Journal of High Energy Physics

, 2016:85 | Cite as

M-theory potential from the G 2 Hitchin functional in superspace

  • Katrin Becker
  • Melanie Becker
  • Sunny Guha
  • William D. LinchIIIEmail author
  • Daniel Robbins
Open Access
Regular Article - Theoretical Physics


We embed the component fields of eleven-dimensional supergravity into a superspace of the form X × Y where X is the standard 4D, N = 1 superspace and Y is a smooth 7-manifold. The eleven-dimensional 3-form gives rise to a tensor hierarchy of superfields gauged by the diffeomorphisms of Y . It contains a natural candidate for a G 2 structure on Y , and being a complex of superforms, defines a superspace Chern-Simons invariant. Adding to this a natural generalization of the Riemannian volume on X × Y and freezing the (superspin- \( {\scriptscriptstyle \frac{3}{2}} \) and 1) supergravity fields on X, we obtain an approximation to the eleven-dimensional supergravity action that suffices to compute the scalar potential. In this approximation the action is the sum of the superspace Chern-Simons term and a super-space generalization of the Hitchin functional for Y as a G 2-structure manifold. Integrating out auxiliary fields, we obtain the conditions for unbroken supersymmetry and the scalar potential. The latter reproduces the Einstein-Hilbert term on Y in a form due to Bryant.


Chern-Simons Theories M-Theory Superspaces Differential and Algebraic Geometry 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    K. Becker, M. Becker and D. Robbins, Kaluza-Klein theories without truncation, JHEP 02 (2015) 140 [arXiv:1412.8198] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    W. Siegel and M. Roček, On off-shell supermultiplets, Phys. Lett. B 105 (1981) 275 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    W.D. Linch, III, M.A. Luty and J. Phillips, Five-dimensional supergravity in N = 1 superspace, Phys. Rev. D 68 (2003) 025008 [hep-th/0209060] [INSPIRE].ADSMathSciNetGoogle Scholar
  4. [4]
    S.J. Gates, Jr., W.D. Linch, III and J. Phillips, Field strengths of linearized 5D, N = 1 superfield supergravity on a three-brane, JHEP 02 (2005) 036 [hep-th/0311153] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    I.L. Buchbinder et al., Supergravity loop contributions to brane world supersymmetry breaking, Phys. Rev. D 70 (2004) 025008 [hep-th/0305169] [INSPIRE].ADSMathSciNetGoogle Scholar
  6. [6]
    K. Becker, M. Becker, W.D. Linch and D. Robbins, Abelian tensor hierarchy in 4D, N = 1 superspace, JHEP 03 (2016) 052 [arXiv:1601.03066] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  7. [7]
    K. Becker, M. Becker, W.D. Linch and D. Robbins, Chern-Simons actions and their gaugings in 4D, N = 1 superspace, JHEP 06 (2016) 097 [arXiv:1603.07362] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  8. [8]
    N.J. Hitchin, The geometry of three-forms in six dimensions, J. Diff. Geom. 55 (2000) 547 [math/0010054] [INSPIRE].
  9. [9]
    N.J. Hitchin, Stable forms and special metrics, math/0107101 [INSPIRE].
  10. [10]
    R.L. Bryant, Some remarks on G 2 -structures, math/0305124 [INSPIRE].
  11. [11]
    N. Marcus, A. Sagnotti and W. Siegel, Ten-dimensional supersymmetric Yang-Mills theory in terms of four-dimensional superfields, Nucl. Phys. B 224 (1983) 159 [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    S.J. Gates, M.T. Grisaru, M. Roček and W. Siegel, Superspace or one thousand and one lessons in supersymmetry, Front. Phys. 58 (1983) 1 [hep-th/0108200] [INSPIRE].zbMATHGoogle Scholar
  13. [13]
    J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton Univ. Pr., Princeton U.S.A. (1992) [INSPIRE].
  14. [14]
    I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity: or a walk through superspace, IOP, Bristol U.K. (1998) [INSPIRE].zbMATHGoogle Scholar
  15. [15]
    K. Becker, D. Robbins and E. Witten, The α expansion on a compact manifold of exceptional holonomy, JHEP 06 (2014) 051 [arXiv:1404.2460] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    S. Randall, Supersymmetric tensor hierarchies from superspace cohomology, arXiv:1607.01402 [INSPIRE].
  17. [17]
    S. Randall, A note on the NATH in simply curved superspace, unpublished, (2016).Google Scholar
  18. [18]
    S. Aoki, T. Higaki, Y. Yamada and R. Yokokura, Abelian tensor hierarchy in 4D N = 1 conformal supergravity, JHEP 09 (2016) 148 [arXiv:1606.04448] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    R. Yokokura, Abelian tensor hierarchy and Chern-Simons actions in 4D N = 1 conformal supergravity, arXiv:1609.01111 [INSPIRE].
  20. [20]
    M.T. Grisaru and W. Siegel, Supergraphity. Part 1. Background field formalism, Nucl. Phys. B 187 (1981) 149 [INSPIRE].
  21. [21]
    C. Beasley and E. Witten, A note on fluxes and superpotentials in M-theory compactifications on manifolds of G 2 holonomy, JHEP 07 (2002) 046 [hep-th/0203061] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    R. Dijkgraaf, S. Gukov, A. Neitzke and C. Vafa, Topological M-theory as unification of form theories of gravity, Adv. Theor. Math. Phys. 9 (2005) 603 [hep-th/0411073] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    J. Wess and B. Zumino, Superspace formulation of supergravity, Phys. Lett. 66B (1977) 361 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  24. [24]
    J. Wess and B. Zumino, Superfield Lagrangian for supergravity, Phys. Lett. B 74 (1978) 51 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    S. Gukov, Solitons, superpotentials and calibrations, Nucl. Phys. B 574 (2000) 169 [hep-th/9911011] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B 584 (2000) 69 [Erratum ibid. B 608 (2001) 477] [hep-th/9906070] [INSPIRE].
  27. [27]
    B.S. Acharya and B.J. Spence, Flux, supersymmetry and M-theory on seven manifolds, hep-th/0007213 [INSPIRE].
  28. [28]
    T. House and A. Micu, M-theory compactifications on manifolds with G 2 structure, Class. Quant. Grav. 22 (2005) 1709 [hep-th/0412006] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    D.N. Page, Classical stability of round and squashed seven spheres in eleven-dimensional supergravity, Phys. Rev. D 28 (1983) 2976 [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  30. [30]
    P.G.O. Freund and M.A. Rubin, Dynamics of dimensional reduction, Phys. Lett. B 97 (1980) 233 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  31. [31]
    D.D. Joyce, Compact manifolds with special holonomy, Oxford mathematical monographs, Oxford University Press, Oxford U.K. (2000).Google Scholar
  32. [32]
    S. Karigiannis, Deformations of G 2 and Spin(7) structures on manifolds, Canad. J. Math. 57 (2005) 1012 [math/0301218].

Copyright information

© The Author(s) 2016

Authors and Affiliations

  • Katrin Becker
    • 1
  • Melanie Becker
    • 1
  • Sunny Guha
    • 1
  • William D. LinchIII
    • 1
    Email author
  • Daniel Robbins
    • 2
  1. 1.George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and AstronomyTexas A&M UniversityCollege StationU.S.A.
  2. 2.Department of PhysicsUniversity at AlbanyAlbanyU.S.A.

Personalised recommendations