondal KC (2013) Dynamics of predominant microbiota in the human gastrointestinal tract and change in luminal enzymes and immunoglobulin profile during high-altitude adaptation. Folia Microbiol 58(6):523–528. Google Scholar
  62. 62.
    Adak A, Maity C, Ghosh K, Mondal KC (2014) Alteration of predominant gastrointestinal flora and oxidative damage of large intestine under simulated hypobaric hypoxia. Z Gastroenterol 52(2):180–186. Google Scholar
  63. 63.
    Adak A, Ghosh K, Mondal KC (2014) Modulation of small intestinal homeostasis along with its microflora during acclimatization at simulated hypobaric hypoxia. Indian J Exp Biol 52(11):1098–1105Google Scholar
  64. 64.
    Chevalier C, Stojanovic O, Colin DJ, Suarez-Zamorano N, Tarallo V, Veyrat-Durebex C et al (2015) Gut microbiota orchestrates energy homeostasis during cold. Cell 163(6):1360–1374. Google Scholar
  65. 65.
    Bergman EN (1990) Energy contributions of volatile fatty-acids from the gastrointestinal-tract in various species. Physiol Rev 70(2):567–590Google Scholar
  66. 66.
    Anderson JW, Baird P, Davis RH Jr, Ferreri S, Knudtson M, Koraym A et al (2009) Health benefits of dietary fiber. Nutr Rev 67(4):188–205. Google Scholar
  67. 67.
    Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B (2013) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42(D1):D490–D495Google Scholar
  68. 68.
    Louis P, Flint HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294(1):1–8. Google Scholar
  69. 69.
    Duncan SH, Belenguer A, Holtrop G, Johnstone AM, Flint HJ, Lobley GE (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73(4):1073–1078. Google Scholar
  70. 70.
    Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W et al (2012) Host-gut microbiota metabolic interactions. Science 336(6086):1262–1267Google Scholar
  71. 71.
    Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352. Google Scholar
  72. 72.
    Donohoe DR, Garge N, Zhang X, Sun W, O’Connell TM, Bunger MK et al (2011) The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13(5):517–526. Google Scholar
  73. 73.
    Rawlings ND, Barrett AJ, Thomas PD, Huang X, Bateman A, Finn RD (2017) The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res 46(D1):D624–D632Google Scholar
  74. 74.
    Portune KJ, Beaumont M, Davila AM, Tome D, Blachier F, Sanz Y (2016) Gut microbiota role in dietary protein metabolism and health-related outcomes: the two sides of the coin. Trends Food Sci Technol 57:213–232. Google Scholar
  75. 75.
    Hentges DJ, Maier BR, Burton GC, Flynn MA, Tsutakawa RK (1977) Effect of a high-beef diet on the fecal bacterial flora of humans. Cancer Res 37(2):568–571Google Scholar
  76. 76.
    Swiatecka D, Narbad A, Ridgway KP, Kostyra H (2011) The study on the impact of glycated pea proteins on human intestinal bacteria. Int J Food Microbiol 145(1):267–272. Google Scholar
  77. 77.
    Meddah AT, Yazourh A, Desmet I, Risbourg B, Verstraete W, Romond MB (2001) The regulatory effects of whey retentate from bifidobacteria fermented milk on the microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). J Appl Microbiol 91(6):1110–1117Google Scholar
  78. 78.
    Leitao-Goncalves R, Carvalho-Santos Z, Francisco AP, Fioreze GT, Anjos M, Baltazar C et al (2017) Commensal bacteria and essential amino acids control food choice behavior and reproduction. PLoS Biol 15(4):e2000862. Google Scholar
  79. 79.
    Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A et al (2012) Dietary fat-induced taurocholic acid production promotes pathobiont and colitis in IL-10/ mice. Gastroenterology 142(5):S-12Google Scholar
  80. 80.
