Journal of High Energy Physics

, 2016:156 | Cite as

Emergent gravity on covariant quantum spaces in the IKKT model

Open Access
Regular Article - Theoretical Physics

Abstract

We study perturbations of 4-dimensional fuzzy spheres as backgrounds in the IKKT or IIB matrix model. Gauge fields and metric fluctuations are identified among the excitation modes with lowest spin, supplemented by a tower of higher-spin fields. They arise from an internal structure which can be viewed as a twisted bundle over S4, leading to a covariant noncommutative geometry. The linearized 4-dimensional Einstein equations are obtained from the classical matrix model action under certain conditions, modified by an IR cutoff. Some one-loop contributions to the effective action are computed using the formalism of string states.

Keywords

M(atrix) Theories Models of Quantum Gravity Non-Commutative Geometry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    N. Ishibashi, H. Kawai, Y. Kitazawa and A. Tsuchiya, A large-N reduced model as superstring, Nucl. Phys. B 498 (1997) 467 [hep-th/9612115] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  2. [2]
    T. Banks, W. Fischler, S.H. Shenker and L. Susskind, M theory as a matrix model: A conjecture, Phys. Rev. D 55 (1997) 5112 [hep-th/9610043] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  3. [3]
    B. de Wit, J. Hoppe and H. Nicolai, On the Quantum Mechanics of Supermembranes, Nucl. Phys. B 305 (1988) 545 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  4. [4]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions, Phys. Rev. Lett. 108 (2012) 011601 [arXiv:1108.1540] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    S.-W. Kim, J. Nishimura and A. Tsuchiya, Late time behaviors of the expanding universe in the IIB matrix model, JHEP 10 (2012) 147 [arXiv:1208.0711] [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    A. Connes, M.R. Douglas and A.S. Schwarz, Noncommutative geometry and matrix theory: Compactification on tori, JHEP 02 (1998) 003 [hep-th/9711162] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  7. [7]
    H. Steinacker, Emergent Gravity from Noncommutative Gauge Theory, JHEP 12 (2007) 049 [arXiv:0708.2426] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    H. Steinacker, Emergent Geometry and Gravity from Matrix Models: an Introduction, Class. Quant. Grav. 27 (2010) 133001 [arXiv:1003.4134] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H.S. Yang, Emergent Gravity from Noncommutative Spacetime, Int. J. Mod. Phys. A 24 (2009) 4473 [hep-th/0611174] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  10. [10]
    H.S. Yang and M. Sivakumar, Emergent Gravity from Quantized Spacetime, Phys. Rev. D 82 (2010) 045004 [arXiv:0908.2809] [INSPIRE].ADSGoogle Scholar
  11. [11]
    V.O. Rivelles, Noncommutative field theories and gravity, Phys. Lett. B 558 (2003) 191 [hep-th/0212262] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    R.J. Szabo, Symmetry, gravity and noncommutativity, Class. Quant. Grav. 23 (2006) R199 [hep-th/0606233] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    R.J. Szabo, Quantum Gravity, Field Theory and Signatures of Noncommutative Spacetime, Gen. Rel. Grav. 42 (2010) 1 [arXiv:0906.2913] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    P.-M. Ho and S. Ramgoolam, Higher dimensional geometries from matrix brane constructions, Nucl. Phys. B 627 (2002) 266 [hep-th/0111278] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    H.S. Snyder, Quantized space-time, Phys. Rev. 71 (1947) 38 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  16. [16]
    M.V. Battisti and S. Meljanac, Scalar Field Theory on Non-commutative Snyder Space-Time, Phys. Rev. D 82 (2010) 024028 [arXiv:1003.2108] [INSPIRE].ADSGoogle Scholar
  17. [17]
    F. Girelli and E.R. Livine, Scalar field theory in Snyder space-time: Alternatives, JHEP 03 (2011) 132 [arXiv:1004.0621] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of space-time at the Planck scale and quantum fields, Commun. Math. Phys. 172 (1995) 187 [hep-th/0303037] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  19. [19]
    M. Hanada, H. Kawai and Y. Kimura, Describing curved spaces by matrices, Prog. Theor. Phys. 114 (2006) 1295 [hep-th/0508211] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    S.W. MacDowell and F. Mansouri, Unified Geometric Theory of Gravity and Supergravity, Phys. Rev. Lett. 38 (1977) 739 [Erratum ibid. 38 (1977) 1376] [INSPIRE].
  21. [21]
    D.K. Wise, MacDowell-Mansouri gravity and Cartan geometry, Class. Quant. Grav. 27 (2010) 155010 [gr-qc/0611154] [INSPIRE].
  22. [22]
    M. Chaichian, A. Tureanu and G. Zet, Corrections to Schwarzschild solution in noncommutative gauge theory of gravity, Phys. Lett. B 660 (2008) 573 [arXiv:0710.2075] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    A.H. Chamseddine, Deforming Einsteins gravity, Phys. Lett. B 504 (2001) 33 [hep-th/0009153] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  24. [24]
