Skip to main content
Log in

Norm-Attaining Tensors and Nuclear Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given two Banach spaces X and Y, we introduce and study a concept of norm-attainment in the space of nuclear operators \(\mathcal N(X,Y)\) and in the projective tensor product space \(X\widehat{\otimes }_\pi Y\). We exhibit positive and negative examples where both previous norm-attainment hold. We also study the problem of whether the class of elements which attain their norms in \(\mathcal N(X,Y)\) and in \(X\widehat{\otimes }_\pi Y\) is dense or not. We prove that, for both concepts, the density of norm-attaining elements holds for a large class of Banach spaces X and Y which, in particular, covers all classical Banach spaces. Nevertheless, we present Banach spaces X and Y failing the approximation property in such a way that the class of elements in \(X\widehat{\otimes }_\pi Y\) which attain their projective norms is not dense. We also discuss some relations and applications of our work to the classical theory of norm-attaining operators throughout the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The authors are thankful to the referee who provided us this example.

  2. It is worth mentioning that this question was posed by the authors in a preliminary version of this manuscript; they thank the anonymous referee who answered it negatively.

References

  1. Acosta, M.D., Aguirre, F.J., Payá, R.: There is no bilinear Bishop-Phelps theorem. Isr. J. Math. 93, 221–227 (1996)

    Article  MathSciNet  Google Scholar 

  2. Acosta, M.D., García, D., Maestre, M.: A multilinear Lindenstrauss theorem. J. Funct. Anal. 235, 122–136 (2006)

    Article  MathSciNet  Google Scholar 

  3. Aron, R.M., Finet, C., Werner, E.: Some remarks on norm-attaining \(n\) -linear forms, Function Spaces (K. Jarosz, ed.), Lecture Notes in Pure and Appl. Math., 172, Marcel Dekker, New York, pp. 19–28 (1995)

  4. Aron, R.M., García, D., Maestre, M.: On norm attaining polynomials. Publ. Res. Inst. Math. Sci. 39, 165–172 (2003)

    Article  MathSciNet  Google Scholar 

  5. Bishop, E., Phelps, R.R.: A proof that every Banach space is subreflexive. Bull. Am. Math. Soc. 67, 97–98 (1961)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J.: On dentability and the Bishop-Phelps property. Israel J. Math. 28, 265–271 (1977)

    Article  MathSciNet  Google Scholar 

  7. Casazza, P.G.: Approximation Properties, Handbook of the Geometry of Banach Spaces, Volume 1, Chapter 7, North Holland (2003)

  8. Cascales, B., Chiclana, R., García-Lirola, L.C., Martín, M., Rueda Zoca, A.: On strongly norm attaining Lipschitz maps. J. Funct. Anal. 277, 1677–1717 (2019)

    Article  MathSciNet  Google Scholar 

  9. Chiclana, R., García-Lirola, L.C., Martín, M., Rueda Zoca, A.: Examples and applications of the density of strongly norm attaining Lipschitz map. Rev. Mat. Iberoam. 37(5), 1917–1951 (2021)

  10. Choi, Y.S.: Norm attaining bilinear forms on \(L_1[0,1]\). J. Math. Anal. Appl. 211, 295–300 (1997)

    Article  MathSciNet  Google Scholar 

  11. Choi, Y.S., Song, H.G.: Property (quasi-\(\alpha \)) and the denseness of norm attaining mappings. Math. Nachr. 9, 1264–1272 (2008)

  12. Dantas, S.: Some kind of Bishop-Phelps-Bollobás property. Math. Nachr. 290, 406–431 (2017)

    Article  MathSciNet  Google Scholar 

  13. Dantas, S., Kim, S.K., Lee, H.J., Mazzitelli, M.: Strong subdifferentiability and local Bishop-Phelps-Bollobás properties. Rev. R. Acad. Cien. Ser. A. Mat. 114, 47 (2020)

    Article  Google Scholar 

  14. Defant, A., Floret, K.: Tensor Norms and Operator Ideals. North-Holland, Mathematics Studies. Elsevier, Berlin (1993)

    MATH  Google Scholar 

  15. Diestel, J., Uhl, J.J.: The Radon-Nikodým theorem for Banach space valued measures. Rocky Mount. J. Math. 6, 1–46 (1976)

    Article  Google Scholar 

  16. Dunford, N., Schwartz, J.T.: Linear Operators, Part I: General Theory, Pure and Applied Mathematics, a Series of Texts and Monographs, vol. II. Wiley Classics Library, New York (1988)

    Google Scholar 

  17. Fabian, M., Habala, M., Hájek, P., Montesinos Santalucía, V., Pelant, J., Zizler, V.: Functional Analysis and Infinite-Dimensional Spaces. Springer, Berlin (2000)

    MATH  Google Scholar 

  18. Godefroy, G.: A survey on Lipschitz-free Banach spaces. Comment. Math. 55, 89–118 (2015)

    MathSciNet  MATH  Google Scholar 

  19. Gohberg, I., Goldberg, S., Krupnik, N.: Traces and Determinants of Linear Operators. Birkhäuser, Basel (2000)

    Book  Google Scholar 

  20. Gowers, W.T.: Symmetric block bases of sequences with large average growth. Israel J. Math. 69, 129–151 (1990)

    Article  MathSciNet  Google Scholar 

  21. Huff, R.E.: Dentability and the Radon-Nikodým property. Duke Math. J. 41, 111–114 (1974)

    Article  MathSciNet  Google Scholar 

  22. Johnson, W.B., Rosenthal, H.P., Zippin, M.: On bases, finite dimensional decompositions, and weaker structures in Banach spaces. Israel J. Math. 9, 488–504 (1971)

