Advertisement

Cellular and Molecular Life Sciences

, Volume 74, Issue 22, pp 4059–4075 | Cite as

Molecular mechanisms underlying Th1-like Treg generation and function

  • Alexandra Kitz
  • Margarita Dominguez-VillarEmail author
Review

Abstract

Since their ‘re-discovery’ more than two decades ago, FOXP3+ regulatory T cells (Tregs) have been an important subject of investigation in the biomedical field and our understanding of the mechanisms that drive their phenotype and function in health and disease has advanced tremendously. During the past few years it has become clear that Tregs are not a terminally differentiated population but show some degree of plasticity, and can, under specific environmental conditions, acquire the phenotype of effector T cells. In particular, recent works have highlighted the acquisition of a Th1-like phenotype by Tregs in several pathological environments. In this review we give an update on the concept of Treg plasticity and the advances in defining the molecular mechanisms that underlie the generation of Th1-like Tregs during an immune response and in different disease settings.

Keywords

Foxp3 Plasticity Th1-Tregs AKT Therapy 

References

  1. 1.
    Rosser EC, Mauri C (2015) Regulatory B cells: origin, phenotype, and function. Immunity 42(4):607–612. doi: 10.1016/j.immuni.2015.04.005 PubMedCrossRefGoogle Scholar
  2. 2.
    Miyara M, Sakaguchi S (2011) Human FoxP3(+)CD4(+) regulatory T cells: their knowns and unknowns. Immunol Cell Biol 89(3):346–351. doi: 10.1038/icb.2010.137 PubMedCrossRefGoogle Scholar
  3. 3.
    Wang YM, Alexander SI (2009) CD8 regulatory T cells: what’s old is now new. Immunol Cell Biol 87(3):192–193. doi: 10.1038/icb.2009.8 PubMedCrossRefGoogle Scholar
  4. 4.
    Fu B, Tian Z, Wei H (2014) Subsets of human natural killer cells and their regulatory effects. Immunology 141(4):483–489. doi: 10.1111/imm.12224 PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Gabrilovich DI, Nagaraj S (2009) Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol 9(3):162–174. doi: 10.1038/nri2506 PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Sakaguchi S, Miyara M, Costantino CM, Hafler DA (2010) FOXP3+ regulatory T cells in the human immune system. Nat Rev Immunol 10(7):490–500. doi: 10.1038/nri2785 PubMedCrossRefGoogle Scholar
  7. 7.
    Fontenot JD, Dooley JL, Farr AG, Rudensky AY (2005) Developmental regulation of Foxp3 expression during ontogeny. J Exp Med 202(7):901–906. doi: 10.1084/jem.20050784 PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Germain RN (2002) T-cell development and the CD4–CD8 lineage decision. Nat Rev Immunol 2(5):309–322. doi: 10.1038/nri798 PubMedCrossRefGoogle Scholar
  9. 9.
    Singer A, Adoro S, Park JH (2008) Lineage fate and intense debate: myths, models and mechanisms of CD4- versus CD8-lineage choice. Nat Rev Immunol 8(10):788–801. doi: 10.1038/nri2416 PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Apostolou I, Sarukhan A, Klein L, von Boehmer H (2002) Origin of regulatory T cells with known specificity for antigen. Nat Immunol 3(8):756–763. doi: 10.1038/ni816 PubMedGoogle Scholar
  11. 11.
    Kawahata K, Misaki Y, Yamauchi M, Tsunekawa S, Setoguchi K, Miyazaki J, Yamamoto K (2002) Generation of CD4(+)CD25(+) regulatory T cells from autoreactive T cells simultaneously with their negative selection in the thymus and from nonautoreactive T cells by endogenous TCR expression. J Immunol 168(9):4399–4405PubMedCrossRefGoogle Scholar
  12. 12.
    Lafaille JJ, Nagashima K, Katsuki M, Tonegawa S (1994) High incidence of spontaneous autoimmune encephalomyelitis in immunodeficient anti-myelin basic protein T cell receptor transgenic mice. Cell 78(3):399–408PubMedCrossRefGoogle Scholar
  13. 13.
    Olivares-Villagomez D, Wang Y, Lafaille JJ (1998) Regulatory CD4(+) T cells expressing endogenous T cell receptor chains protect myelin basic protein-specific transgenic mice from spontaneous autoimmune encephalomyelitis. J Exp Med 188(10):1883–1894PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Hsieh CS, Liang Y, Tyznik AJ, Self SG, Liggitt D, Rudensky AY (2004) Recognition of the peripheral self by naturally arising CD25+ CD4+ T cell receptors. Immunity 21(2):267–277. doi: 10.1016/j.immuni.2004.07.009 PubMedCrossRefGoogle Scholar
  15. 15.
    Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L (2006) Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity 25(2):249–259. doi: 10.1016/j.immuni.2006.05.016 PubMedCrossRefGoogle Scholar
  16. 16.
    Wong J, Obst R, Correia-Neves M, Losyev G, Mathis D, Benoist C (2007) Adaptation of TCR repertoires to self-peptides in regulatory and nonregulatory CD4+ T cells. J Immunol 178(11):7032–7041PubMedCrossRefGoogle Scholar
  17. 17.
    Anderson MS, Venanzi ES, Chen Z, Berzins SP, Benoist C, Mathis D (2005) The cellular mechanism of Aire control of T cell tolerance. Immunity 23(2):227–239. doi: 10.1016/j.immuni.2005.07.005 PubMedCrossRefGoogle Scholar
  18. 18.
    Liston A, Lesage S, Wilson J, Peltonen L, Goodnow CC (2003) Aire regulates negative selection of organ-specific T cells. Nat Immunol 4(4):350–354. doi: 10.1038/ni906 PubMedCrossRefGoogle Scholar
  19. 19.
    Taniguchi RT, DeVoss JJ, Moon JJ, Sidney J, Sette A, Jenkins MK, Anderson MS (2012) Detection of an autoreactive T-cell population within the polyclonal repertoire that undergoes distinct autoimmune regulator (Aire)-mediated selection. Proc Natl Acad Sci USA 109(20):7847–7852. doi: 10.1073/pnas.1120607109 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Lei Y, Ripen AM, Ishimaru N, Ohigashi I, Nagasawa T, Jeker LT, Bosl MR, Hollander GA, Hayashi Y, Malefyt Rde W, Nitta T, Takahama Y (2011) Aire-dependent production of XCL1 mediates medullary accumulation of thymic dendritic cells and contributes to regulatory T cell development. J Exp Med 208(2):383–394. doi: 10.1084/jem.20102327 PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Malchow S, Leventhal DS, Nishi S, Fischer BI, Shen L, Paner GP, Amit AS, Kang C, Geddes JE, Allison JP, Socci ND, Savage PA (2013) Aire-dependent thymic development of tumor-associated regulatory T cells. Science 339(6124):1219–1224. doi: 10.1126/science.1233913 PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Perry JS, Lio CW, Kau AL, Nutsch K, Yang Z, Gordon JI, Murphy KM, Hsieh CS (2014) Distinct contributions of Aire and antigen-presenting-cell subsets to the generation of self-tolerance in the thymus. Immunity 41(3):414–426. doi: 10.1016/j.immuni.2014.08.007 PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Yang S, Fujikado N, Kolodin D, Benoist C, Mathis D (2015) Immune tolerance. Regulatory T cells generated early in life play a distinct role in maintaining self-tolerance. Science 348(6234):589–594. doi: 10.1126/science.aaa7017 PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Burchill MA, Yang J, Vang KB, Farrar MA (2007) Interleukin-2 receptor signaling in regulatory T cell development and homeostasis. Immunol Lett 114(1):1–8. doi: 10.1016/j.imlet.2007.08.005 PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Vang KB, Yang J, Mahmud SA, Burchill MA, Vegoe AL, Farrar MA (2008) IL-2, -7, and -15, but not thymic stromal lymphopoeitin, redundantly govern CD4+Foxp3+ regulatory T cell development. J Immunol 181(5):3285–3290PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A, Bluestone JA (2000) B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 12(4):431–440PubMedCrossRefGoogle Scholar
  27. 27.