    Murphy EA, Velazquez KT, Herbert KM (2015) Influence of high-fat diet on gut microbiota: a driving force for chronic disease risk. Curr Opin Clin Nutr Metab Care 18(5):515–520. Google Scholar
  81. 81.
    Benítez-Páez A, Del Pulgar EMG, Kjølbæk L, Brahe LK, Astrup A, Larsen L et al (2016) Impact of dietary fiber and fat on gut microbiota re-modeling and metabolic health. Trends Food Sci Technol 57:201–212Google Scholar
  82. 82.
    Vaughn AC, Cooper EM, DiLorenzo PM, O’Loughlin LJ, Konkel ME, Peters JH et al (2017) Energy-dense diet triggers changes in gut microbiota, reorganization of gut-brain vagal communication and increases body fat accumulation. Acta Neurobiol Exp 77(1):18–30Google Scholar
  83. 83.
    O’Keefe SJ, Li JV, Lahti L, Ou J, Carbonero F, Mohammed K et al (2015) Fat, fibre and cancer risk in African Americans and rural Africans. Nat Commun 6:6342Google Scholar
  84. 84.
    Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K (2008) Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov 7(8):678–693. Google Scholar
  85. 85.
    Selwyn FP, Csanaky IL, Zhang Y, Klaassen CD (2015) Importance of large intestine in regulating bile acids and glucagon-like peptide-1 in germ-free mice. Drug Metab Dispos 43(10):1544–1556. Google Scholar
  86. 86.
    Wahlström A, Sayin SI, Marschall H-U, Bäckhed F (2016) Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metab 24(1):41–50Google Scholar
  87. 87.
    Long SL, Gahan CGM, Joyce SA (2017) Interactions between gut bacteria and bile in health and disease. Mol Aspects Med 56:54–65. Google Scholar
  88. 88.
    Schugar RC, Shih DM, Warrier M, Helsley RN, Burrows A, Ferguson D et al (2017) The TMAO-producing enzyme flavin-containing monooxygenase 3 regulates obesity and the beiging of white adipose tissue. Cell Rep 19(12):2451–2461Google Scholar
  89. 89.
    Romano KA, Vivas EI, Amador-Noguez D, Rey FE (2015) Intestinal microbiota composition modulates choline bioavailability from diet and accumulation of the proatherogenic metabolite trimethylamine-N-oxide. MBio 6(2):e02481-02414Google Scholar
  90. 90.
    Thibodeaux CJ, van der Donk WA (2012) Converging on a mechanism for choline degradation. Proc Natl Acad Sci USA 109(52):21184–21185. Google Scholar
  91. 91.
    Marin L, Miguelez EM, Villar CJ, Lombo F (2015) Bioavailability of dietary polyphenols and gut microbiota metabolism: antimicrobial properties. Biomed Res Int 2015:905215. Google Scholar
  92. 92.
    Romo-Vaquero M, Garcia-Villalba R, Gonzalez-Sarrias A, Beltran D, Tomas-Barberan FA, Espin JC et al (2015) Interindividual variability in the human metabolism of ellagic acid: contribution of Gordonibacter to urolithin production. J Funct Foods 17:785–791. Google Scholar
  93. 93.
    Most J, Penders J, Lucchesi M, Goossens GH, Blaak EE (2017) Gut microbiota composition in relation to the metabolic response to 12-week combined polyphenol supplementation in overweight men and women. Eur J Clin Nutr 71(9):1040–1045. Google Scholar
  94. 94.
    Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313Google Scholar
  95. 95.
    Johansson ME, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci USA 105(39):15064–15069. Google Scholar
  96. 96.
    Xu J, Bjursell MK, Himrod J, Deng S, Carmichael LK, Chiang HC et al (2003) A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299(5615):2074–2076Google Scholar
  97. 97.
    Ruas-Madiedo P, Gueimonde M, Fernandez-Garcia M, de los Reyes-Gavilan CG, Margolles A (2008) Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 74(6):1936–1940. Google Scholar
  98. 98.
