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1 Introduction

In the zoo of supergravity theories, eleven-dimensional supergravity is unique in that it has

the largest possible (manifest) spacetime symmetry group. Despite being, in this sense,

the most fundamental of supergravity theories, it has various quite mysterious properties.

For example, in contrast to its ten-dimensional relatives, there is no theory of critical

superstrings that has it as a low-energy limit. To find a home even somewhat analogous,

one must go to M-theory (which is even more mysterious) and take a massless limit of that.

Another presumably related property is the emergence of an exceptional symmetry of its

(gauged) compactifications on tori.

For applications to the study of physics in lower dimensions, this theory may be com-

pactified on eleven-dimensional manifolds of the form X×Y and expanded in Kaluza-Klein

modes by integrating over Y . This results in an effective theory on X in which the contri-

bution of the internal part is organized in a tower of ever-more-massive fields.

An alternative to this approach is to split the eleven-dimensional spacetime as X × Y

and to reorganize the fields into representations of the reduced structure group but with-

out averaging over the “internal” space. Such backgrounds were precisely the subject of

reference [1], wherein this is referred to as “keeping locality in Y ”. There, the action for

the bosonic part of eleven-dimensional supergravity was decomposed on X × Y explicitly.

Of course it is always possible to keep the full diffeomorphism invariance of the eleven-

dimensional theory recast in terms of covariant, interacting X and Y parts. What is some-

what surprising, however, is that this can be organized in a very manageable form [1]. We

would like to construct a superspace action that reproduces the bosonic eleven-dimensional

supergravity action in this form.
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As this is presumably impossible (in the näıve sense) for more than 8 real supercharges,

we settle for a superspace description with at most N = (1, 0) supersymmetry in 6D,

N = 1 in 5D, or N = 2 in 4D. These maximal off-shell cases require an infinite number of

auxiliary fields [2] and non-chiral matter. This complicates the use of such a superspace

description both technically and phenomenologically. Instead, we propose to embed the

components of eleven-dimensional supergravity into 4D, N = 1 superfields with arbitrary

Y -dependence. This gives a description of eleven-dimensional supergravity on X ×Y with

X a curved superspace modeled on R4|4 and Y a Riemannian 7-manifold. Projecting such

a theory to component fields results in a component supergravity description on the bosonic

submanifold X × Y .

Although the resulting physics is eleven-dimensionally super-diffeomorphism invariant,

only the 4D, N = 1 part of the local super-Poincaré symmetry would be manifest (together

with the 7D (bosonic) Riemannian part). Note that precisely this amount of local super-

Poincaré invariance is what one would retain were one to compactify on a manifold Y

admitting a Riemannian metric of G2 holonomy. Although we do not insist on such a

background in this work, it will be useful to adopt the language of 4D, N = 1 compactifi-

cations in which we refer to X or X as “spacetime” and Y as the “internal space”.

There are various partial realizations of this superspace supergravity program less am-

bitious than the construction of the full 11D theory in arbitrary X × Y . For example,

one could attempt to build the linearized action by working out the linearized superdiffeo-

morphisms and building an invariant action order-by-order following a superspace Noether

procedure.1

Alternatively, one may attempt to define the theory in a gravitino superfield

Ψ(x, y, θ, θ̄) expansion keeping only the 4D, N = 1 supergravity fields and the super-

fields holding the components of the 3-form but all non-linearly. In such an approach, we

expect the action to take the form

S = SCS + SK +O(Ψ) (1.1)

to lowest order. Here, the Chern-Simons action SCS is taken to be the invariant of the non-

abelian tensor hierarchy constructed in [6, 7]. (This hierarchy encodes the components of

the dimensionally-decomposed eleven-dimensional 3-form.) We will refer to the remaining

terms SK as the “Kähler action”. We propose to take it to be a natural generalization

of the super-volume on X × Y constructed from the remaining supergravity and tensor

hierarchy fields (cf. eq. (3.8)).

Additionally, one may consider freezing the 4D, N = 1 supergravity multiplet around

a flat R4|4 background and letting only the tensor hierarchy fields fluctuate. (We take the

spacetime part to be flat for simplicity, but a curved rigid background may be considered

instead.) In this approximation, the Kähler term reduces to the superfield analog of the

1In the analogous problem for 5D, N = 1 supergravity in 4D, N = 1 superspace, this was the approach

taken in [3, 4]. This setup is related to the eleven-dimensional version considered here by taking Y = R×Y ′

in the massless limit, where Y ′ is a compact Calabi-Yau 3-fold. This superspace was used in [5] to compute

supergravity loop corrections to supersymmetry breaking in (a phenomenological analog of) heterotic M-

theory on Y ′.
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Riemannian volume on Y . In our approach, the metric scalars are the imaginary part of

chiral scalar fields in the tensor hierarchy that are 3-forms on Y . (The real part holds the

3-form scalars.) This defines a G2 structure on Y . The result of this is that the Kähler

action is, essentially, a superspace lift of the Hitchin functional [8, 9].