    Tai X, Cowan M, Feigenbaum L, Singer A (2005) CD28 costimulation of developing thymocytes induces Foxp3 expression and regulatory T cell differentiation independently of interleukin 2. Nat Immunol 6(2):152–162. doi: 10.1038/ni1160 PubMedCrossRefGoogle Scholar
  28. 28.
    Verhagen J, Gabrysova L, Minaee S, Sabatos CA, Anderson G, Sharpe AH, Wraith DC (2009) Enhanced selection of FoxP3+ T-regulatory cells protects CTLA-4-deficient mice from CNS autoimmune disease. Proc Natl Acad Sci USA 106(9):3306–3311. doi: 10.1073/pnas.0803186106 PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Barnes MJ, Krebs P, Harris N, Eidenschenk C, Gonzalez-Quintial R, Arnold CN, Crozat K, Sovath S, Moresco EM, Theofilopoulos AN, Beutler B, Hoebe K (2009) Commitment to the regulatory T cell lineage requires CARMA1 in the thymus but not in the periphery. PLoS Biol 7(3):e51. doi: 10.1371/journal.pbio.1000051 PubMedCrossRefGoogle Scholar
  30. 30.
    Schmidt-Supprian M, Tian J, Grant EP, Pasparakis M, Maehr R, Ovaa H, Ploegh HL, Coyle AJ, Rajewsky K (2004) Differential dependence of CD4+CD25+ regulatory and natural killer-like T cells on signals leading to NF-kappaB activation. Proc Natl Acad Sci USA 101(13):4566–4571. doi: 10.1073/pnas.0400885101 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Wan YY, Chi H, Xie M, Schneider MD, Flavell RA (2006) The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat Immunol 7(8):851–858. doi: 10.1038/ni1355 PubMedCrossRefGoogle Scholar
  32. 32.
    Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22(3):329–341. doi: 10.1016/j.immuni.2005.01.016 PubMedCrossRefGoogle Scholar
  33. 33.
    Baron U, Floess S, Wieczorek G, Baumann K, Grutzkau A, Dong J, Thiel A, Boeld TJ, Hoffmann P, Edinger M, Turbachova I, Hamann A, Olek S, Huehn J (2007) DNA demethylation in the human FOXP3 locus discriminates regulatory T cells from activated FOXP3(+) conventional T cells. Eur J Immunol 37(9):2378–2389. doi: 10.1002/eji.200737594 PubMedCrossRefGoogle Scholar
  34. 34.
    Ohkura N, Hamaguchi M, Morikawa H, Sugimura K, Tanaka A, Ito Y, Osaki M, Tanaka Y, Yamashita R, Nakano N, Huehn J, Fehling HJ, Sparwasser T, Nakai K, Sakaguchi S (2012) T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development. Immunity 37(5):785–799. doi: 10.1016/j.immuni.2012.09.010 PubMedCrossRefGoogle Scholar
  35. 35.
    Ohkura N, Kitagawa Y, Sakaguchi S (2013) Development and maintenance of regulatory T cells. Immunity 38(3):414–423. doi: 10.1016/j.immuni.2013.03.002 PubMedCrossRefGoogle Scholar
  36. 36.
    Gavin MA, Rasmussen JP, Fontenot JD, Vasta V, Manganiello VC, Beavo JA, Rudensky AY (2007) Foxp3-dependent programme of regulatory T-cell differentiation. Nature 445(7129):771–775. doi: 10.1038/nature05543 PubMedCrossRefGoogle Scholar
  37. 37.
    Hori S, Nomura T, Sakaguchi S (2003) Control of regulatory T cell development by the transcription factor Foxp3. Science 299(5609):1057–1061. doi: 10.1126/science.1079490 PubMedCrossRefGoogle Scholar
  38. 38.
    Baecher-Allan C, Brown JA, Freeman GJ, Hafler DA (2001) CD4+CD25high regulatory cells in human peripheral blood. J Immunol 167(3):1245–1253PubMedCrossRefGoogle Scholar
  39. 39.
    Liu W, Putnam AL, Xu-yu Z, Szot GL, Lee MR, Zhu S, Gottlieb PA, Kapranov P, Gingeras TR, de St. Groth BF, Clayberger C, Soper DM, Ziegler SF, Bluestone JA (2006) CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 203(7):1701–1711. doi: 10.1084/jem.20060772 PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Boyman O, Sprent J (2012) The role of interleukin-2 during homeostasis and activation of the immune system. Nat Rev Immunol 12(3):180–190. doi: 10.1038/nri3156 PubMedGoogle Scholar
  41. 41.
    Malek TR, Bayer AL (2004) Tolerance, not immunity, crucially depends on IL-2. Nat Rev Immunol 4(9):665–674. doi: 10.1038/nri1435 PubMedCrossRefGoogle Scholar
  42. 42.
    Cheng G, Yu A, Malek TR (2011) T-cell tolerance and the multi-functional role of IL-2R signaling in T-regulatory cells. Immunol Rev 241(1):63–76. doi: 10.1111/j.1600-065X.2011.01004.x PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Passerini L, Allan SE, Battaglia M, Di Nunzio S, Alstad AN, Levings MK, Roncarolo MG, Bacchetta R (2008) STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T cells and CD4+CD25 effector T cells. Int Immunol 20(3):421–431. doi: 10.1093/intimm/dxn002 PubMedCrossRefGoogle Scholar
  44. 44.
    Murawski MR, Litherland SA, Clare-Salzler MJ, Davoodi-Semiromi A (2006) Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent: implications for the NOD STAT5B mutation in diabetes pathogenesis. Ann N Y Acad Sci 1079:198–204. doi: 10.1196/annals.1375.031 PubMedCrossRefGoogle Scholar
  45. 45.
    Sadlack B, Lohler J, Schorle H, Klebb G, Haber H, Sickel E, Noelle RJ, Horak I (1995) Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol 25(11):3053–3059. doi: 10.1002/eji.1830251111 PubMedCrossRefGoogle Scholar
  46. 46.
    Willerford DM, Chen J, Ferry JA, Davidson L, Ma A, Alt FW (1995) Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 3(4):521–530PubMedCrossRefGoogle Scholar
  47. 47.
    Almeida AR, Legrand N, Papiernik M, Freitas AA (2002) Homeostasis of peripheral CD4+ T cells: IL-2R alpha and IL-2 shape a population of regulatory cells that controls CD4+ T cell numbers. J Immunol 169(9):4850–4860PubMedCrossRefGoogle Scholar
  48. 48.
    Furtado GC, Curotto de Lafaille MA, Kutchukhidze N, Lafaille JJ (2002) Interleukin 2 signaling is required for CD4(+) regulatory T cell function. J Exp Med 196(6):851–857PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Chaplin DD (2010) Overview of the immune response. J Allergy Clin Immunol 125(2 Suppl 2):S3–23. doi: 10.1016/j.jaci.2009.12.980 PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Fontenot JD, Gavin MA, Rudensky AY (2003) Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 4(4):330–336PubMedCrossRefGoogle Scholar
  51. 51.
    Khattri R, Cox T, Yasayko SA, Ramsdell F (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 4(4):337–342. doi: 10.1038/ni909 PubMedCrossRefGoogle Scholar
  52. 52.
    Wan YY, Flavell RA (2007) Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 445(7129):766–770PubMedCrossRefGoogle Scholar
  53. 53.
    Williams LM, Rudensky AY (2007) Maintenance of the Foxp3-dependent developmental program in mature regulatory T cells requires continued expression of Foxp3. Nat Immunol 8(3):277–284. doi: 10.1038/ni1437 PubMedCrossRefGoogle Scholar
  54. 54.
    Hill JA, Feuerer M, Tash K, Haxhinasto S, Perez J, Melamed R, Mathis D, Benoist C (2007) Foxp3 transcription-factor-dependent and -independent regulation of the regulatory T cell transcriptional signature. Immunity 27(5):786–800. doi: 10.1016/j.immuni.2007.09.010 PubMedCrossRefGoogle Scholar
  55. 55.