    M.A. Cardella and D. Zanon, Noncommutative deformation of four-dimensional Einstein gravity, Class. Quant. Grav. 20 (2003) L95 [hep-th/0212071] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    H.C. Steinacker, String states, loops and effective actions in noncommutative field theory and matrix models, Nucl. Phys. B 910 (2016) 346 [arXiv:1606.00646] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  26. [26]
    C.N. Yang, On quantized space-time, Phys. Rev. 72 (1947) 874 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    H. Grosse, C. Klimčík and P. Prešnajder, On finite 4-D quantum field theory in noncommutative geometry, Commun. Math. Phys. 180 (1996) 429 [hep-th/9602115] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  28. [28]
    J. Castelino, S. Lee and W. Taylor, Longitudinal five-branes as four spheres in matrix theory, Nucl. Phys. B 526 (1998) 334 [hep-th/9712105] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  29. [29]
    S. Ramgoolam, On spherical harmonics for fuzzy spheres in diverse dimensions, Nucl. Phys. B 610 (2001) 461 [hep-th/0105006] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    E. Hawkins, Quantization of equivariant vector bundles, Commun. Math. Phys. 202 (1999) 517 [q-alg/9708030] [INSPIRE].
  31. [31]
    J. Medina and D. O’Connor, Scalar field theory on fuzzy S 4, JHEP 11 (2003) 051 [hep-th/0212170] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    M. Fabinger, Higher dimensional quantum Hall effect in string theory, JHEP 05 (2002) 037 [hep-th/0201016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  33. [33]
    Y. Abe, Construction of fuzzy S 4, Phys. Rev. D 70 (2004) 126004 [hep-th/0406135] [INSPIRE].ADSGoogle Scholar
  34. [34]
    D. Karabali and V.P. Nair, Quantum Hall effect in higher dimensions, matrix models and fuzzy geometry, J. Phys. A 39 (2006) 12735 [hep-th/0606161] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  35. [35]
    J. Medina, I. Huet, D. O’Connor and B.P. Dolan, Scalar and Spinor Field Actions on Fuzzy S 4 : fuzzy CP 3 as a S F2 bundle over S F4, JHEP 08 (2012) 070 [arXiv:1208.0348] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    H.C. Steinacker, One-loop stabilization of the fuzzy four-sphere via softly broken SUSY, JHEP 12 (2015) 115 [arXiv:1510.05779] [INSPIRE].ADSMathSciNetGoogle Scholar
  37. [37]
    D.N. Blaschke and H. Steinacker, On the 1-loop effective action for the IKKT model and non-commutative branes, JHEP 10 (2011) 120 [arXiv:1109.3097] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  38. [38]
    H. Steinacker, Gravity and compactified branes in matrix models, JHEP 07 (2012) 156 [arXiv:1202.6306] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  39. [39]
    H. Steinacker, The curvature of branes, currents and gravity in matrix models, JHEP 01 (2013) 112 [arXiv:1210.8364] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  40. [40]
    P. Aschieri, T. Grammatikopoulos, H. Steinacker and G. Zoupanos, Dynamical generation of fuzzy extra dimensions, dimensional reduction and symmetry breaking, JHEP 09 (2006) 026 [hep-th/0606021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  41. [41]
    H.C. Steinacker and J. Zahn, Self-intersecting fuzzy extra dimensions from squashed coadjoint orbits in \( \mathcal{N}=4 \) SYM and matrix models, JHEP 02 (2015) 027 [arXiv:1409.1440] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    H.C. Steinacker, Chiral low-energy physics from squashed branes in deformed \( \mathcal{N}=4 \) SYM, JHEP 10 (2015) 119 [arXiv:1504.05703] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  43. [43]
    H. Grosse and H. Steinacker, Finite gauge theory on fuzzy CP 2, Nucl. Phys. B 707 (2005) 145 [hep-th/0407089] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  44. [44]
    R.M. Wald, General Relativity, University of Chicago Press, U.S.A. (1984).CrossRefMATHGoogle Scholar
  45. [45]
    I. Chepelev and A.A. Tseytlin, Interactions of type IIB D-branes from D instanton matrix model, Nucl. Phys. B 511 (1998) 629 [hep-th/9705120] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  46. [46]
    A.A. Tseytlin, Born-Infeld action, supersymmetry and string theory, hep-th/9908105 [INSPIRE].
  47. [47]
    H.C. Steinacker and J. Zahn, An extended standard model and its Higgs geometry from the matrix model, PTEP 2014 (2014) 083B03 [arXiv:1401.2020] [INSPIRE].
  48. [48]
    J. Heckman and H. Verlinde, Covariant non-commutative space-time, Nucl. Phys. B 894 (2015) 58 [arXiv:1401.1810] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  49. [49]
    J.-P. Gazeau and F. Toppan, A natural fuzzyness of de Sitter space-time, Class. Quant. Grav. 27 (2010) 025004 [arXiv:0907.0021] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  50. [50]
    M. Burić and J. Madore, Noncommutative de Sitter and FRW spaces, Eur. Phys. J. C 75 (2015) 502 [arXiv:1508.06058] [INSPIRE].ADSGoogle Scholar
  51. [51]
    M.R. Douglas and W. Taylor, Branes in the bulk of Anti-de Sitter space, hep-th/9807225 [INSPIRE].
  52. [52]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of ViennaViennaAustria

Personalised recommendations