In this work, we test this proposal by computing the scalar potential of this action. As

we are freezing the spactime supergravity part, this background will be of the form R4|4×Y

with Y a G2 structure manifold (not necessarily compact). The remaining fields are those of

the non-abelian tensor hierarchy. In particular, we reproduce the scalar potential of eleven-

dimensional supergravity from the Chern-Simons action and the Hitchin functional. This

potential consists of the Ricci scalar on Y in a form due to Bryant [10] and an analogous

expression for the square of the Maxwell-like tensor for the 3-form scalars.

Before concluding, let us pause to compare the proposed set-up to the analogous con-

struction for ten-dimensional, N = 1 super-Yang-Mills worked out by Marcus, Sagnotti,

and Siegel [11]. In that case, the superspace is of the form R4|4 × Y ′ where Y ′ has a fixed

SU(3) structure (∂̄,Ω). The components of the ten-dimensional gauge field are embedded in

a real superfield (1-form components along X) and three chiral superfields φi (components

along Y ′) transforming in the 3 of SU(3). All four superfields are valued in the adjoint

representation of the gauge group G. The superpotential of the theory is the superspace

generalization of holomorphic Chern-Simons functional

WMSS =
1

2

∫

d4x

∫

d2θ

∫

Y
Ω̄ ∧ Tr

(

φ ∧ ∂φ+
2

3
φ ∧ φ ∧ φ

)

(1.2)

with the trace taken in the adjoint representation of G. The F-term condition that follows

from this action implies the vanishing of the (2, 0) part of the Yang-Mills field strength

so that (the lowest component of) φ describes an anti-holomorphic connection. In this

analogy, the vector multiplet we are ignoring plays the role of the gravitational fields we

are freezing (with indices along X) and the chiral scalars φ stand in for the scalar fields in

the tensor hierarchy (all indices along Y ).

In the next section, we describe the embedding of the components of eleven-dimensional

supergravity into superfields on R4|4 ×R7. (The fields on X × Y follow from this by co-

variantizing derivatives, as usual [12–14].) In section 3 we construct the action from the

Chern-Simons invariant of the non-abelian tensor hierarchy and a supersymmetric exten-

sion of the Hitchin functional for Y . The equations of motion of the F- and D-auxiliary fields

are computed. From this we obtain simultaneously the conditions for supersymmetry and

the scalar potential. We conclude in section 5 with a discussion of our results. Appendix A

contains a brief review of G2 structures, the Hitchin functional, and some useful identities.

2 Superfields and components

We begin by embedding the eleven-dimensional component fields into simple superspace.

The eleven-dimensional supergravity component spectrum consists of a Riemannian metric

gmn or, more properly, its frame em
a, a 32-component Majorana gravitino ψα

m, and an

abelian 3-form gauge field Cmnp. Here, bold indices are eleven-dimensional: α, β = 1,...,32
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are Majorana spinor indices and we use the early-late convention for tangent vector indices

a, b = 0,...,9 and coordinate indices m,n = 0,...,9. The bosonic part of the eleven-dimensional

supergravity action is given by

κ2S11 =

∫

d11x
√−g

[

1

2
R(g)− 1

4
F 2

]

− 1

12

∫

C ∧ F ∧ F. (2.1)

Here, R is the Ricci scalar of the metric, g is its determinant, and F = dC is the 4-form

field strength of the gauge 3-form C.

As we will be embedding into a superspace modeled on R4|4×R7, we must first reduce

these components to “spacetime” X and “internal” Y :

em
a , em

i , gij , ψαI
m , ψαI

i , Cmnp , Cmn i , Cmij , Cijk . (2.2)

The new indices on X×Y are as follows: m, n = 0,...,3 denote spacetime coordinate indices,

a, b = 0,...,3 are spacetime tangent vectors indices, i, j = 1,...,7 will be taken to be internal

coordinate indices, α, .α = 1,2 are SL(2,C) indices, and finally, I ,J = 1,...,8 stand for SO(8)

R-symmetry indices.

To embed in superfields of R4|4×R7, it is necessary to split up the gravitino fields and

put one of them into an irreducible superspin-32 multiplet with the frame em
a. This will then

be the 4D, N = 1 super-frame EM
A. The other 7 gravitini must then go into a superspin-1

multiplet Ψαi transforming in the defining representation of the SO(7) ⊂ SO(8)R subgroup.

(For notational simplicity, we do not distinguish between coordinate indices on Y and this

subgroup.) The remaining fields consist of 1 3-form, 7 2-forms, 21 + 7 = 28 vectors, and

28 + 35 = 63 scalars (and their spin-12 superparters). This set of fields is encoded in a

non-abelian tensor hierarchy [6, 7] as we review presently.

Since there are many (super)fields involved, we try to minimize notation as follows:

for any superfield X we define supersymmetry-covariant descendant superfields by acting

with superspace derivatives. The descendants with the same statistics as X are defined by

fX = −1

4
D̄2X , AXa = −1

4
(σ̃a)

.
αα[Dα, D̄ .

α]X ,

f̃X = −1

4
D2X , dX =

1

32
{D2, D̄2}X , (2.3)

whereas those of opposite statistics are

χXα = DαX , wXα = −1

4
D̄2DαX ,

χ̃X
.
α = D̄ .