    Sugimoto N, Oida T, Hirota K, Nakamura K, Nomura T, Uchiyama T, Sakaguchi S (2006) Foxp3-dependent and -independent molecules specific for CD25+CD4+ natural regulatory T cells revealed by DNA microarray analysis. Int Immunol 18(8):1197–1209. doi: 10.1093/intimm/dxl060 PubMedCrossRefGoogle Scholar
  56. 56.
    Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD (2001) The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 27(1):20–21PubMedCrossRefGoogle Scholar
  57. 57.
    Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME (2001) X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 27(1):18–20. doi: 10.1038/83707 PubMedCrossRefGoogle Scholar
  58. 58.
    Zheng Y, Josefowicz S, Chaudhry A, Peng XP, Forbush K, Rudensky AY (2010) Role of conserved non-coding DNA elements in the Foxp3 gene in regulatory T-cell fate. Nature 463(7282):808–812. doi: 10.1038/nature08750 PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Li Z, Lin F, Zhuo C, Deng G, Chen Z, Yin S, Gao Z, Piccioni M, Tsun A, Cai S, Zheng SG, Zhang Y, Li B (2014) PIM1 kinase phosphorylates the human transcription factor FOXP3 at serine 422 to negatively regulate its activity under inflammation. J Biol Chem 289(39):26872–26881. doi: 10.1074/jbc.M114.586651 PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Morawski PA, Mehra P, Chen C, Bhatti T, Wells AD (2013) Foxp3 protein stability is regulated by cyclin-dependent kinase 2. J Biol Chem 288(34):24494–24502. doi: 10.1074/jbc.M113.467704 PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Nie H, Zheng Y, Li R, Guo TB, He D, Fang L, Liu X, Xiao L, Chen X, Wan B, Chin YE, Zhang JZ (2013) Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-alpha in rheumatoid arthritis. Nat Med 19(3):322–328. doi: 10.1038/nm.3085 PubMedCrossRefGoogle Scholar
  62. 62.
    Kwon HS, Lim HW, Wu J, Schnolzer M, Verdin E, Ott M (2012) Three novel acetylation sites in the Foxp3 transcription factor regulate the suppressive activity of regulatory T cells. J Immunol 188(6):2712–2721. doi: 10.4049/jimmunol.1100903 PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    van Loosdregt J, Vercoulen Y, Guichelaar T, Gent YY, Beekman JM, van Beekum O, Brenkman AB, Hijnen DJ, Mutis T, Kalkhoven E, Prakken BJ, Coffer PJ (2010) Regulation of Treg functionality by acetylation-mediated Foxp3 protein stabilization. Blood 115(5):965–974. doi: 10.1182/blood-2009-02-207118 PubMedCrossRefGoogle Scholar
  64. 64.
    Chen Z, Barbi J, Bu S, Yang HY, Li Z, Gao Y, Jinasena D, Fu J, Lin F, Chen C, Zhang J, Yu N, Li X, Shan Z, Nie J, Gao Z, Tian H, Li Y, Yao Z, Zheng Y, Park BV, Pan Z, Zhang J, Dang E, Li Z, Wang H, Luo W, Li L, Semenza GL, Zheng SG, Loser K, Tsun A, Greene MI, Pardoll DM, Pan F, Li B (2013) The ubiquitin ligase Stub1 negatively modulates regulatory T cell suppressive activity by promoting degradation of the transcription factor Foxp3. Immunity 39(2):272–285. doi: 10.1016/j.immuni.2013.08.006 PubMedCrossRefGoogle Scholar
  65. 65.
    Li Y, Lu Y, Wang S, Han Z, Zhu F, Ni Y, Liang R, Zhang Y, Leng Q, Wei G, Shi G, Zhu R, Li D, Wang H, Zheng SG, Xu H, Tsun A, Li B (2016) USP21 prevents the generation of T-helper-1-like Treg cells. Nat Commun 7:13559. doi: 10.1038/ncomms13559 PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Tone Y, Furuuchi K, Kojima Y, Tykocinski ML, Greene MI, Tone M (2008) Smad3 and NFAT cooperate to induce Foxp3 expression through its enhancer. Nat Immunol 9(2):194–202. doi: 10.1038/ni1549 PubMedCrossRefGoogle Scholar
  67. 67.
    Kitoh A, Ono M, Naoe Y, Ohkura N, Yamaguchi T, Yaguchi H, Kitabayashi I, Tsukada T, Nomura T, Miyachi Y, Taniuchi I, Sakaguchi S (2009) Indispensable role of the Runx1-Cbfbeta transcription complex for in vivo-suppressive function of FoxP3+ regulatory T cells. Immunity 31(4):609–620. doi: 10.1016/j.immuni.2009.09.003 PubMedCrossRefGoogle Scholar
  68. 68.
    Wei G, Wei L, Zhu J, Zang C, Hu-Li J, Yao Z, Cui K, Kanno Y, Roh TY, Watford WT, Schones DE, Peng W, Sun HW, Paul WE, O’Shea JJ, Zhao K (2009) Global mapping of H3K4me3 and H3K27me3 reveals specificity and plasticity in lineage fate determination of differentiating CD4+ T cells. Immunity 30(1):155–167. doi: 10.1016/j.immuni.2008.12.009 PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Floess S, Freyer J, Siewert C, Baron U, Olek S, Polansky J, Schlawe K, Chang HD, Bopp T, Schmitt E, Klein-Hessling S, Serfling E, Hamann A, Huehn J (2007) Epigenetic control of the foxp3 locus in regulatory T cells. PLoS Biol 5(2):e38PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Nagar M, Vernitsky H, Cohen Y, Dominissini D, Berkun Y, Rechavi G, Amariglio N, Goldstein I (2008) Epigenetic inheritance of DNA methylation limits activation-induced expression of FOXP3 in conventional human CD25CD4+ T cells. Int Immunol 20(8):1041–1055. doi: 10.1093/intimm/dxn062 PubMedCrossRefGoogle Scholar
  71. 71.
    Huehn J, Polansky JK, Hamann A (2009) Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 9(2):83–89. doi: 10.1038/nri2474 PubMedCrossRefGoogle Scholar
  72. 72.
    Rudra D, deRoos P, Chaudhry A, Niec RE, Arvey A, Samstein RM, Leslie C, Shaffer SA, Goodlett DR, Rudensky AY (2012) Transcription factor Foxp3 and its protein partners form a complex regulatory network. Nat Immunol 13(10):1010–1019. doi: 10.1038/ni.2402 PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ouyang W, Liao W, Luo CT, Yin N, Huse M, Kim MV, Peng M, Chan P, Ma Q, Mo Y, Meijer D, Zhao K, Rudensky AY, Atwal G, Zhang MQ, Li MO (2012) Novel Foxo1-dependent transcriptional programs control T(reg) cell function. Nature 491(7425):554–559. doi: 10.1038/nature11581 PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hu H, Djuretic I, Sundrud MS, Rao A (2007) Transcriptional partners in regulatory T cells: Foxp3, Runx and NFAT. Trends Immunol 28(8):329–332. doi: 10.1016/j.it.2007.06.006 PubMedCrossRefGoogle Scholar
  75. 75.
    Ono M, Yaguchi H, Ohkura N, Kitabayashi I, Nagamura Y, Nomura T, Miyachi Y, Tsukada T, Sakaguchi S (2007) Foxp3 controls regulatory T-cell function by interacting with AML1/Runx1. Nature 446(7136):685–689. doi: 10.1038/nature05673 PubMedCrossRefGoogle Scholar
  76. 76.