    Png CW, Linden SK, Gilshenan KS, Zoetendal EG, McSweeney CS, Sly LI et al (2010) Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am J Gastroenterol 105(11):2420–2428. Google Scholar
  99. 99.
    Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I, Kelly CP et al (2009) Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. Proc Natl Acad Sci USA 106(34):14321–14326. Google Scholar
  100. 100.
    Navarro-Garcia F, Gutierrez-Jimenez J, Garcia-Tovar C, Castro LA, Salazar-Gonzalez H, Cordova V (2010) Pic, an autotransporter protein secreted by different pathogens in the Enterobacteriaceae family, is a potent mucus secretagogue. Infect Immun 78(10):4101–4109. Google Scholar
  101. 101.
    Putsep K, Axelsson LG, Boman A, Midtvedt T, Normark S, Boman HG et al (2000) Germ-free and colonized mice generate the same products from enteric prodefensins. J Biol Chem 275(51):40478–40482. Google Scholar
  102. 102.
    Wilson CL, Ouellette AJ, Satchell DP, Ayabe T, López-Boado YS, Stratman JL et al (1999) Regulation of intestinal α-defensin activation by the metalloproteinase matrilysin in innate host defense. Science 286(5437):113–117Google Scholar
  103. 103.
    Boneca IG, Dussurget O, Cabanes D, Nahori MA, Sousa S, Lecuit M et al (2007) A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci USA 104(3):997–1002. Google Scholar
  104. 104.
    Iimura M, Gallo RL, Hase K, Miyamoto Y, Eckmann L, Kagnoff MF (2005) Cathelicidin mediates innate intestinal defense against colonization with epithelial adherent bacterial pathogens. J Immunol 174(8):4901–4907Google Scholar
  105. 105.
    Cash HL, Whitham CV, Behrendt CL, Hooper LV (2006) Symbiotic bacteria direct expression of an intestinal bactericidal lectin. Science 313(5790):1126–1130Google Scholar
  106. 106.
    Macpherson AJ, Uhr T (2004) Induction of protective IgA by intestinal dendritic cells carrying commensal bacteria. Science 303(5664):1662–1665. Google Scholar
  107. 107.
    Rescigno M, Urbano M, Valzasina B, Francolini M, Rotta G, Bonasio R et al (2001) Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol 2(4):361–367. Google Scholar
  108. 108.
    Suzuki K, Meek B, Doi Y, Muramatsu M, Chiba T, Honjo T et al (2004) Aberrant expansion of segmented filamentous bacteria in IgA-deficient gut. Proc Natl Acad Sci USA 101(7):1981–1986. Google Scholar
  109. 109.
    Kau AL, Planer JD, Liu J, Rao S, Yatsunenko T, Trehan I et al (2015) Functional characterization of IgA-targeted bacterial taxa from undernourished Malawian children that produce diet-dependent enteropathy. Sci Transl Med 7(276):276ra224–276ra224. Google Scholar
  110. 110.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124(4):783–801. Google Scholar
  111. 111.
    Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L et al (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4(7):702–707. Google Scholar
  112. 112.
    Kobayashi KS, Chamaillard M, Ogura Y, Henegariu O, Inohara N, Nunez G et al (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307(5710):731–734. Google Scholar
  113. 113.
    Hooper LV, Midtvedt T, Gordon JI (2002) How host-microbial interactions shape the nutrient environment of the mammalian intestine. Annu Rev Nutr 22(1):283–307. Google Scholar
  114. 114.
    Ivanov II, Frutos Rde L, Manel N, Yoshinaga K, Rifkin DB, Sartor RB et al (2008) Specific microbiota direct the differentiation of IL-17-producing T-helper cells in the mucosa of the small intestine. Cell Host Microbe 4(4):337–349. Google Scholar
  115. 115.