αX , w̃X
.
α = −1

4
D2D̄ .

αX . (2.4)

These superfields are used to define the covariant component fields by projecting θ, θ̄ → 0

an operation we denote with a “|”. In terms of these components, the superfield can be

written as

X = X|+ θαχXα
|+ θ̄ .αχ̃

.
α
X |+ θ2fX |+ θ̄2f̃X | − θσaθ̄AXa| (2.5)

+ θ̄2θα
(

wXα|+
i

2
σa
α
.
α
∂aχ̃

.
α
X |

)

+ θ2θ̄ .α(w̃
.
α
X |+ i

2
σ̃a

.
αα∂aχXα

)|+ θ2θ̄2
(

dX | − 1

4
�X|

)

.
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Henceforth, we will drop the “|” notation on the right-hand side of such expansions. When

X is real, the tilded fields are conjugate to the untilded ones and X, AX , and dX are real.

When X is chiral, the tilded fields are absent and the remaining components are complex.

In this work, we will not have much need for the superspin-s fields with s = 3
2 (super-

frame EM
A) and 1 (seven gravitino superfields Ψαi) so we will be brief. (For an explicit

construction of the quadratic action of 5D, N = 1 supergravity analog in terms of these

superfields, see refs. [3, 4].) At the linearized level, the conformal graviton can be described

by the real superfield

Ha = · · ·+ θσmθ̄em
a + θ̄2(σabθ)αψ

α
b + θ2(σ̃abθ̄) .αψ̄

.
α
b + θ2θ̄2da. (2.6)

It contains the (linearized) frame, the N = 1 gravitino, and a real auxiliary vector field.

(Here and in the following ellipses will stand for components that can be removed by a

choice of Wess-Zumino gauge.) The gravitino superfield

Ψαi = · · ·+ (σaθ̄)αBa
i + (θσmθ̄)ψαi

m + θ̄2θαwi + θ2(σaθ̄)αyia + θ̄2(θσab)αwi
ab + . . . (2.7)

carries the 7 remaining gravitini, 7 “graviphotons”, and a collection of auxiliary fields, the

precise content of which depends on the structure of the supergravity gauge transformation

(which we will not need).

All but one of the remaining bosonic fields can be embedded in an abelian tensor

hierarchy of superfields [6]. This is a chain complex of superfields constructed by combining

the superspace analog of the de Rham complex on X and the de Rham complex on Y . The

components of the 11D 3-form Cabc fit into the elements of this complex as follows:

Φijk = Cijk + iFijk + · · ·+ θ2fijk (2.8a)

Vij = · · ·+ θσaθ̄Ca ij + · · ·+ θ2θ̄2dij (2.8b)

Σαi = · · ·+ θαHi + (θσab)αCab i + . . . (2.8c)

X = · · ·+ θ̄2G+ θ2Ḡ+ θσaθ̄ǫ
abcdCbcd + · · ·+ θ2θ̄2dX . (2.8d)

General abelian Chern-Simons-like invariants of this hierarchy in superspace were con-

structed in [6]. For eleven-dimensional supergravity, this is a cubic invariant of this super-

space complex.

Being valued in the exterior algebra of the internal space, these fields are “charged”

under the mixed components of the frame gauging the g = diff(Y ) symmetry. This results

in a non-abelian gauging of the tensor hierarchy by a super-g-connection with spinorial

superfield

Ai
α = · · ·+ (σaθ̄)αea

i + · · ·+ θ2θ̄2di (2.9)

arising by gauge-covariantizing the flat superspace derivativeDα → Dα (minimal coupling).

At this point the non-abelian tensor hierarchy is a g-equivariant super-de Rham complex of

forms on X×Y . Its Chern-Simons-like invariant was studied in some detail and generality

in [7]. We review the gauge transformations, g-covariant superfield strengths, Bianchi

identities, and Chern-Simons action in section 3.1.
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It remains to discuss the fate of the 28 metric scalars gij . Although we have not

embedded them explicitly, we expect that they can be accounted for by the real scalars Fijk

in the chiral field of the tensor hierarchy. (We elaborate on this in section 3.2.) Assuming

this, we have embedded the component fields (2.2) of eleven-dimensional supergravity into

a collection of prepotentials consisting of the conformal supergraviton Ha (2.6), 7 gravitino

superfields Ψαi (2.7), and the superfields of the gauged tensor hierarchy ((2.8) and (2.9)).

As we will be freezing the conformal graviton and gravitino superfields, the remaining set

of auxiliary fields come only from the tensor hierarchy. They consist of the components

dX , d
i = dVi , dij = dVij

, fijk = fΦijk
. (2.10)

(Here V i is the prepotential of the non-abelian gauge field Ai
α∂i ∼ e−iV∂(Dαe

iV∂).) In the

next section, we will propose an action constructed from the superfields of this section and

project to components, focusing on this set of auxiliary fields.

3 Action

In this section we propose an action constructed from the supergravity and tensor hierarchy

fields to lowest order in a gravitino superfield expansion (1.1). This is a superspace action

consisting of a Chern-Simons term and a generalization of the Hitchin functional.

3.1 Chern-Simons action

The superspace Chern-Simons action appropriate to eleven-dimensional supergravity is

the cubic invariant of the non-abelian tensor hierarchy describing a gauge 3-form. The

embedding of the components of this 3-form into superfields is represented in equation (2.8).