    Fu W, Ergun A, Lu T, Hill JA, Haxhinasto S, Fassett MS, Gazit R, Adoro S, Glimcher L, Chan S, Kastner P, Rossi D, Collins JJ, Mathis D, Benoist C (2012) A multiply redundant genetic switch ‘locks in’ the transcriptional signature of regulatory T cells. Nat Immunol 13(10):972–980. doi: 10.1038/ni.2420 PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Thornton AM, Shevach EM (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 188(2):287–296PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Iikuni N, Lourenco EV, Hahn BH, La Cava A (2009) Cutting edge: regulatory T cells directly suppress B cells in systemic lupus erythematosus. J Immunol 183(3):1518–1522. doi: 10.4049/jimmunol.0901163 PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Lim HW, Hillsamer P, Banham AH, Kim CH (2005) Cutting edge: direct suppression of B cells by CD4+ CD25+ regulatory T cells. J Immunol 175(7):4180–4183PubMedCrossRefGoogle Scholar
  80. 80.
    Sage PT, Ron-Harel N, Juneja VR, Sen DR, Maleri S, Sungnak W, Kuchroo VK, Haining WN, Chevrier N, Haigis M, Sharpe AH (2016) Suppression by TFR cells leads to durable and selective inhibition of B cell effector function. Nat Immunol 17(12):1436–1446. doi: 10.1038/ni.3578 PubMedCrossRefGoogle Scholar
  81. 81.
    Gotot J, Gottschalk C, Leopold S, Knolle PA, Yagita H, Kurts C, Ludwig-Portugall I (2012) Regulatory T cells use programmed death 1 ligands to directly suppress autoreactive B cells in vivo. Proc Natl Acad Sci USA 109(26):10468–10473. doi: 10.1073/pnas.1201131109 PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Navarrete AM, Meslier Y, Teyssandier M, Andre S, Delignat S, Triebel F, Kaveri SV, Lacroix-Desmazes S, Bayry J et al (2009) CD4+CD25+ regulatory T cells modulate human dendritic cell chemokines via multiple mechanisms: comment on the article by Kolar et al. Arthritis Rheum 60(9):2848–2849. doi: 10.1002/art.24784 (author reply 2849–2851) PubMedCrossRefGoogle Scholar
  83. 83.
    Tadokoro CE, Shakhar G, Shen S, Ding Y, Lino AC, Maraver A, Lafaille JJ, Dustin ML (2006) Regulatory T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp Med 203(3):505–511. doi: 10.1084/jem.20050783 PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Liang B, Workman C, Lee J, Chew C, Dale BM, Colonna L, Flores M, Li N, Schweighoffer E, Greenberg S, Tybulewicz V, Vignali D, Clynes R (2008) Regulatory T cells inhibit dendritic cells by lymphocyte activation gene-3 engagement of MHC class II. J Immunol 180(9):5916–5926PubMedCrossRefGoogle Scholar
  85. 85.
    Taams LS, van Amelsfort JM, Tiemessen MM, Jacobs KM, de Jong EC, Akbar AN, Bijlsma JW, Lafeber FP (2005) Modulation of monocyte/macrophage function by human CD4+CD25+ regulatory T cells. Hum Immunol 66(3):222–230. doi: 10.1016/j.humimm.2004.12.006 PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Tiemessen MM, Jagger AL, Evans HG, van Herwijnen MJ, John S, Taams LS (2007) CD4+CD25+Foxp3+ regulatory T cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA 104(49):19446–19451. doi: 10.1073/pnas.0706832104 PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Ghiringhelli F, Menard C, Terme M, Flament C, Taieb J, Chaput N, Puig PE, Novault S, Escudier B, Vivier E, Lecesne A, Robert C, Blay JY, Bernard J, Caillat-Zucman S, Freitas A, Tursz T, Wagner-Ballon O, Capron C, Vainchencker W, Martin F, Zitvogel L (2005) CD4+CD25+ regulatory T cells inhibit natural killer cell functions in a transforming growth factor-beta-dependent manner. J Exp Med 202(8):1075–1085. doi: 10.1084/jem.20051511 PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Ralainirina N, Poli A, Michel T, Poos L, Andres E, Hentges F, Zimmer J (2007) Control of NK cell functions by CD4+CD25+ regulatory T cells. J Leukoc Biol 81(1):144–153. doi: 10.1189/jlb.0606409 PubMedCrossRefGoogle Scholar
  89. 89.
    Kim YG, Lee CK, Nah SS, Mun SH, Yoo B, Moon HB (2007) Human CD4+CD25+ regulatory T cells inhibit the differentiation of osteoclasts from peripheral blood mononuclear cells. Biochem Biophys Res Commun 357(4):1046–1052. doi: 10.1016/j.bbrc.2007.04.042 PubMedCrossRefGoogle Scholar
  90. 90.
    Zaiss MM, Axmann R, Zwerina J, Polzer K, Guckel E, Skapenko A, Schulze-Koops H, Horwood N, Cope A, Schett G (2007) Treg cells suppress osteoclast formation: a new link between the immune system and bone. Arthritis Rheum 56(12):4104–4112. doi: 10.1002/art.23138 PubMedCrossRefGoogle Scholar
  91. 91.
    Kanamori M, Nakatsukasa H, Okada M, Lu Q, Yoshimura A (2016) Induced regulatory T cells: their development, stability, and applications. Trends Immunol 37(11):803–811. doi: 10.1016/j.it.2016.08.012 PubMedCrossRefGoogle Scholar
  92. 92.
    Lu L, Kim HJ, Werneck MB, Cantor H (2008) Regulation of CD8+ regulatory T cells: interruption of the NKG2A-Qa-1 interaction allows robust suppressive activity and resolution of autoimmune disease. Proc Natl Acad Sci USA 105(49):19420–19425. doi: 10.1073/pnas.0810383105 PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Panoutsakopoulou V, Huster KM, McCarty N, Feinberg E, Wang R, Wucherpfennig KW, Cantor H (2004) Suppression of autoimmune disease after vaccination with autoreactive T cells that express Qa-1 peptide complexes. J Clin Investig 113(8):1218–1224. doi: 10.1172/JCI20772 PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Hu D, Ikizawa K, Lu L, Sanchirico ME, Shinohara ML, Cantor H (2004) Analysis of regulatory CD8 T cells in Qa-1-deficient mice. Nat Immunol 5(5):516–523. doi: 10.1038/ni1063 PubMedCrossRefGoogle Scholar
  95. 95.
    Sarantopoulos S, Lu L, Cantor H (2004) Qa-1 restriction of CD8+ suppressor T cells. J Clin Investig 114(9):1218–1221. doi: 10.1172/JCI23152 PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Balashov KE, Khoury SJ, Hafler DA, Weiner HL (1995) Inhibition of T cell responses by activated human CD8+ T cells is mediated by interferon-gamma and is defective in chronic progressive multiple sclerosis. J Clin Investig 95(6):2711–2719. doi: 10.1172/JCI117973 PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Long X, Cheng Q, Liang H, Zhao J, Wang J, Wang W, Tomlinson S, Chen L, Atkinson C, Zhang B, Chen X, Zhu P (2017) Memory CD4+ T cells are suppressed by CD8+ regulatory T cells in vitro and in vivo. Am J Transl Res 9(1):63–78PubMedPubMedCentralGoogle Scholar
  98. 98.
    Bonelli M, Shih HY, Hirahara K, Singelton K, Laurence A, Poholek A, Hand T, Mikami Y, Vahedi G, Kanno Y, O’Shea JJ (2014) Helper T cell plasticity: impact of extrinsic and intrinsic signals on transcriptomes and epigenomes. Curr Topics Microbiol Immunol 381:279–326. doi: 10.1007/82_2014_371 Google Scholar
  99. 99.
    DuPage M, Bluestone JA (2016) Harnessing the plasticity of CD4(+) T cells to treat immune-mediated disease. Nat Rev Immunol 16(3):149–163. doi: 10.1038/nri.2015.18 PubMedCrossRefGoogle Scholar
  100. 100.
    Galli SJ, Borregaard N, Wynn TA (2011) Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat Immunol 12(11):1035–1044. doi: 10.1038/ni.2109 PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Perez-Shibayama C, Gil-Cruz C, Ludewig B (2014) Plasticity and complexity of B cell responses against persisting pathogens. Immunol Lett 162(1 Pt A):53–58. doi: 10.1016/j.imlet.2014.07.003 PubMedCrossRefGoogle Scholar
  102. 102.
