Skip to main content
Log in

Mass, Zero Mass and ...Nophysics

  • Published:
Advances in Applied Clifford Algebras Aims and scope Submit manuscript

Abstract

In this paper we demonstrate that massless particles cannot be considered as the limiting case of massive particles. Instead, the usual symmetry structure based on semisimple groups like U(1), SU(2) and SU(3) has to be replaced by less usual solvable groups like the minimal nonabelian group \(\mathop {\mathrm{sol}}\nolimits _2\). Starting from the proper orthochronous Lorentz group \(\mathop {\mathrm{Lor}}\nolimits _{1,3}\) we extend Wigner’s little group by an additional generator, obtaining the maximal solvable or Borel subgroup \(\mathop {\mathrm{Bor}}\nolimits _{1,3}\) which is equivalent to the Kronecker sum of two copies of \(\mathop {\mathrm{sol}}\nolimits _2\), telling something about the helicity of particle and antiparticle states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, A.U.: Thomas precession and its associated grouplike structure. Am. J. Phys. 59(9), 824 (1991)

    Article  MathSciNet  Google Scholar 

  2. Abraham, A.U.: Parametric realization of the lorentz transformation group in pseudo-euclidean spaces. J. Geom. Symm. Phys. 38, 39 (2015)

    MathSciNet  MATH  Google Scholar 

  3. Anco, S.C.: Symmetry properties of conservation laws. Int. J. Mod. Phys. B 30, 1640004 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Aste, A.: Weyl, Majorana and Dirac fields from a unified perspective. Symmetry 8, 87 (2016)

    Article  MathSciNet  Google Scholar 

  5. Barut, A.O., Raczka, R.: Theory of Group Representations and Applications. World Scientific, Singapore (1986)

    Book  MATH  Google Scholar 

  6. Bäuerle, G.G.A., de Kerf, E.A.: Lie algebras—Finite and Infinite Dimensional Lie Algebras and Applications in Physics. Elsevier Science Publishers B.V, North-Holland (1990)

    MATH  Google Scholar 

  7. Borel, Armand: Linear Algebraic Groups. Springer, New York (1991)

    Book  MATH  Google Scholar 

  8. Bump, Daniel: Lie Groups. Springer, New York (2004)

    Book  MATH  Google Scholar 

  9. Candlin, D.J.: Physical operators and the representations of the inhomogeneous Lorentz group. Nuovo Cim. 37, 1396 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Corson, E.M.: Introduction to Tensors, Spinors, and Relativistic Wave Equations. Amer. Math. Soc, London and Glasgow (1953)

    MATH  Google Scholar 

  11. Das, A.: The Special Theory of Relativity—A Mathematical Exposition. Springer, New York (1993)

    Book  MATH  Google Scholar 

  12. Dragon, N.: Currents for Arbitrary Helicity. arXiv:1601.07825 [hep-th]

  13. Feldman, G., Mathews, P.T.: Poincaré invariance, particle fields, and internal symmetry. Ann. Phys. 40, 19 (1966)

    Article  ADS  MATH  Google Scholar 

  14. Finkelstein, D.: Internal structure of spinning particles. Phys. Rev. 100, 924 (1955)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Fronsdal, C.: Unitary irreducible representations of the Lorentz group. Phys. Rev. 113, 1367 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  16. Gel’fand, I., Miklos, R., Shapiro, Z.: Representations of the Rotation and Lorentz Groups and Their Applications (Engl. Transl.). Macmillan, New York (1963)

    Google Scholar 

  17. Gilmore, R.: Lie Groups, Lie Algebras, and Some of Their Applications. Dover Publ. Inc., New York (2002)

    MATH  Google Scholar 

  18. Goodman, R., Wallach, N.R.: Symmetry, Representations, and Invariants. Springer, New York (2009)

    Book  MATH  Google Scholar 

  19. Halpern, F.R., Branscomb, E.: Wigner’s Analysis Of The Unitary Representations of The Poincare Group. University of California, California (1965). (Preprint No. UCRL-12359)

    Book  Google Scholar 

  20. Hanson, Jason: Orthogonal decomposition of Lorentz transformations. Gen. Rel. Grav. 45, 599 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Helfer, A., Hickman, M., Kozameh, C., Lucey, C., Newman, E.T.: Yang–Mills equations and solvable groups. Phys. Rev. D 36, 1740 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jauch, J.M., Frønsdal, C., Hagedorn, R., Tolhoek, H.A.: The representations of the Lorentz group in quantum mechanics. J. Math. Phys. 3, 1116 (1958)

    Google Scholar 

  23. Joos, H.: On the representation theory of inhomogeneous Lorentz groups as the foundation of quantum mechanical kinematics. Fortsch. Phys. 10, 65 (1962)

    Article  ADS  Google Scholar 

  24. Kim, Y.S., Noz, M.E.: Theory and Applications of the Poincare Group. D. Reidel Publishing Company, Dordrecht (1986)

    Book  Google Scholar 

  25. Kwoh, D.: Senior Thesis. Princeton University, Princeton (1970). (unpublished). Cited on page 457 in: Wightman, A.S.: Relativistic wave equations as singular hyperbolic systems. Proc. Symp. Pure Math. 23, 441 (1973)