The gauge transformations for these prepotentials are2

δΦ = LλΦ+ ∂Λ (3.1a)

δV = LλV +
1

2i

(

Λ− Λ̄
)

− ∂U (3.1b)

δΣα = LλΣα − 1

4
D̄2DαU + ∂Υα + ιWα

Λ (3.1c)

δX = LλX +
1

2i

(

DαΥα − D̄ .
αῩ

.
α
)

− ωh(Wα, U). (3.1d)

All fields are differential forms on Y ; ∂ denotes the de Rham differential and wedge prod-

ucts are implied. The abelian part of the gauge transformation is parameterized by the

superfields Λij (chiral), Ui (real), and Υα (chiral) encoding the components of an eleven-

dimensional super-2-form. The non-abelian part g = diff(Y ) acts by the Lie derivative with

respect to the real scalar superfield λi. To check gauge invariance, we must use separation

of the Lie derivative into the de Rham differential and the contraction operator ι using Car-

tan’s formula LV = ∂ιV + ιV∂. The composite superfield ωh is the so-called “Chern-Simons

2We attempt to give a self-contained description of that part of the work on Chern-Simons-like invariants

of the non-abelian tensor hierarchy needed for this paper, but please see references [6, 7] for additional

material and information on this important ingredient of the construction.
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superform”. For any chiral spinor superfield χα and real scalar superfield v,

ωh(χα, v) := ιχαDαv + ιχ̄ .
α
D̄
.
αv +

1

2

(

ιDαχα
v + ιD̄ .

α
χ̄
.
αv

)

⇒ D̄2ωh(χα, v) = ιχαD̄2Dαv +
1

2
D̄2ιDαχα−D̄ .

α
χ̄
.
αv. (3.2)

(Its name derives from the fact that if χ ∼ D̄2Dv is the field strength superfield of the

real vector superfield v, then the second term vanishes and D̄2ω ∼ χ2 gives the superspace

analog of dω = F ∧ F .)

The non-abelian gauge field strength Wαi is defined by [Da, D̄ .
α] = (σa)α .αLWα . The

field strengths ∂Φ and

F =
1

2i

(

Φ− Φ̄
)

− ∂V (3.3a)

Wα = −1

4
D̄2DαV + ∂Σα + ιWα

Φ (3.3b)

H =
1

2i

(

DαΣα − D̄ .
αΣ̄

.
α
)

− ∂X − ωh(Wα, V ) (3.3c)

G = −1

4
D̄2X + ιWαΣα (3.3d)

are invariant under the abelian transformations and covariant under the non-abelian ones:

δ(FS) = Lλ(FS). Being given explicitly in terms of the prepotential superfields, these

field strengths identically satisfy the Bianchi identities

1

2i

(

∂Φ− ∂Φ̄
)

= ∂F (3.4a)

−1

4
D̄2DαF = −∂Wα − ιWα

∂Φ (3.4b)

1

2i

(

DαWα − D̄ .
αW̄

.
α
)

= ∂H + ωh(Wα, F ) (3.4c)

−1

4
D̄2H = −∂G− ιWαWα (3.4d)

D̄ .
αG = 0. (3.4e)

(Equivalently, (3.3) is the solution to these constraints.) In terms of these prepotentials

and field strength superfields, the Chern-Simons super-invariant SCS =
∫

d4x
∫

Y LCS is

defined by the Lagrangian

−12κ2LCS = i

∫

d2θΦ ∧
[

∂ΦG+
1

2
Wα ∧Wα − i

4
D̄2 (F ∧H)

]

+

∫

d4θ V ∧ [∂Φ ∧H + F ∧ DαWα + 2DαF ∧ (Wα − iιWα
F )]

+ i

∫

d2θΣα ∧
[

∂Φ ∧Wα − i

4
D̄2 (F ∧ DαF )

]

−
∫

d4θ X∂Φ ∧ F + h.c. (3.5)

– 7 –
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Using the Bianchi identities, one can check that this Lagrangian transforms into an exact

superform under the gauge transformations (3.1). Comparing the first term with the super-

potential
∫

d2θΦ∂Φ put forward in reference [15] suggests an interpretation of this action as

the covariantization of the G2 superpotential under the tensor hierarchy transformations.

The tensor hierarchy can be coupled to gravity by replacing D → D with the gravita-

tionally covariant superspace derivative, covariantizing the measures as usual, and replacing

D̄2 → D̄2−8R [16, 17]. (Equivalently, one can replaceD by the conformal superspace super-

gravity derivative [18, 19].) Then, the complete component projection of the action can be

computed straightforwardly, but for this paper we are interested only in the contribution to

the scalar potential of the component theory. This simplifies the calculations significantly.

Firstly, we can ignore the supergravity couplings so the action in the form (3.5) will

suffice to compute the potential. Next, the potential consists of only internal derivatives

of the scalars gij and Cijk in the hierarchy so we will drop all gauge fields (with X indices)

and spacetime derivatives. (Of course there are internal derivatives of gauge fields but we

find it more convenient to think of them as covariantizing the spacetime derivatives.) The

gauge superfields can still contribute F- and D-type auxiliary fields so we will keep those.