    Takashima A, Yao Y (2015) Neutrophil plasticity: acquisition of phenotype and functionality of antigen-presenting cell. J Leukoc Biol 98(4):489–496. doi: 10.1189/jlb.1MR1014-502R PubMedCrossRefGoogle Scholar
  103. 103.
    Zhou X, Bailey-Bucktrout SL, Jeker LT, Penaranda C, Martinez-Llordella M, Ashby M, Nakayama M, Rosenthal W, Bluestone JA (2009) Instability of the transcription factor Foxp3 leads to the generation of pathogenic memory T cells in vivo. Nat Immunol 10(9):1000–1007. doi: 10.1038/ni.1774 PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Duarte JH, Zelenay S, Bergman ML, Martins AC, Demengeot J (2009) Natural Treg cells spontaneously differentiate into pathogenic helper cells in lymphopenic conditions. Eur J Immunol 39(4):948–955. doi: 10.1002/eji.200839196 PubMedCrossRefGoogle Scholar
  105. 105.
    Komatsu N, Mariotti-Ferrandiz ME, Wang Y, Malissen B, Waldmann H, Hori S (2009) Heterogeneity of natural Foxp3+ T cells: a committed regulatory T-cell lineage and an uncommitted minor population retaining plasticity. Proc Natl Acad Sci USA 106(6):1903–1908. doi: 10.1073/pnas.0811556106 PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yurchenko E, Shio MT, Huang TC, Da Silva Martins M, Szyf M, Levings MK, Olivier M, Piccirillo CA (2012) Inflammation-driven reprogramming of CD4+ Foxp3+ regulatory T cells into pathogenic Th1/Th17 T effectors is abrogated by mTOR inhibition in vivo. PLoS One 7(4):e35572. doi: 10.1371/journal.pone.0035572 PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Miyao T, Floess S, Setoguchi R, Luche H, Fehling HJ, Waldmann H, Huehn J, Hori S (2012) Plasticity of Foxp3(+) T cells reflects promiscuous Foxp3 expression in conventional T cells but not reprogramming of regulatory T cells. Immunity 36(2):262–275. doi: 10.1016/j.immuni.2011.12.012 PubMedCrossRefGoogle Scholar
  108. 108.
    Hoffmann P, Boeld TJ, Eder R, Huehn J, Floess S, Wieczorek G, Olek S, Dietmaier W, Andreesen R, Edinger M (2009) Loss of FOXP3 expression in natural human CD4+CD25+ regulatory T cells upon repetitive in vitro stimulation. Eur J Immunol 39(4):1088–1097. doi: 10.1002/eji.200838904 PubMedCrossRefGoogle Scholar
  109. 109.
    Koenen HJ, Smeets RL, Vink PM, van Rijssen E, Boots AM, Joosten I (2008) Human CD25highFoxp3pos regulatory T cells differentiate into IL-17-producing cells. Blood 112(6):2340–2352. doi: 10.1182/blood-2008-01-133967 PubMedCrossRefGoogle Scholar
  110. 110.
    Saito T, Nishikawa H, Wada H, Nagano Y, Sugiyama D, Atarashi K, Maeda Y, Hamaguchi M, Ohkura N, Sato E, Nagase H, Nishimura J, Yamamoto H, Takiguchi S, Tanoue T, Suda W, Morita H, Hattori M, Honda K, Mori M, Doki Y, Sakaguchi S (2016) Two FOXP3(+)CD4(+) T cell subpopulations distinctly control the prognosis of colorectal cancers. Nat Med 22(6):679–684. doi: 10.1038/nm.4086 PubMedCrossRefGoogle Scholar
  111. 111.
    Lee JH, Elly C, Park Y, Liu YC (2015) E3 ubiquitin ligase VHL regulates hypoxia-inducible factor-1alpha to maintain regulatory T cell Stability and suppressive capacity. Immunity 42(6):1062–1074. doi: 10.1016/j.immuni.2015.05.016 PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Koch MA, Tucker-Heard G, Perdue NR, Killebrew JR, Urdahl KB, Campbell DJ (2009) The transcription factor T-bet controls regulatory T cell homeostasis and function during type 1 inflammation. Nat Immunol 10(6):595–602. doi: 10.1038/ni.1731 PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Zheng Y, Chaudhry A, Kas A, deRoos P, Kim JM, Chu TT, Corcoran L, Treuting P, Klein U, Rudensky AY (2009) Regulatory T-cell suppressor program co-opts transcription factor IRF4 to control T(H)2 responses. Nature 458(7236):351–356. doi: 10.1038/nature07674 PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Chaudhry A, Rudra D, Treuting P, Samstein RM, Liang Y, Kas A, Rudensky AY (2009) CD4+ regulatory T cells control TH17 responses in a Stat3-dependent manner. Science 326(5955):986–991. doi: 10.1126/science.1172702 PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Cipolletta D, Feuerer M, Li A, Kamei N, Lee J, Shoelson SE, Benoist C, Mathis D (2012) PPAR-gamma is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 486(7404):549–553. doi: 10.1038/nature11132 PubMedPubMedCentralGoogle Scholar
  116. 116.
    Feuerer M, Herrero L, Cipolletta D, Naaz A, Wong J, Nayer A, Lee J, Goldfine AB, Benoist C, Shoelson S, Mathis D (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15(8):930–939. doi: 10.1038/nm.2002 PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Kolodin D, van Panhuys N, Li C, Magnuson AM, Cipolletta D, Miller CM, Wagers A, Germain RN, Benoist C, Mathis D (2015) Antigen- and cytokine-driven accumulation of regulatory T cells in visceral adipose tissue of lean mice. Cell Metab 21(4):543–557. doi: 10.1016/j.cmet.2015.03.005 PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Rosen ED, Walkey CJ, Puigserver P, Spiegelman BM (2000) Transcriptional regulation of adipogenesis. Genes Dev 14(11):1293–1307PubMedGoogle Scholar
  119. 119.
    Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D (2013) A special population of regulatory T cells potentiates muscle repair. Cell 155(6):1282–1295. doi: 10.1016/j.cell.2013.10.054 PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Kuswanto W, Burzyn D, Panduro M, Wang KK, Jang YC, Wagers AJ, Benoist C, Mathis D (2016) Poor repair of skeletal muscle in aging mice reflects a defect in local, interleukin-33-dependent accumulation of regulatory T cells. Immunity 44(2):355–367. doi: 10.1016/j.immuni.2016.01.009 PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Xia M, Hu S, Fu Y, Jin W, Yi Q, Matsui Y, Yang J, McDowell MA, Sarkar S, Kalia V, Xiong N (2014) CCR10 regulates balanced maintenance and function of resident regulatory and effector T cells to promote immune homeostasis in the skin. J Allergy Clin Immunol 134(3):634–644. doi: 10.1016/j.jaci.2014.03.010 PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Osorio F, LeibundGut-Landmann S, Lochner M, Lahl K, Sparwasser T, Eberl G, Reis e Sousa C (2008) DC activated via dectin-1 convert Treg into IL-17 producers. Eur J Immunol 38(12):3274–3281. doi: 10.1002/eji.200838950 PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Beriou G, Costantino CM, Ashley CW, Yang L, Kuchroo VK, Baecher-Allan C, Hafler DA (2009) IL-17-producing human peripheral regulatory T cells retain suppressive function. Blood 113(18):4240–4249. doi: 10.1182/blood-2008-10-183251 PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Voo KS, Wang YH, Santori FR, Boggiano C, Wang YH, Arima K, Bover L, Hanabuchi S, Khalili J, Marinova E, Zheng B, Littman DR, Liu YJ (2009) Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proc Natl Acad Sci USA 106(12):4793–4798PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Zhou L, Lopes JE, Chong MM, Ivanov II, Min R, Victora GD, Shen Y, Du J, Rubtsov YP, Rudensky AY, Ziegler SF, Littman DR (2008) TGF-beta-induced Foxp3 inhibits T(H)17 cell differentiation by antagonizing RORgammat function. Nature 453(7192):236–240. doi: 10.1038/nature06878 PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Blatner NR, Mulcahy MF, Dennis KL, Scholtens D, Bentrem DJ, Phillips JD, Ham S, Sandall BP, Khan MW, Mahvi DM, Halverson AL, Stryker SJ, Boller AM, Singal A, Sneed RK, Sarraj B, Ansari MJ, Oft M, Iwakura Y, Zhou L, Bonertz A, Beckhove P, Gounari F, Khazaie K (2012) Expression of RORgammat marks a pathogenic regulatory T cell subset in human colon cancer. Sci Transl Med 4(164):164ra159. doi: 10.1126/scitranslmed.3004566 PubMedPubMedCentralCrossRefGoogle Scholar
  127. 127.
