Advertisement

Journal of High Energy Physics

, 2018:50 | Cite as

Spin chain integrability in non-supersymmetric Wilson loops

  • Diego Correa
  • Matias LeoniEmail author
  • Solange Luque
Open Access
Regular Article - Theoretical Physics

Abstract

We study the 1-loop dilatation operator for insertions of composite operators in a generalized Wilson loop in \( \mathcal{N} \) = 4 super Yang-Mills, which interpolates between the supersymmetric Wilson-Maldacena loop and the ordinary Wilson loop with no scalar coupling. For SO(6) scalar insertions, we show that the 1-loop dilatation operator is integrable for the endpoints of the interpolation, i.e. either for the Wilson-Maldacena or the ordinary Wilson loop. Moreover, we also show that integrability persists for SU(2|3) insertions in the ordinary Wilson loop, even when the term making the spin chain length dynamical is included.

Keywords

AdS-CFT Correspondence Conformal Field Theory Integrable Field Theories Wilson, ’t Hooft and Polyakov loops 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    J.M. Maldacena, Wilson loops in large N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  2. [2]
    S.-J. Rey and J.-T. Yee, Macroscopic strings as heavy quarks in large N gauge theory and anti-de Sitter supergravity, Eur. Phys. J. C 22 (2001) 379 [hep-th/9803001] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  3. [3]
    J.K. Erickson, G.W. Semenoff and K. Zarembo, Wilson loops in N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 582 (2000) 155 [hep-th/0003055] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    N. Drukker and D.J. Gross, An Exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  5. [5]
    V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  6. [6]
    D. Correa, J. Henn, J. Maldacena and A. Sever, An exact formula for the radiation of a moving quark in N = 4 super Yang-Mills, JHEP 06 (2012) 048 [arXiv:1202.4455] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    D. Correa, J. Maldacena and A. Sever, The quark anti-quark potential and the cusp anomalous dimension from a TBA equation, JHEP 08 (2012) 134 [arXiv:1203.1913] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    N. Drukker, Integrable Wilson loops, JHEP 10 (2013) 135 [arXiv:1203.1617] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    N. Gromov and A. Sever, Analytic Solution of Bremsstrahlung TBA, JHEP 11 (2012) 075 [arXiv:1207.5489] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    N. Gromov and F. Levkovich-Maslyuk, Quantum Spectral Curve for a cusped Wilson line in \( \mathcal{N} \) = 4 SYM, JHEP 04 (2016) 134 [arXiv:1510.02098] [INSPIRE].ADSzbMATHGoogle Scholar
  11. [11]
    N. Gromov, F. Levkovich-Maslyuk and G. Sizov, Analytic Solution of Bremsstrahlung TBA II: Turning on the Sphere Angle, JHEP 10 (2013) 036 [arXiv:1305.1944] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    S. Giombi and V. Pestun, Correlators of Wilson Loops and Local Operators from Multi-Matrix Models and Strings in AdS, JHEP 01 (2013) 101 [arXiv:1207.7083] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Kim and N. Kiryu, Structure constants of operators on the Wilson loop from integrability, JHEP 11 (2017) 116 [arXiv:1706.02989] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    J. Polchinski and J. Sully, Wilson Loop Renormalization Group Flows, JHEP 10 (2011) 059 [arXiv:1104.5077] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Beccaria, S. Giombi and A. Tseytlin, Non-supersymmetric Wilson loop in \( \mathcal{N} \) = 4 SYM and defect 1d CFT, JHEP 03 (2018) 131 [arXiv:1712.06874] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Cooke, A. Dekel and N. Drukker, The Wilson loop CFT: Insertion dimensions and structure constants from wavy lines, J. Phys. A 50 (2017) 335401 [arXiv:1703.03812] [INSPIRE].zbMATHGoogle Scholar
  17. [17]
    S. Giombi, R. Roiban and A.A. Tseytlin, Half-BPS Wilson loop and AdS 2 /CFT 1, Nucl. Phys. B 922 (2017) 499 [arXiv:1706.00756] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  18. [18]
    L.F. Alday and J. Maldacena, Comments on gluon scattering amplitudes via AdS/CFT, JHEP 11 (2007) 068 [arXiv:0710.1060] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  19. [19]
    M. Beccaria and A.A. Tseytlin, On non-supersymmetric generalizations of the Wilson-Maldacena loops in N = 4 SYM, Nucl. Phys. B 934 (2018) 466 [arXiv:1804.02179] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    C. Hoyos, A defect action for Wilson loops, JHEP 07 (2018) 045 [arXiv:1803.09809] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  21. [21]
    L. Bianchi, M. Lemos and M. Meineri, Line Defects and Radiation in \( \mathcal{N} \) = 2 Conformal Theories, Phys. Rev. Lett. 121 (2018) 141601 [arXiv:1805.04111] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    S. Giombi and S. Komatsu, Exact Correlators on the Wilson Loop in \( \mathcal{N} \) = 4 SYM: Localization, Defect CFT and Integrability, JHEP 05 (2018) 109 [arXiv:1802.05201] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  23. [23]
    J.A. Minahan and K. Zarembo, The Bethe ansatz for \( \mathcal{N} \) = 4 superYang-Mills, JHEP 03 (2003) 013 [hep-th/0212208] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    N. Drukker and S. Kawamoto, Small deformations of supersymmetric Wilson loops and open spin-chains, JHEP 07 (2006) 024 [hep-th/0604124] [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Frolov, Lax pair for strings in Lunin-Maldacena background, JHEP 05 (2005) 069 [hep-th/0503201] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    D. Berenstein and S.E. Vazquez, Integrable open spin chains from giant gravitons, JHEP 06 (2005) 059 [hep-th/0501078] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    O. DeWolfe and N. Mann, Integrable open spin chains in defect conformal field theory, JHEP 04 (2004) 035 [hep-th/0401041] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    T. Erler and N. Mann, Integrable open spin chains and the doubling trick in N = 2 SYM with fundamental matter, JHEP 01 (2006) 131 [hep-th/0508064] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    M. Staudacher, The Factorized S-matrix of CFT/AdS, JHEP 05 (2005) 054 [hep-th/0412188] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    N. Beisert, The SU(2|3) dynamic spin chain, Nucl. Phys. B 682 (2004) 487 [hep-th/0310252] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Instituto de Física La Plata, CONICET, Universidad Nacional de La PlataLa PlataArgentina
  2. 2.Departamento de Física, Universidad de Buenos Aires & IFIBA - CONICET Ciudad UniversitariaBuenos AiresArgentina

Personalised recommendations