An exception is the superfield Σαi for the gauge 2-form Cabi: this representation (2.8c)

has no auxiliary fields so we will remove it altogether. (We revisit the validity of this

simplification in section 5.) Performing the Graßmann integration, and focusing only on

the remaining fields, we find

κ2LCS =
1

288
ǫijklmnp

[

FijklFmnpdX − 4Fijkd
rFlmrd

sFnps + 12Fijkdlmdnp

− 1

2

(

G[4Fijk∂lfmnp + iFijklfmnp] + h.c.
)

]

. (3.6)

Here Fijkl = 4∂[iCjkl] is the lowest component of the real part of ∂Φ.3 We use this result

in section 4 once we have constructed the remaining terms to which we turn next.

3.2 Kähler action

In the previous section, we reviewed the Chern-Simons action arising in the gravitino

superfield expansion (1.1). The remaining terms at this order in the expansion define the

Kähler action SK . In this section, we propose an explicit formula for this action.

In the component embedding of section 2, we assumed the metric scalars (pull-back

of the 11D metric to Y ) appeared in the superfield spectrum in the imaginary part of the

35 chiral fields carrying the 3-form scalars (the real part). In section 3.1, we reviewed the

construction of the superfield strength Fijk associated to these chiral fields (eq. (3.3a)). This

field strength is invariant under the abelian 3-form transformations as should be the metric

scalars. Therefore, we identify the dynamical metric scalars as the fluctuations of this field

strength and construct a Riemannian metric following Hitchin: first, define the superfield

sij(F ) := − 1

144
ǫklmnpqrFiklFjmnFpqr. (3.7)

3This should not be confused with Fijk which denotes the lowest component of the field strength (3.3a).

(G is the lowest component of (3.3d), and the remaining auxiliary fields are defined in (2.10).)

– 8 –
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Stability of F means that det(s) 6= 0. Setting gij(F ) := det−1/9(s)sij , defines a Rieman-

nian metric on Y . We note that the replacement Φijk → Fijk guarantees abelian gauge

invariance but it is not holomorphic. This has the important consequence that we cannot

use gij(F ) to construct invariant superpotential terms.

Taking the determinant, we can define the superspace analog of the Riemannian vol-

ume on Y . So motivated, we propose to take as the Kähler action the following natural

generalization of the superspace volume of X × Y :

SK = − 3

κ2

∫

d4x

∫

d7y

∫

d4θ E
√

g(F )

[

(ḠG)1/3 − 1

3
(∂iHa)

2

]

. (3.8)

Here, E = sdet(EM
A) is the super-determinant of the 4D, N = 1 components of the frame.

The second term is the N = 1 super-graviton “mass” term. (This term is needed because

there are no spin-2 auxiliary fields.) Its normalization is fixed by eleven-dimensional Lorentz

invariance: in the quadratic approximation, −3
∫

d4xd7y d4θ E → −
∫

d4xd7y Ha�Ha in

the gauge D̄ .
αH

a = 0 [3, 12, 14].

The first term looks like the old-minimal supergravity action [12, 14], provided we

identify G ↔ Φ0 with the chiral conformal compensator.4 We will revisit this connection

in section 5 but if we simply assume it for now, then freezing gravity amounts to setting

Ha → θσaθ̄ , Ψαi → 0 , and G → 1 + θ2
(

dX − i

4!
ǫabcdFabcd

)

. (3.9)

As we are interested only in the scalar potential in this paper, we drop the field strength of

the component 3-form Cabc. (However, matching the coefficient of this component to the

correct value fixes the G-dependence in eq. (3.8). In the setting in which 4-form fluxes are

turned on, these terms give quantum corrections to the potential as explained by Beasley

and Witten [21].) This reduces the Kähler part of the action to

SK → − 3

κ2

∫

d4x

∫

d7y

∫

d4θ
√

g(F )

[

1 +
1

3
(θ2 + θ̄2)dX +

1

9
θ2θ̄2d2X

]

. (3.10)

We recognize the leading term as a superspace version of the Hitchin functional (A.3) for

the G2 structure on Y [8, 9] (see also [22]).

Integrating over the odd coordinates and collecting the auxiliary field terms needed to

compute the scalar potential, we find

κ2LK = −1

3

√
gd2X − 1

18

√
gF ijkIm(fijk)dX +

1

6

√
gF ijkFijkld

l (3.11)

− 1

2

√
gF ijk∂kdij +

3

4
Gijk,mnpf̄ijkfmnp.

Here,

Gijk,mnp :=
1

3! · 3!
√
gg[i|mg|j|ng|k]p +

1

18 · 3! · 3!
√
gF ijkFmnp +

1

4!

√
gg[m|[iψjk]|np] (3.12)

4Actually, this would be a slightly modified version of old-minimal supergravity since G has a real

prepotential X ((3.3d) and (2.8d)). Such a modification of the compensator was first exploited in [20] to

simplify supergraph calculations. It was also needed in the (4+1)-dimensional version of the superspace

supergravity considered here [3–5].
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is essentially the Hitchin metric on the moduli space of (complexified) G2 structures [8].