    Kryczek I, Wu K, Zhao E, Wei S, Vatan L, Szeliga W, Huang E, Greenson J, Chang A, Rolinski J, Radwan P, Fang J, Wang G, Zou W (2011) IL-17+ regulatory T cells in the microenvironments of chronic inflammation and cancer. J Immunol 186(7):4388–4395. doi: 10.4049/jimmunol.1003251 PubMedCrossRefGoogle Scholar
  128. 128.
    Hovhannisyan Z, Treatman J, Littman DR, Mayer L (2011) Characterization of interleukin-17-producing regulatory T cells in inflamed intestinal mucosa from patients with inflammatory bowel diseases. Gastroenterology 140(3):957–965. doi: 10.1053/j.gastro.2010.12.002 PubMedCrossRefGoogle Scholar
  129. 129.
    Bovenschen HJ, van de Kerkhof PC, van Erp PE, Woestenenk R, Joosten I, Koenen HJ (2011) Foxp3+ regulatory T cells of psoriasis patients easily differentiate into IL-17A-producing cells and are found in lesional skin. J Investig Dermatol 131(9):1853–1860. doi: 10.1038/jid.2011.139 PubMedCrossRefGoogle Scholar
  130. 130.
    Komatsu N, Okamoto K, Sawa S, Nakashima T, Oh-hora M, Kodama T, Tanaka S, Bluestone JA, Takayanagi H (2014) Pathogenic conversion of Foxp3+ T cells into TH17 cells in autoimmune arthritis. Nat Med 20(1):62–68. doi: 10.1038/nm.3432 PubMedCrossRefGoogle Scholar
  131. 131.
    Krishnamoorthy N, Khare A, Oriss TB, Raundhal M, Morse C, Yarlagadda M, Wenzel SE, Moore ML, Peebles RS Jr, Ray A, Ray P (2012) Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat Med 18(10):1525–1530. doi: 10.1038/nm.2896 PubMedPubMedCentralCrossRefGoogle Scholar
  132. 132.
    Noval Rivas M, Burton OT, Wise P, Charbonnier LM, Georgiev P, Oettgen HC, Rachid R, Chatila TA (2015) Regulatory T cell reprogramming toward a Th2-cell-like lineage impairs oral tolerance and promotes food allergy. Immunity 42(3):512–523. doi: 10.1016/j.immuni.2015.02.004 PubMedCrossRefGoogle Scholar
  133. 133.
    Dominguez-Villar M, Baecher-Allan CM, Hafler DA (2011) Identification of T helper type 1-like, Foxp3+ regulatory T cells in human autoimmune disease. Nat Med 17(6):673–675. doi: 10.1038/nm.2389 PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    McClymont SA, Putnam AL, Lee MR, Esensten JH, Liu W, Hulme MA, Hoffmuller U, Baron U, Olek S, Bluestone JA, Brusko TM (2011) Plasticity of human regulatory T cells in healthy subjects and patients with type 1 diabetes. J Immunol 186(7):3918–3926. doi: 10.4049/jimmunol.1003099 PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Oldenhove G, Bouladoux N, Wohlfert EA, Hall JA, Chou D, Dos Santos L, O’Brien S, Blank R, Lamb E, Natarajan S, Kastenmayer R, Hunter C, Grigg ME, Belkaid Y (2009) Decrease of Foxp3+ Treg cell number and acquisition of effector cell phenotype during lethal infection. Immunity 31(5):772–786. doi: 10.1016/j.immuni.2009.10.001 PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Zhao J, Zhao J, Fett C, Trandem K, Fleming E, Perlman S (2011) IFN-gamma- and IL-10-expressing virus epitope-specific Foxp3(+) T reg cells in the central nervous system during encephalomyelitis. J Exp Med 208(8):1571–1577. doi: 10.1084/jem.20110236 PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Korn T, Reddy J, Gao W, Bettelli E, Awasthi A, Petersen TR, Backstrom BT, Sobel RA, Wucherpfennig KW, Strom TB, Oukka M, Kuchroo VK (2007) Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation. Nat Med 13(4):423–431. doi: 10.1038/nm1564 PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Beima KM, Miazgowicz MM, Lewis MD, Yan PS, Huang TH, Weinmann AS (2006) T-bet binding to newly identified target gene promoters is cell type-independent but results in variable context-dependent functional effects. J Biol Chem 281(17):11992–12000. doi: 10.1074/jbc.M513613200 PubMedCrossRefGoogle Scholar
  139. 139.
    Koch MA, Thomas KR, Perdue NR, Smigiel KS, Srivastava S, Campbell DJ (2012) T-bet(+) Treg cells undergo abortive Th1 cell differentiation due to impaired expression of IL-12 receptor beta2. Immunity 37(3):501–510. doi: 10.1016/j.immuni.2012.05.031 PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Chen X, Subleski JJ, Hamano R, Howard OM, Wiltrout RH, Oppenheim JJ (2010) Co-expression of TNFR2 and CD25 identifies more of the functional CD4+FOXP3+ regulatory T cells in human peripheral blood. Eur J Immunol 40(4):1099–1106. doi: 10.1002/eji.200940022 PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Chen X, Subleski JJ, Kopf H, Howard OM, Mannel DN, Oppenheim JJ (2008) Cutting edge: expression of TNFR2 defines a maximally suppressive subset of mouse CD4+CD25+FoxP3+ T regulatory cells: applicability to tumor-infiltrating T regulatory cells. J Immunol 180(10):6467–6471PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Hamano R, Huang J, Yoshimura T, Oppenheim JJ, Chen X (2011) TNF optimally activatives regulatory T cells by inducing TNF receptor superfamily members TNFR2, 4-1BB and OX40. Eur J Immunol 41(7):2010–2020. doi: 10.1002/eji.201041205 PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Piconese S, Timperi E, Pacella I, Schinzari V, Tripodo C, Rossi M, Guglielmo N, Mennini G, Grazi GL, Di Filippo S, Brozzetti S, Fazzi K, Antonelli G, Lozzi MA, Sanchez M, Barnaba V (2014) Human OX40 tunes the function of regulatory T cells in tumor and nontumor areas of hepatitis C virus-infected liver tissue. Hepatology 60(5):1494–1507. doi: 10.1002/hep.27188 PubMedCrossRefGoogle Scholar
  144. 144.
    Piconese S, Timperi E, Barnaba V (2014) ‘Hardcore’ OX40+ immunosuppressive regulatory T cells in hepatic cirrhosis and cancer. Oncoimmunology 3:e29257. doi: 10.4161/onci.29257 PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Chen X, Wu X, Zhou Q, Howard OM, Netea MG, Oppenheim JJ (2013) TNFR2 is critical for the stabilization of the CD4+Foxp3+ regulatory T. cell phenotype in the inflammatory environment. J Immunol 190(3):1076–1084. doi: 10.4049/jimmunol.1202659 PubMedCrossRefGoogle Scholar
  146. 146.