    Wu W, Sun M, Chen F, Cao AT, Liu H, Zhao Y et al (2017) Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43. Mucosal Immunol 10(4):946Google Scholar
  116. 116.
    Morrison DJ, Preston T (2016) Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes 7(3):189–200Google Scholar
  117. 117.
    Hubbard TD, Murray IA, Bisson WH, Lahoti TS, Gowda K, Amin SG et al (2015) Adaptation of the human aryl hydrocarbon receptor to sense microbiota-derived indoles. Sci Rep 5:12689. Google Scholar
  118. 118.
    Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF et al (2011) Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147(3):629–640. Google Scholar
  119. 119.
    Kibe R, Kurihara S, Sakai Y, Suzuki H, Ooga T, Sawaki E et al (2014) Upregulation of colonic luminal polyamines produced by intestinal microbiota delays senescence in mice. Sci Rep 4:4548. Google Scholar
  120. 120.
    Zhang M, Wang H, Tracey KJ (2000) Regulation of macrophage activation and inflammation by spermine: a new chapter in an old story. Crit Care Med 28(4 Suppl):N60–66Google Scholar
  121. 121.
    Perez-Cano FJ, Gonzalez-Castro A, Castellote C, Franch A, Castell M (2010) Influence of breast milk polyamines on suckling rat immune system maturation. Dev Comp Immunol 34(2):210–218. Google Scholar
  122. 122.
    Clark JA, Coopersmith CM (2007) Intestinal crosstalk: a new paradigm for understanding the gut as the “motor” of critical illness. Shock 28(4):384–393. Google Scholar
  123. 123.
    Saitoh Y, Suzuki H, Tani K, Nishikawa K, Irie K, Ogura Y et al (2015) Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science 347(6223):775–778Google Scholar
  124. 124.
    Odenwald MA, Turner JR (2017) The intestinal epithelial barrier: a therapeutic target? Nat Rev Gastroenterol Hepatol 14(1):9–21. Google Scholar
  125. 125.
    Yuhan R, Koutsouris A, Savkovic SD, Hecht G (1997) Enteropathogenic Escherichia coli-induced myosin light chain phosphorylation alters intestinal epithelial permeability. Gastroenterology 113(6):1873–1882Google Scholar
  126. 126.
    Hecht G, Koutsouris A, Pothoulakis C, LaMont JT, Madara JL (1992) Clostridium difficile toxin B disrupts the barrier function of T 84 monolayers. Gastroenterology 102(2):416–423Google Scholar
  127. 127.
    Lee SH (2015) Intestinal permeability regulation by tight junction: implication on inflammatory bowel diseases. Intest Res 13(1):11–18. Google Scholar
  128. 128.
    Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141(5):769–776. Google Scholar
  129. 129.
    Anderson RC, Cookson AL, McNabb WC, Kelly WJ, Roy NC (2010) Lactobacillus plantarum DSM 2648 is a potential probiotic that enhances intestinal barrier function. FEMS Microbiol Lett 309(2):184–192. Google Scholar
  130. 130.
    Putaala H, Salusjarvi T, Nordstrom M, Saarinen M, Ouwehand AC, Bech Hansen E et al (2008) Effect of four probiotic strains and Escherichia coli O157:H7 on tight junction integrity and cyclo-oxygenase expression. Res Microbiol 159(9–10):692–698. Google Scholar
  131. 131.
    Carabotti M, Scirocco A, Maselli MA, Severi C (2015) The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann Gastroenterol 28(2):203Google Scholar
  132. 132.
    Rhee SH, Pothoulakis C, Mayer EA (2009) Principles and clinical implications of the brain–gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 6(5):306–314. Google Scholar
  133. 133.
    Sarkar A, Lehto SM, Harty S, Dinan TG, Cryan JF, Burnet PW (2016) Psychobiotics and the manipulation of bacteria–gut–brain signals. Trends Neurosci 39(11):763–781Google Scholar
  134. 134.