In terms of G2 projections

18ωijkG
ijk,lmnωlmn = −4

3
ω2
1ijk − ω2

7ijk + ω2
27ijk (3.13)

for any 3-form ω.

4 Scalar potential

Using various identities from G2 linear algebra collected in appendix A, we can rewrite the

Chern-Simons contribution (3.6) as

κ2LCS = 2
√
ggijd

i
d
j +

1

4

√
gψijkldijdkl +

1

48

√
gψijklFijkldX (4.1)

+
1

12
∂i(

√
gψijkl)Re(fjkl) +

1

288
ǫijklmnp

[

FijklIm(fmnp) + 4∂iFjklRe(fmnp)
]

.

To proceed, it is useful to introduce the intrinsic torsion forms τµ for µ = 0, 1, 2, 3 and

analogous quantities σµ for µ = 0, 1, 3 defined by [10]

dϕ = τ0ψ + 3τ1ϕ+ ∗τ3 , dψ = 4τ1ψ + τ2ϕ , (4.2a)

dC = σ0ψ + 3σ1ϕ+ ∗σ3 . (4.2b)

(We could make the analogous definition for the components of d∗C but the action depends

only on C and dC; the C-field analogue of the torsion class τ2 is not gauge invariant.)

In terms of these intrinsic torsion forms, 1√
g∂k

(√
gF ijk

)

= 4F ijk(τ1)k + (τ2)
ij which

we use to rewrite (3.11) as

κ2LK = −1

3

√
gd2X − 1

18

√
gF ijkIm(fijk)dX + 2

√
gdij

[

Fijk(τ1)
k +

1

4
(τ2)ij

]

+ 12di(σ1)i +
3

4
f̄ijkG

ijk,mnpfmnp. (4.3)

In terms of G2 representations this is becomes

κ2LK = −1

3

√
gd2X − 1

18

√
gF ijkIm(f1ijk)dX + 2

√
gdij

[

Fijk(τ1)
k +

1

4
(τ2)ij

]

+ 12di(σ1)i −
1

18
|f1ijk|2 −

1

24
|f7ijk|2 +

1

24
|f27ijk|2. (4.4)

Combining this result with (4.1), we find for the equations of motion of the auxiliary fields

dX =
21

4
σ0 −

1

12
F ijkIm(f1ijk) (4.5a)

gijd
j = −3(σ1)i (4.5b)

ψijkld
kl = −

[

4Fijkg
kl(τ1)l + (τ2)ij

]

(4.5c)

Gijk,lmnf̄lmn =
i

432
ǫijklmnpĒlmnp +

1

18
∂lψ

ijkl − i

27

√
gdXF ijk (4.5d)
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To solve these, it is convenient to decompose into G2 representations and invert on irre-

ducible representations using the identities in appendix A. Doing so gives

dX = −7

2
σ0 , d

i = −3(σ1)
i , d7ij = Fijk(τ1)

k , d14ij = −1

2
(τ2)ij , (4.6)

f̄1ijk = −
(

3

4
τ0 +

5

2
iσ0

)

Fijk , f̄7ijk = −3ψijkl(τ1 + iσ1)
l , f̄27ijk = (τ3 + iσ3)ijk .

Note that the F- and D-flatness conditions are equivalent to the vanishing of each of the

intrinsic torsion forms (τµ = 0) and their gauge field counterparts (σµ = 0 for µ 6= 2).

In terms of G2 projections, we may write the potential in terms of auxiliary fields as

V =
1

4
d2X+2gijd

i
d
j−d27ij+

1

2
d214ij−

1

18

∣

∣

∣

∣

f1ijk+
i

2
dXFijk

∣

∣

∣

∣

2

− 1

24
|f7ijk|2+

1

24
|f27ijk|2. (4.7)

Here we used (3.13) and the fact that for any 2-form η,

ηijψ
ijklηkl = −4η27ij + 2η214ij (4.8)

as follows from (A.8). Substituting the algebraic equations (4.6) back into the component

action and using (A.6), we find the following scalar potential:

V (x, y) = −42

18
· 9

16
τ20 −

(

6 +
9 · 24
24

)

τ21 +
1

2
· 1
4
τ22 +

1

24
τ23

+

(

49

16
− 42

18
· 9

16

)

σ2
0 +

(

2 · 9− 9 · 24
24

)

σ2
1 +

1

24
σ2
3

= −21

16
τ20 − 15τ21 +

1

8
τ22 +

1

24
τ23 +

7

4
σ2
0 + 9σ2

1 +
1

24
σ2
3 (4.9)

To interpret this, we appeal to a result of Bryant who has computed that the scalar

curvature of the metric is given by [10]

R(g) = 12∇i(τ1)i +
21

8
τ20 + 30τ21 − 1

4
τ22 − 1

12
τ23 (4.10)

when written in terms of the intrinsic torsion forms (4.2a). Similarly, one checks that the σµ
terms combine into a Maxwell term. Therefore, up to a surface term, we have shown that

− V (x, y) =
1

2
R(g)− 1

4 · 4!F
2
ijkl, (4.11)

which is the potential of the bosonic part of eleven-dimensional supergravity. We

conclude that the action (1.1) reproduces the correct scalar potential of eleven-dimensional

supergravity.