    Grinberg-Bleyer Y, Saadoun D, Baeyens A, Billiard F, Goldstein JD, Gregoire S, Martin GH, Elhage R, Derian N, Carpentier W, Marodon G, Klatzmann D, Piaggio E, Salomon BL (2010) Pathogenic T cells have a paradoxical protective effect in murine autoimmune diabetes by boosting Tregs. J Clin Investig 120(12):4558–4568. doi: 10.1172/JCI42945 PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108(1):253–261. doi: 10.1182/blood-2005-11-4567 PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA, Mauri C (2004) Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med 200(3):277–285. doi: 10.1084/jem.20040165 PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Nadkarni S, Mauri C, Ehrenstein MR (2007) Anti-TNF-alpha therapy induces a distinct regulatory T cell population in patients with rheumatoid arthritis via TGF-beta. J Exp Med 204(1):33–39. doi: 10.1084/jem.20061531 PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Zhong H, Yazdanbakhsh K (2013) Differential control of Helios(+/−) Treg development by monocyte subsets through disparate inflammatory cytokines. Blood 121(13):2494–2502. doi: 10.1182/blood-2012-11-469122 PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Lu LF, Boldin MP, Chaudhry A, Lin LL, Taganov KD, Hanada T, Yoshimura A, Baltimore D, Rudensky AY (2010) Function of miR-146a in controlling Treg cell-mediated regulation of Th1 responses. Cell 142(6):914–929. doi: 10.1016/j.cell.2010.08.012 PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Bhairavabhotla R, Kim YC, Glass DD, Escobar TM, Patel MC, Zahr R, Nguyen CK, Kilaru GK, Muljo SA, Shevach EM (2016) Transcriptome profiling of human FoxP3+ regulatory T cells. Hum Immunol 77(2):201–213. doi: 10.1016/j.humimm.2015.12.004 PubMedCrossRefGoogle Scholar
  153. 153.
    Kitz A, de Marcken M, Gautron AS, Mitrovic M, Hafler DA, Dominguez-Villar M (2016) AKT isoforms modulate Th1-like Treg generation and function in human autoimmune disease. EMBO Rep 17(8):1169–1183. doi: 10.15252/embr.201541905 PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Gonzalez E, McGraw TE (2009) The Akt kinases: isoform specificity in metabolism and cancer. Cell Cycle 8(16):2502–2508. doi: 10.4161/cc.8.16.9335 PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Ward SG, Ley SC, MacPhee C, Cantrell DA (1992) Regulation of D-3 phosphoinositides during T cell activation via the T cell antigen receptor/CD3 complex and CD2 antigens. Eur J Immunol 22(1):45–49. doi: 10.1002/eji.1830220108 PubMedCrossRefGoogle Scholar
  156. 156.
    Di Cristofano A, Kotsi P, Peng YF, Cordon-Cardo C, Elkon KB, Pandolfi PP (1999) Impaired Fas response and autoimmunity in Pten+/− mice. Science 285(5436):2122–2125PubMedCrossRefGoogle Scholar
  157. 157.
    Migone TS, Rodig S, Cacalano NA, Berg M, Schreiber RD, Leonard WJ (1998) Functional cooperation of the interleukin-2 receptor beta chain and Jak1 in phosphatidylinositol 3-kinase recruitment and phosphorylation. Mol Cell Biol 18(11):6416–6422PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Schwindinger WF, Robishaw JD (2001) Heterotrimeric G-protein betagamma-dimers in growth and differentiation. Oncogene 20(13):1653–1660. doi: 10.1038/sj.onc.1204181 PubMedCrossRefGoogle Scholar
  159. 159.
    Knight ZA, Gonzalez B, Feldman ME, Zunder ER, Goldenberg DD, Williams O, Loewith R, Stokoe D, Balla A, Toth B, Balla T, Weiss WA, Williams RL, Shokat KM (2006) A pharmacological map of the PI3-K family defines a role for p110alpha in insulin signaling. Cell 125(4):733–747. doi: 10.1016/j.cell.2006.03.035 PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Sarbassov DD, Guertin DA, Ali SM, Sabatini DM (2005) Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307(5712):1098–1101. doi: 10.1126/science.1106148 PubMedCrossRefGoogle Scholar
  161. 161.
    Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P (1997) Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Balpha. Curr Biol 7(4):261–269PubMedCrossRefGoogle Scholar
  162. 162.
    Wu YT, Ouyang W, Lazorchak AS, Liu D, Shen HM, Su B (2011) mTOR complex 2 targets Akt for proteasomal degradation via phosphorylation at the hydrophobic motif. J Biol Chem 286(16):14190–14198. doi: 10.1074/jbc.M111.219923 PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Buzzi F, Xu L, Zuellig RA, Boller SB, Spinas GA, Hynx D, Chang Z, Yang Z, Hemmings BA, Tschopp O, Niessen M (2010) Differential effects of protein kinase B/Akt isoforms on glucose homeostasis and islet mass. Mol Cell Biol 30(3):601–612. doi: 10.1128/MCB.00719-09 PubMedCrossRefGoogle Scholar
  164. 164.
    Lawlor MA, Alessi DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114(Pt 16):2903–2910PubMedGoogle Scholar
  165. 165.
    Yu H, Littlewood T, Bennett M (2015) Akt isoforms in vascular disease. Vascul Pharmacol 71:57–64. doi: 10.1016/j.vph.2015.03.003 PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Kerdiles YM, Stone EL, Beisner DR, McGargill MA, Ch’en IL, Stockmann C, Katayama CD, Hedrick SM (2010) Foxo transcription factors control regulatory T cell development and function. Immunity 33(6):890–904. doi: 10.1016/j.immuni.2010.12.002 PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Ouyang W, Beckett O, Ma Q, Paik JH, DePinho RA, Li MO (2010) Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells. Nat Immunol 11(7):618–627. doi: 10.1038/ni.1884 PubMedCrossRefGoogle Scholar
  168. 168.
    Chen M, Nowak DG, Trotman LC (2014) Molecular pathways: PI3K pathway phosphatases as biomarkers for cancer prognosis and therapy. Clin Cancer Res 20(12):3057–3063. doi: 10.1158/1078-0432.CCR-12-3680 PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Merkenschlager M, von Boehmer H (2010) PI3 kinase signalling blocks Foxp3 expression by sequestering Foxo factors. J Exp Med 207(7):1347–1350. doi: 10.1084/jem.20101156 PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Haxhinasto S, Mathis D, Benoist C (2008) The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 205(3):565–574. doi: 10.1084/jem.20071477 PubMedPubMedCentralCrossRefGoogle Scholar
  171. 171.
    Crellin NK, Garcia RV, Levings MK (2007) Altered activation of AKT is required for the suppressive function of human CD4+CD25+ T regulatory cells. Blood 109(5):2014–2022. doi: 10.1182/blood-2006-07-035279 PubMedCrossRefGoogle Scholar
  172. 172.
    Shrestha S, Yang K, Guy C, Vogel P, Neale G, Chi H (2015) Treg cells require the phosphatase PTEN to restrain TH1 and TFH cell responses. Nat Immunol 16(2):178–187. doi: 10.1038/ni.3076 PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    Huynh A, DuPage M, Priyadharshini B, Sage PT, Quiros J, Borges CM, Townamchai N, Gerriets VA, Rathmell JC, Sharpe AH, Bluestone JA, Turka LA (2015) Control of PI(3) kinase in Treg cells maintains homeostasis and lineage stability. Nat Immunol 16(2):188–196. doi: 10.1038/ni.3077 PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Linnerth-Petrik NM, Santry LA, Petrik JJ, Wootton SK (2014) Opposing functions of Akt isoforms in lung tumor initiation and progression. PLoS One 9(4):e94595. doi: 10.1371/journal.pone.0094595 PubMedPubMedCentralCrossRefGoogle Scholar
  175. 175.