    Labus JS, Hollister EB, Jacobs J, Kirbach K, Oezguen N, Gupta A et al (2017) Differences in gut microbial composition correlate with regional brain volumes in irritable bowel syndrome. Microbiome 5(1):49. Google Scholar
  135. 135.
    Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X et al (2016) Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol Psychiatry 21(6):786–796. Google Scholar
  136. 136.
    Pinto-Sanchez MI, Hall GB, Ghajar K, Nardelli A, Bolino C, Lau JT et al (2017) Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: a pilot study in patients with irritable bowel syndrome. Gastroenterology 153:448–459Google Scholar
  137. 137.
    Harach T, Marungruang N, Duthilleul N, Cheatham V, Mc Coy K, Frisoni G et al (2017) Reduction of Abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota. Sci Rep 7:41802Google Scholar
  138. 138.
    Nissle A (1961) Old and new experiences on therapeutic successes by restoration of the colonic flora with mutaflor in gastrointestinal diseases. Die Med Welt 29:1519Google Scholar
  139. 139.
    Podolsky SH (1998) Cultural divergence: Elie Metchnikoff’s Bacillus bulgaricus therapy and his underlying concept of health. Bull Hist Med 72(1):1–27Google Scholar
  140. 140.
    Sassone-Corsi M, Raffatellu M (2015) No vacancy: how beneficial microbes cooperate with immunity to provide colonization resistance to pathogens. J Immunol 194(9):4081–4087. Google Scholar
  141. 141.
    Lukic J, Strahinic I, Jovcic B, Filipic B, Topisirovic L, Kojic M et al (2012) Different roles for lactococcal aggregation factor and mucin binding protein in adhesion to gastrointestinal mucosa. Appl Environ Microbiol 78(22):7993–8000. Google Scholar
  142. 142.
    Gonzalez-Rodriguez I, Sanchez B, Ruiz L, Turroni F, Ventura M, Ruas-Madiedo P et al (2012) Role of extracellular transaldolase from Bifidobacterium bifidum in mucin adhesion and aggregation. Appl Environ Microbiol 78(11):3992–3998. Google Scholar
  143. 143.
    Jeffery CJ (2003) Moonlighting proteins: old proteins learning new tricks. Trends Genet 19(8):415–417. Google Scholar
  144. 144.
    Oak SJ, Jha R (2018) The effects of probiotics in lactose intolerance: a systematic review. Crit Rev Food Sci Nutr. Google Scholar
  145. 145.
    Cho YA, Kim J (2015) Effect of probiotics on blood lipid concentrations: a meta-analysis of randomized controlled trials. Medicine 94(43):e1714Google Scholar
  146. 146.
    Barichella M, Pacchetti C, Bolliri C, Cassani E, Iorio L, Pusani C et al (2016) Probiotics and prebiotic fiber for constipation associated with Parkinson disease: an RCT. Neurology 87(12):1274–1280. Google Scholar
  147. 147.
    Akbari E, Asemi Z, Daneshvar Kakhaki R, Bahmani F, Kouchaki E, Tamtaji OR et al (2016) Effect of probiotic supplementation on cognitive function and metabolic status in Alzheimer’s disease: a randomized, double-blind and controlled trial. Front Aging Neurosci 8:256. Google Scholar
  148. 148.
    Wang H, Lee IS, Braun C, Enck P (2016) Effect of probiotics on central nervous system functions in animals and humans: a systematic review. J Neurogastroenterol Motil 22(4):589–605. Google Scholar
  149. 149.
    Panigrahi P, Parida S, Nanda NC, Satpathy R, Pradhan L, Chandel DS et al (2017) A randomized synbiotic trial to prevent sepsis among infants in rural India. Nature 548(7668):407–412Google Scholar
  150. 150.
    Lundelin K, Poussa T, Salminen S, Isolauri E (2017) Long-term safety and efficacy of perinatal probiotic intervention: evidence from a follow-up study of four randomized, double-blind, placebo-controlled trials. Pediatr Allergy Immunol 28(2):170–175. Google Scholar
  151. 151.