5 Discussion

In this paper we computed the potential of eleven-dimensional supergravity as it is de-

scribed in a superspace background of the formR4|4×Y with Y a (not necessarily compact)

manifold with G2 structure. To first order in a gravitino superfield expansion (1.1), the

– 11 –



J
H
E
P
1
2
(
2
0
1
6
)
0
8
5

action is the sum of two terms. The first is the superspace Chern-Simons invariant (3.5)

of the gauged tensor hierarchy of the eleven-dimensional 3-form. This tensor hierarchy is a

g-equivariant superspace chain complex with g the algebra of diffeomorphisms on Y [6, 7].

The second is a superspace version of the Hitchin functional for G2-structure mani-

folds (3.8). The bosonic version of this functional is the volume of Y as computed from

the Riemannian metric constructed from an arbitrary (stable) 3-form. (The stationary

points of this functional on cohomology classes of the 3-form define G2-holonomy metrics.)

This functional is lifted to superspace by formally replacing the 3-form with the tensor

hierarchy superfield strength containing the gravitational scalars and integrating over su-

perspace. (The 3-form on Y on which the tensor hierarchy is based is embedded as the

imaginary part of a chiral superfield; the stable 3-form is the real part.)

Having defined the action thus, we computed its potential by integrating out the

auxiliary fields of the multiplets in the tensor hierarchy. What we find is the Einstein-

Hilbert action on Y in the form computed by Bryant [10] with an analogous form for the

Maxwell term for the 3-form scalars. As this is the correct potential for eleven-dimensional

supergravity on X × Y , this observation relates topological M theory [22] to “physical”

M-theory, and suggests the following construction of eleven-dimensional supergravity on

X × Y to this order in the super-gravitino expansion (1.1): starting with the non-abelian

tensor hierarchy, one defines on the space of 3-form field strength superfields the curved

superspace generalization (3.8) of the Hitchin functional. To this one adds the Chern-

Simons super-invariant (3.5) in curved superspace [16] (see also [18, 19]). Note that we

cannot add a superpotential beyond the F-terms coming from the Chern-Simons action

because the G2-structure metric is not chiral. Therefore, we might expect this to be the

full answer at this order of the gravitino expansion.

As it stands, this proposal probably requires some modification, or at least a better

understanding of the following puzzle: in freezing the supergravity fields (3.9) and ignoring

the superfields containing the gauge 2-forms, we are implicitly assuming that these fields do

not carry propagating scalars. In particular, one needs to explain the mechanism by which

the superfluous scalars in the 3- and 2-form multiplets are removed from the spectrum.

A potential resolution to this problem is that the 4-form field strength actually is

the supergravity conformal compensator G = Φ3
0. Similarly the 3-form field strengths Hi

would be the Spin(7)/G2 compensators. In fact, the Hitchin metric is negative definite on

these representations (cf. eq. (3.13)) which would result in the wrong-sign kinetic terms for

these fields that is the hallmark of a compensating field [12]. In such a scenario the super-

diffeomorphisms of the theory would allow one to fix G and Hi by a choice of conformal

and SO(7) gauge.

In this interpretation, the
∫

GΦ∂Φ term in the Chern-Simons action (3.5) becomes

− i

12κ2

∫

d4x

∫

Y

∫

d2θΦ3
0Φ ∧ ∂Φ+ h.c.. (5.1)

This is the gravitational covariantization of the chiral superpotential postulated in refer-

ence [15] in the old-minimal formulation of 4D, N = 1 supergravity [23, 24]. This super-
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potential combines the action constructed by Gukov [25] (see also [26]) in the context of

flux compactifications with the terms needed for holomorphicity in general backgrounds.

We can extend this interpretation to the Kähler term as follows by covariantizing of

the Hitchin functional [12]

∫

d4x

∫

d7y

∫

d4θ E Φ̄0Φ0

√

g(F ). (5.2)

Under the identification of the compensator as the cube root of G, we recognize this as the

(non-mass part of the) Kähler action (3.8).

As dicussed in references [21, 27, 28], the original flux potential gets corrections from

M2-brane domain walls localized at points on Y and/or M5-branes wrapped on associative

3-cycles in Y . There it is argued that these corrections change the superpotential by what

is essentially the current of the Page charge [29]. They then write the corrected Gukov

superpotential as W ∼ mvol(Y )+
∫

Y Φ∧dΦ where m is the Freund-Rubin mass [30]. Going

back to superspace, the contribution of the first term would come from an expression of

the form (5.2).

Finally, we mention that without including the (spacetime scalar) auxiliary fields of all

of the superfields in the theory, one does not expect to recover the correct scalar potential.

Since 4D, N = 1 supergravity contains two such fields, these should have already been

included in our analysis lest they over-correct the potential. In the identification above,

these fields were already taken into account by identifying the supergravity scalar auxiliary

with dX and the pseudo-scalar with the dual of the 4-form field strength Fabcd = 4∂[aCbcd].