    Tsiperson V, Gruber RC, Goldberg MF, Jordan A, Weinger JG, Macian F, Shafit-Zagardo B (2013) Suppression of inflammatory responses during myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis is regulated by AKT3 signaling. J Immunol 190(4):1528–1539. doi: 10.4049/jimmunol.1201387 PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Arterbery AS, Osafo-Addo A, Avitzur Y, Ciarleglio M, Deng Y, Lobritto SJ, Martinez M, Hafler DA, Kleinewietfeld M, Ekong UD (2016) Production of proinflammatory cytokines by monocytes in liver-transplanted recipients with de novo autoimmune hepatitis is enhanced and induces TH1-like regulatory T cells. J Immunol 196(10):4040–4051. doi: 10.4049/jimmunol.1502276 PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Cao AT, Yao S, Stefka AT, Liu Z, Qin H, Liu H, Evans-Marin HL, Elson CO, Nagler CR, Cong Y (2014) TLR4 regulates IFN-gamma and IL-17 production by both thymic and induced Foxp3+ Tregs during intestinal inflammation. J Leukoc Biol 96(5):895–905. doi: 10.1189/jlb.3A0114-056RR PubMedPubMedCentralCrossRefGoogle Scholar
  178. 178.
    Feng T, Cao AT, Weaver CT, Elson CO, Cong Y (2011) Interleukin-12 converts Foxp3+ regulatory T cells to interferon-gamma-producing Foxp3+ T cells that inhibit colitis. Gastroenterology 140(7):2031–2043. doi: 10.1053/j.gastro.2011.03.009 PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Holmen N, Lundgren A, Lundin S, Bergin AM, Rudin A, Sjovall H, Ohman L (2006) Functional CD4+CD25high regulatory T cells are enriched in the colonic mucosa of patients with active ulcerative colitis and increase with disease activity. Inflamm Bowel Dis 12(6):447–456PubMedCrossRefGoogle Scholar
  180. 180.
    Thornton AM, Korty PE, Tran DQ, Wohlfert EA, Murray PE, Belkaid Y, Shevach EM (2010) Expression of Helios, an Ikaros transcription factor family member, differentiates thymic-derived from peripherally induced Foxp3+ T regulatory cells. J Immunol 184(7):3433–3441. doi: 10.4049/jimmunol.0904028 PubMedPubMedCentralCrossRefGoogle Scholar
  181. 181.
    Elkord E (2016) Helios should not be cited as a marker of human thymus-derived Tregs. Commentary: helios(+) and helios(−) cells coexist within the natural FOXP3(+) T regulatory cell subset in humans. Front Immunol 7:276. doi: 10.3389/fimmu.2016.00276 PubMedPubMedCentralCrossRefGoogle Scholar
  182. 182.
    Gottschalk RA, Corse E, Allison JP (2012) Expression of Helios in peripherally induced Foxp3+ regulatory T cells. J Immunol 188(3):976–980. doi: 10.4049/jimmunol.1102964 PubMedCrossRefGoogle Scholar
  183. 183.
    Himmel ME, MacDonald KG, Garcia RV, Steiner TS, Levings MK (2013) Helios+ and Helios cells coexist within the natural FOXP3+ T regulatory cell subset in humans. J Immunol 190(5):2001–2008. doi: 10.4049/jimmunol.1201379 PubMedCrossRefGoogle Scholar
  184. 184.
    Szurek E, Cebula A, Wojciech L, Pietrzak M, Rempala G, Kisielow P, Ignatowicz L (2015) Differences in expression level of helios and neuropilin-1 do not distinguish thymus-derived from extrathymically-induced CD4+Foxp3+ regulatory T cells. PLoS One 10(10):e0141161. doi: 10.1371/journal.pone.0141161 PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Kornete M, Mason ES, Girouard J, Lafferty EI, Qureshi S, Piccirillo CA (2015) Th1-Like ICOS+ Foxp3+ Treg cells preferentially express CXCR3 and home to beta-islets during pre-diabetes in BDC2.5 NOD mice. PLoS One 10(5):e0126311. doi: 10.1371/journal.pone.0126311 PubMedPubMedCentralCrossRefGoogle Scholar
  186. 186.
    Hall AO, Beiting DP, Tato C, John B, Oldenhove G, Lombana CG, Pritchard GH, Silver JS, Bouladoux N, Stumhofer JS, Harris TH, Grainger J, Wojno ED, Wagage S, Roos DS, Scott P, Turka LA, Cherry S, Reiner SL, Cua D, Belkaid Y, Elloso MM, Hunter CA (2012) The cytokines interleukin 27 and interferon-gamma promote distinct Treg cell populations required to limit infection-induced pathology. Immunity 37(3):511–523. doi: 10.1016/j.immuni.2012.06.014 PubMedPubMedCentralCrossRefGoogle Scholar
  187. 187.
    Koenecke C, Lee CW, Thamm K, Fohse L, Schafferus M, Mittrucker HW, Floess S, Huehn J, Ganser A, Forster R, Prinz I (2012) IFN-gamma production by allogeneic Foxp3+ regulatory T cells is essential for preventing experimental graft-versus-host disease. J Immunol 189(6):2890–2896. doi: 10.4049/jimmunol.1200413 PubMedCrossRefGoogle Scholar
  188. 188.
    Weinberg AD, Morris NP, Kovacsovics-Bankowski M, Urba WJ, Curti BD (2011) Science gone translational: the OX40 agonist story. Immunol Rev 244(1):218–231. doi: 10.1111/j.1600-065X.2011.01069.x PubMedPubMedCentralCrossRefGoogle Scholar
  189. 189.
    Philips GK, Atkins M (2015) Therapeutic uses of anti-PD-1 and anti-PD-L1 antibodies. Int Immunol 27(1):39–46. doi: 10.1093/intimm/dxu095 PubMedCrossRefGoogle Scholar
  190. 190.
    Romano E, Kusio-Kobialka M, Foukas PG, Baumgaertner P, Meyer C, Ballabeni P, Michielin O, Weide B, Romero P, Speiser DE (2015) Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients. Proc Natl Acad Sci USA 112(19):6140–6145. doi: 10.1073/pnas.1417320112 PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Brunstein CG, Miller JS, McKenna DH, Hippen KL, DeFor TE, Sumstad D, Curtsinger J, Verneris MR, MacMillan ML, Levine BL, Riley JL, June CH, Le C, Weisdorf DJ, McGlave PB, Blazar BR, Wagner JE (2016) Umbilical cord blood-derived T regulatory cells to prevent GVHD: kinetics, toxicity profile, and clinical effect. Blood 127(8):1044–1051. doi: 10.1182/blood-2015-06-653667 PubMedPubMedCentralCrossRefGoogle Scholar
  192. 192.
    June CH, Blazar BR (2006) Clinical application of expanded CD4+25+ cells. Semin Immunol 18(2):78–88. doi: 10.1016/j.smim.2006.01.006 PubMedCrossRefGoogle Scholar
  193. 193.
    Bluestone JA, Buckner JH, Fitch M, Gitelman SE, Gupta S, Hellerstein MK, Herold KC, Lares A, Lee MR, Li K, Liu W, Long SA, Masiello LM, Nguyen V, Putnam AL, Rieck M, Sayre PH, Tang Q (2015) Type 1 diabetes immunotherapy using polyclonal regulatory T cells. Sci Transl Med 7(315):315ra189. doi: 10.1126/scitranslmed.aad4134 PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Marek-Trzonkowska N, Mysliwiec M, Dobyszuk A, Grabowska M, Derkowska I, Juscinska J, Owczuk R, Szadkowska A, Witkowski P, Mlynarski W, Jarosz-Chobot P, Bossowski A, Siebert J, Trzonkowski P (2014) Therapy of type 1 diabetes with CD4(+)CD25(high)CD127-regulatory T cells prolongs survival of pancreatic islets—results of one year follow-up. Clin Immunol 153(1):23–30. doi: 10.1016/j.clim.2014.03.016 PubMedCrossRefGoogle Scholar
  195. 195.
    MacDonald KG, Hoeppli RE, Huang Q, Gillies J, Luciani DS, Orban PC, Broady R, Levings MK (2016) Alloantigen-specific regulatory T cells generated with a chimeric antigen receptor. J Clin Investig 126(4):1413–1424. doi: 10.1172/JCI82771 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Departments of Neurology and ImmunobiologyYale School of MedicineNew HavenUSA
  2. 2.Department of Neurology, Human and Translational Immunology ProgramYale School of MedicineNew HavenUSA

Personalised recommendations