    Villar-García J, Güerri-Fernández R, Moya A, González A, Hernández JJ, Lerma E et al (2017) Impact of probiotic Saccharomyces boulardii on the gut microbiome composition in HIV-treated patients: a double-blind, randomised, placebo-controlled trial. PLoS One 12(4):e0173802Google Scholar
  152. 152.
    Gibson GR, Roberfroid MB (1995) Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J Nutr 125(6):1401–1412Google Scholar
  153. 153.
    Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ et al (2017) Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat Rev Gastroenterol Hepatol 14(8):491–502. Google Scholar
  154. 154.
    Savignac HM, Corona G, Mills H, Chen L, Spencer JP, Tzortzis G et al (2013) Prebiotic feeding elevates central brain derived neurotrophic factor, N-methyl-d-aspartate receptor subunits and d-serine. Neurochem Int 63(8):756–764. Google Scholar
  155. 155.
    Williams S, Chen L, Savignac HM, Tzortzis G, Anthony DC, Burnet PW (2016) Neonatal prebiotic (BGOS) supplementation increases the levels of synaptophysin, GluN2A-subunits and BDNF proteins in the adult rat hippocampus. Synapse 70(3):121–124. Google Scholar
  156. 156.
    Savignac HM, Couch Y, Stratford M, Bannerman DM, Tzortzis G, Anthony DC et al (2016) Prebiotic administration normalizes lipopolysaccharide (LPS)-induced anxiety and cortical 5-HT2A receptor and IL1-beta levels in male mice. Brain Behav Immun 52:120–131. Google Scholar
  157. 157.
    de Cossio LF, Fourrier C, Sauvant J, Everard A, Capuron L, Cani PD et al (2017) Impact of prebiotics on metabolic and behavioral alterations in a mouse model of metabolic syndrome. Brain Behav Immun 64:33–49. Google Scholar
  158. 158.
    Messaoudi M, Rozan P, Nejdi A, Hidalgo S, Desor D (2005) Behavioural and cognitive effects of oligofructose-enriched inulin in rats. Brit J Nutr 93(Suppl 1):S27–30Google Scholar
  159. 159.
    Waworuntu R, Hain H, Chang Q, Thiede L, Hanania T, Berg B (2014) Dietary prebiotics improve memory and social interactions while reducing anxiety when provided early in life to normally developing rodents (6375). FASEB J 28(1 Suppl):637.635Google Scholar
  160. 160.
    Wang B, Yu B, Karim M, Hu H, Sun Y, McGreevy P et al (2007) Dietary sialic acid supplementation improves learning and memory in piglets. Am J Clin Nutr 85(2):561–569Google Scholar
  161. 161.
    Charbonneau MR, O’Donnell D, Blanton LV, Totten SM, Davis JC, Barratt MJ et al (2016) Sialylated milk oligosaccharides promote microbiota-dependent growth in models of infant undernutrition. Cell 164(5):859–871. Google Scholar
  162. 162.
    Radke M, Picaud JC, Loui A, Cambonie G, Faas D, Lafeber HN et al (2017) Starter formula enriched in prebiotics and probiotics ensures normal growth of infants and promotes gut health: a randomized clinical trial. Pediatr Res 81(4):622–631. Google Scholar
  163. 163.
    Rossen NG, MacDonald JK, de Vries EM, D’Haens GR, de Vos WM, Zoetendal EG et al (2015) Fecal microbiota transplantation as novel therapy in gastroenterology: a systematic review. World J Gastroenterol 21(17):5359–5371. Google Scholar
  164. 164.
    Zhang F, Luo W, Shi Y, Fan Z, Ji G (2012) Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol 107(11):1755 (author reply p. 1755) Google Scholar
  165. 165.