An analogous resolution of the puzzle for the scalars in Hi will have to await (and hint at)

the construction of the couplings to the gravitino multiplets. These couplings are currently

under investigation.
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A G2 toolbox

In this appendix, we review the construction of the Hitchin functional for G2-structure 7-

manifolds and collect various identities of G2 linear algebra [10, 31, 32]. Let ϕ be a 3-form

on Y and define the symmetric bilinear form

sij := − 1

144
ǫabcdefgϕiabϕcdeϕjfg. (A.1)
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The 3-form ϕ is “stable” iff det(s) 6= 0.5 We assume this non-degeneracy condition through-

out the paper. A stable 3-form on the tangent spaces of Y reduces the structure group

GL(7) → G2. Thus, our assumption implies that Y is a G2-structure manifold.

Normalizing

gij = s−1/9sij ⇔ √
ggij = sij , (A.2)

defines the Riemannian metric g on Y . We can construct the Riemannian volume functional

from the determinant of the metric

Φ(ϕ) :=

∫

Y
d11y

√

g(ϕ) (A.3)

This expression is (equivalent to) the Hitchin functional on the space of stable 3-forms

on Y [8]. In that reference, it is shown if (Y, ϕ) a closed G2-holonomy manifold, then

ϕ is (closed by definition and) a critical point of Φ restricted to the cohomology class

[ϕ] ∈ H3(Y,R). Conversely, if ϕ is a critical point on a cohomology class of a closed

oriented 7-manifold Y such that ϕ is stable, then ϕ defines a metric with G2 holonomy.

For any p-form ω, let ωi := πiω denote the projection to the i-dimensional representation.

Then, under a variation δϕ of the G2 structure form

δgij = ϕ(i
kl

[

1

9
(δϕ)1 +

1

2
(δϕ)27

]

j)kl

, (A.4)

the metric does not transform (to first order) under the 7 projection of the variation. We

will not need these facts for this paper; we include them only to motivate the definition of

the Hitchin functional. (To the interested reader, we recommend Karigiannis’ thesis [32].)

We now review some G2 linear algebra and define the projectors from representations

of SO(7) to those of G2. Under the reduction SO(7) → G2 of the structure group, the

21-dimensional space of 2-forms on Y decomposes into G2 representations as 21 = 7⊕14.

Similarly, the 35-dimensional space of 3-forms on Y decomposes as 35 = 1⊕ 7⊕ 27. (We

review the explicit formulæ for the projectors to these representations presently.) We start

by defining the dual ψ = ∗ϕ with components

ψijkl =
1

3!

√
gǫijklmnpg

mm′

gnn
′

gpp
′

ϕm′n′p′ (A.5)

(the opposite is ϕijk = 1
4!

√
gǫijklmnpg

mm′

gnn
′

gpp
′

gqq
′

ψm′n′p′q′). Useful identities include

ϕijkϕij′k′ = 2δj[j′δ
k
k′] − ψj′k′

jk , ψijklψijk′l′ = 8δk[k′δ
l
l′] − 2ψk′l′

kl ,

ϕijkϕijk′ = 6δkk′ , ψijklψijkl′ = 24δll′ , ϕi
lmψjklm = −4ϕijk , (A.6)

5Stability as formulated in [8, 9] is in terms of open orbits of the GL(n) action on the space of p-forms

on the tangent bundle of an n-manifold Y . This condition is the precise criterion for when a volume form

constructed from fractional powers of the p-form exists. In order for gij to be a good metric, we actually

need that ϕ is positive, implying that sij and gij are positive definite, but this is only a slightly stronger

condition, since if ϕ is stable than either ϕ or −ϕ is positive. In this paper we will simply take stability to

mean det(s) 6= 0, and we will not always emphasize positivity.
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where indices are raised and lowered with the metric (A.2). These identities can be used

to construct the projectors from the representations of SO(7) onto the irreducible repre-

sentations of G2: for any 2-form η and 3-form ω,

π7ηij =

(

1

3
δki δ

l
j −

1

6
ψij

kl

)

ηkl (A.7a)

π14ηij =

(

2

3
δki δ

l
j +

1

6
ψij

kl

)

ηkl (A.7b)

π1ωijk =
1

42
ϕijkϕ

i′j′k′ωi′j′k′ (A.7c)

π7ωijk =

(

1

4
δi

′

i δ
j′

j δ
k′

k − 3

8
ψ[ij

i′j′δk
′

k] −
1

24
ϕijkϕ

i′j′k′
)

ωi′j′k′ (A.7d)

π27ωijk =

(

3

4
δi

′

i δ
j′

j δ
k′

k +
3

8
ψ[ij

i′j′δk
′

k] +
1

56
ϕijkϕ

i′j′k′
)

ωi′j′k′ . (A.7e)

Two useful identities on the space of 2-forms are

ψij
klη7kl = −4η7kl , ψij

klη14kl = 2η14kl (A.8)

Similarly, on the space of 3-forms,

ω2 := ωijkωijk = ω2
1 + ω2

7 + ω2
27 (A.9a)

gii
′

ψjkj′k′ωijkωi′j′k′ = −4ω2
1 − 2ω2

7 +
2

3
ω2
27 (A.9b)

(ϕijkωijk)
2 = 42ω2

1. (A.9c)
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