    Article  MathSciNet  Google Scholar 

  23. Johnson, J., Wolfe, J.: Norm attaining operators. Stud. Math. 65, 7–19 (1979)

    Article  MathSciNet  Google Scholar 

  24. Kadets, V., López-Pérez, G., Martín, M.: Some geometric properties of Read’s space. J. Funct. Anal. 274, 889–899 (2018)

    Article  MathSciNet  Google Scholar 

  25. Kadets, V., López-Pérez, G., Martín, M., Werner, D.: Equivalent norms with an extremely nonlineable set of norm attaining functionals. J. Inst. Math. Jussieu 19, 259–279 (2020)

    Article  MathSciNet  Google Scholar 

  26. Kadets, V., Martín, M., Soloviova, M.: Norm-attaining Lipschitz functionals. Banach J. Math. Anal. 10, 621–637 (2016)

    Article  MathSciNet  Google Scholar 

  27. Langemets, J., Lima, V., Rueda Zoca, A.: Octahedral norms in tensor products of Banach spaces. Q. J. Math. 68(4), 1247–1260 (2020)

    Article  MathSciNet  Google Scholar 

  28. Lazar, A.J., Lindenstrauss, J.: Banach spaces whose duals are \(L_1\) spaces and their representing matrices. Acta Math. 126, 165–193 (1971)

    Article  MathSciNet  Google Scholar 

  29. Lindenstrauss, J.: On operators which attain their norm. Isr. J. Math. 1, 139–148 (1963)

    Article  MathSciNet  Google Scholar 

  30. Lindenstrauss, J.: Extension of compact operators. Mem. Am. Math. Soc. 1964, 48 (1964)

    MathSciNet  MATH  Google Scholar 

  31. Lindenstrauss, J., Tzafriri, L.: Classical Banach Spaces I: Sequence Spaces. Springer, Berlin (1977)

    Book  Google Scholar 

  32. Martín, M.: Norm-attaining compact operators. J. Funct. Anal. 267, 1585–1592 (2014)

    Article  MathSciNet  Google Scholar 

  33. Michael, E., Pełczyński, A.: Separable Banach spaces which admit \(\ell _n^{\infty }\) approximations. Isr. J. Math. 4, 189–198 (1966)

    Article  Google Scholar 

  34. Nielsen, N.J., Olsen, G.H.: Complex preduals of \(L_1\) and subspaces of \(\ell _{\infty }^n(C)\). Math. Scand. 40, 271–287 (1977)

    Article  MathSciNet  Google Scholar 

  35. Read, C.J.: Banach spaces with no proximinal subspaces of codimension 2. Israel J. Math. 223, 493–504 (2018)

    Article  MathSciNet  Google Scholar 

  36. Ryan, R.A.: Introduction to Tensor Products of Banach Spaces, Springer Monographs in Mathematics. Springer, London (2002)

    Book  Google Scholar 

  37. Schachermayer, W.: Norm attaining operators and renormings of Banach spaces. Israel J. Math. 44, 201–212 (1983)

    Article  MathSciNet  Google Scholar 

  38. Schachermayer, W.: Norm attaining operators on some classical Banach spaces. Pac. J. Math. 105, 427–438 (1983)

    Article  MathSciNet  Google Scholar 

  39. Uhl, J.J.: Norm attaining operators on \(L_1[0,1]\) and the Radon-Nikodým property. Pac. J. Math. 63, 293–300 (1976)

    Article  Google Scholar 

  40. Zizler, V.: On some extremal problems in Banach spaces. Math. Scand. 32, 214–224 (1973)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to William B. Johnson for pointing our an error in the proof of their original version of Lemma 5.3. They are also grateful to Gilles Godefroy, Petr Hájek, and Tommaso Russo for giving proper references for the metric \(\pi \)-property. They also would like to thank Richard Aron, Ginés López Pérez, and Miguel Martín for fruitful conversations on the topic of the paper. Finally, the authors want to thank the anonymus referee for his/her valuable mathematical contributions and the linguistic suggestions which have highly improved the quality and the exposition of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingu Jung.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The first author was supported by Spanish AEI Project PID2019 - 106529GB - I00 / AEI / 10.13039/501100011033, by the project OPVVV CAAS CZ.02.1.01/0. 0/0.0/16_019/0000778 and by the Estonian Research Council grant PRG877. The second author was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2019R1A2C1003857). The third author was supported by the Spanish Ministerio de Universidades, grant FPU17/02023, and by project MTM2017-83262-C2-1-P/MCIN/AEI/10.13039/501100011033 (FEDER). The fourth author was supported by Juan de la Cierva-Formación fellowship FJC2019-039973/ AEI / 10.13039/501100011033, by MTM2017-86182-P (Government of Spain, AEI/FEDER, EU), by MICINN (Spain) Grant PGC2018-093794-B-I00 (MCIU, AEI, FEDER, UE), by Fundación Séneca, ACyT Región de Murcia grant 20797/PI/18, by Junta de Andalucía Grant A-FQM-484-UGR18 and by Junta de Andalucía Grant FQM-0185.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dantas, S., Jung, M., Roldán, Ó. et al. Norm-Attaining Tensors and Nuclear Operators. Mediterr. J. Math. 19, 38 (2022). https://doi.org/10.1007/s00009-021-01949-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01949-5

Keywords

Mathematics Subject Classification

Navigation