    Eiseman Á, Silen W, Bascom G, Kauvar A (1958) Fecal enema as an adjunct in the treatment of pseudomembranous enterocolitis. Surgery 44(5):854–859Google Scholar
  166. 166.
    Bagdasarian N, Rao K, Malani PN (2015) Diagnosis and treatment of Clostridium difficile in adults: a systematic review. JAMA 313(4):398–408. Google Scholar
  167. 167.
    Weingarden AR, Chen C, Zhang N, Graiziger CT, Dosa PI, Steer CJ et al (2016) Ursodeoxycholic acid inhibits Clostridium difficile spore germination and vegetative growth, and prevents the recurrence of ileal pouchitis associated with the infection. J Clin Gastroenterol 50(8):624–630. Google Scholar
  168. 168.
    Weingarden AR, Chen C, Bobr A, Yao D, Lu Y, Nelson VM et al (2014) Microbiota transplantation restores normal fecal bile acid composition in recurrent Clostridium difficile infection. Am J Physiol Gastrointest Liver Physiol 306(4):G310–319. Google Scholar
  169. 169.
    Li YT, Cai HF, Wang ZH, Xu J, Fang JY (2016) Systematic review with meta-analysis: long-term outcomes of faecal microbiota transplantation for Clostridium difficile infection. Aliment Pharmacol Ther 43(4):445–457. Google Scholar
  170. 170.
    Evans WE, Relling MV (2004) Moving towards individualized medicine with pharmacogenomics. Nature 429(6990):464–468. Google Scholar
  171. 171.
    Jia W, Li H, Zhao L, Nicholson JK (2008) Gut microbiota: a potential new territory for drug targeting. Nat Rev Drug Discov 7(2):123–129. Google Scholar
  172. 172.
    Gingell R, Bridges JW, Williams RT (1971) The role of the gut flora in the metabolism of prontosil and neoprontosil in the rat. Xenobiotica 1(2):143–156Google Scholar
  173. 173.
    Lindenbaum J, Rund DG, Butler VP Jr, Tse-Eng D, Saha JR (1981) Inactivation of digoxin by the gut flora: reversal by antibiotic therapy. N Engl J Med 305(14):789–794. Google Scholar
  174. 174.
    Koppel N, Bisanz J, Turnbaugh P, Balskus EP (2017) Characterization of a cardiac drug-inactivating enzyme from the prominent human gut microbe. Eggerthella lenta. FASEB J 31(1 Suppl):608.603Google Scholar
  175. 175.
    Clayton TA, Baker D, Lindon JC, Everett JR, Nicholson JK (2009) Pharmacometabonomic identification of a significant host-microbiome metabolic interaction affecting human drug metabolism. Proc Natl Acad Sci USA 106(34):14728–14733. Google Scholar
  176. 176.
    Wilson ID, Nicholson JK (2017) Gut microbiome interactions with drug metabolism, efficacy, and toxicity. Transl Res 179:204–222. Google Scholar
  177. 177.
    Forslund K, Hildebrand F, Nielsen T, Falony G, Le Chatelier E, Sunagawa S et al (2015) Disentangling type 2 diabetes and metformin treatment signatures in the human gut microbiota. Nature 528(7581):262–266. Google Scholar
  178. 178.
    Xu J, Lian F, Zhao L, Zhao Y, Chen X, Zhang X et al (2015) Structural modulation of gut microbiota during alleviation of type 2 diabetes with a Chinese herbal formula. ISME J 9(3):552–562Google Scholar
  179. 179.
    Zhang X, Zhao Y, Zhang M, Pang X, Xu J, Kang C et al (2012) Structural changes of gut microbiota during berberine-mediated prevention of obesity and insulin resistance in high-fat diet-fed rats. PLoS One 7(8):e42529Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Molecular Biology and Microbial Biotechnology Laboratory, Life Science DivisionInstitute of Advanced Study in Science and Technology (IASST)GuwahatiIndia

Personalised recommendations