  26. Lastaria, F.G.: Lie subalgebras of real and complex orthogonal groups in dimension four. J. Math. Phys. 40, 449 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Lyubarskii, G.: The Application of Group Theory in Physics (Engl. Transl.). Pergamon Press, Oxford (1960)

    Google Scholar 

  28. MacFarlane, A.J.: On the restricted Lorentz group and groups homomorphically related to it. J. Math. Phys. 3, 1116 (1962)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Mackey, G.W.: Induced Representations of Groups and Quantum Mechanics. Benjamin, New York (1968)

    MATH  Google Scholar 

  30. Maggiore, Michele: A Modern Introduction to Quantum Field Theory. Oxford University Press, Oxford (2005)

    MATH  Google Scholar 

  31. Naimark, M.: Linear Representations of the Lorentz Group (Engl. Transl.). Macmillan, New York (1964)

    Google Scholar 

  32. Nathan, J.: Lie Algebras. Dover Publ. Inc., New York (1979)

    Google Scholar 

  33. Niederer, U.H., Raifeartaigh, L.O.: Realizations of the unitary representations of the inhomogeneous space-time groups. I+II. Fortsch. Phys. 22, 111 (1974)

    Article  ADS  Google Scholar 

  34. Nuyts, J., Wu, T.T.: Yang–Mills theory for nonsemisimple groups. Phys. Rev. D 67, 025014 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  35. Ohnuki, Y.: Unitary Representations of the Poincaré Group and Relativistic Wave Equations. World Scientific, Singapore (1976)

    MATH  Google Scholar 

  36. Patera, J., Winternitz, P., Zassenhaus, H.: Continuous subgroups of the fundamental groups of physics. J. Math. Phys. 16, 1597 (1975)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Poincaré, H.: Sur la dynamique de l’électron”. Rendiconti del Circolo matematico di Palermo 21, 129–176 (1906). (sent to the editor on July 23rd, 1905)

    Article  MATH  Google Scholar 

  38. Pursey, D.L.: General theory of covariant particle equations. Ann. Phys. 32, 157 (1965)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Serre, J.P.: Lie Algebras and Lie Groups. Lectures Given at Harward University. Harward University, Benjamin (1965)

    MATH  Google Scholar 

  40. Serre, D.: Matrices—Theory and Applications. Springer, New York (2002)

    MATH  Google Scholar 

  41. Sexl, R.U., Urbantke, H.K.: Relativity, Groups, Particles—Special Relativity and Relativistic Symmetry in Field and Particle Physics. Springer, New York (2001)

    Book  MATH  Google Scholar 

  42. Shaw, R.: Unitary representations of the inhomogeneous Lorentz group. Nuovo Cim. 33, 1074 (1964)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Sterman, George: An Introduction to Quantum Field Theory. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  44. Sternberg, S.: Group Theory and Physics. Cambridge University Press, Cambridge (1994)

    MATH  Google Scholar 

  45. Tauvel, P., Yu, R.W.T.: Lie Algebras and Algebraic Groups. Springer, New York (2005)

    MATH  Google Scholar 

  46. Ticciati, R.: Quantum Field Theory for Mathematicians. Cambridge University Press, Cambridge (1999)

    Book  MATH  Google Scholar 

  47. Tung, Wu-Ki: Group Theory in Physics. World Scientific, Singapore (1999)

    Google Scholar 

  48. Weinberg, S.: Nucl. Phys. Proc. Suppl. 6, 67 (1989)

    Article  ADS  Google Scholar 

  49. Weinberg, S.: The Quantum Theory of Fields. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  50. Wigner, E.P.: Unitary representations of the inhomogeneous Lorentz group including reflections. In: Gürsey, F. (ed.) Lecture at the Istanbul Summer School of Theoretical Physics. Gordan and Breach, New York, pp. 37–80 (1962)

  51. Wigner, E.P.: On unitary representations of the inhomogeneous Lorentz group. Ann. Math. 40, 149 (1939)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  52. Wigner, E.P.: Nucl. Phys. Proc. Suppl. 6, 9 (1989)

    Article  ADS  Google Scholar 

  53. Winternitz, P., Frisch, I.: Invariant expansions of relativistic amplitudes and subgroups of the proper Lorentz group. Sov. J. Nucl. Phys. 1, 889 (1965)

    MathSciNet  Google Scholar 

  54. Yndurain, F.J.: Relativistic Quantum Mechanics and Introduction to Field Theory. Springer, New York (1996)

    Book  MATH  Google Scholar 

  55. Zhang, L., Xue, X.: The deformation of Poincare subgroups concerning very special relativity. Sci. China Phys. Mech. Astron. 57, 859 (2014)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Groote.

Additional information

Communicated by Zbigniew Oziewicz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saar, R., Groote, S. Mass, Zero Mass and ...Nophysics. Adv. Appl. Clifford Algebras 27, 2739–2768 (2017). https://doi.org/10.1007/s00006-017-0758-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00006-017-0758-2

Keywords

Navigation