Journal of High Energy Physics

, 2019:103 | Cite as

Interaction induced quasi-particle spectrum in holography

  • Geunho Song
  • Yunseok Seo
  • Keun-Young Kim
  • Sang-Jin SinEmail author
Open Access
Regular Article - Theoretical Physics


It is often said that interactions destroy the particle nature of excitations. We report that, in holographic theory adding interaction term can create a new quasi particle spectrum, on the contrary. We show this by calculating the optical conductivity in a model with exact background solution and finding a new quasi-particle spectrum. Such new poles are consequence of some non-minimal interaction like Chern-Simon term. We also point out that the origin of the new peak in our example is the vortex formation by the anomalous magnetic moment induced by the interaction term.


Holography and condensed matter physics (AdS/CMT) AdS-CFT Corre- spondence Gauge-gravity correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited


  1. [1]
    N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys.57 (2009) 367 [arXiv:0903.2596] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Edalati, R.G. Leigh and P.W. Phillips, Dynamically generated Mott gap from holography, Phys. Rev. Lett.106 (2011) 091602 [arXiv:1010.3238] [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    Y. Seo, G. Song, Y.-H. Qi and S.-J. Sin, Mott transition with holographic spectral function, JHEP08 (2018) 077 [arXiv:1803.01864] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    Y. Seo, K.-Y. Kim, K.K. Kim and S.-J. Sin, Character of matter in holography: spin–orbit interaction, Phys. Lett.B 759 (2016) 104 [arXiv:1512.08916] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    Y. Seo, G. Song, C. Park and S.-J. Sin, Small Fermi surfaces and strong correlation effects in Dirac materials with holography, JHEP10 (2017) 204 [arXiv:1708.02257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
  7. [7]
    A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev.D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].ADSGoogle Scholar
  8. [8]
    J. Erdmenger, X.-H. Ge and D.-W. Pang, Striped phases in the holographic insulator/superconductor transition, JHEP11 (2013) 027 [arXiv:1307.4609] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    N. Jokela, M. Jarvinen and M. Lippert, Gravity dual of spin and charge density waves, JHEP12 (2014) 083 [arXiv:1408.1397] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator transition by holographic charge density waves, Phys. Rev. Lett.113 (2014) 091602 [arXiv:1404.0777] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    A. Donos, B. Goutéraux and E. Kiritsis, Holographic metals and insulators with helical symmetry, JHEP09 (2014) 038 [arXiv:1406.6351] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    R.G. Cai, L. Li, Y.Q. Wang and J. Zaanen, Intertwined order and holography: the case of parity breaking pair density waves, Phys. Rev. Lett.119 (2017) 181601.ADSCrossRefGoogle Scholar
  13. [13]
    A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys.9 (2013) 649 [arXiv:1212.2998] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Donos, Striped phases from holography, JHEP05 (2013) 059 [arXiv:1303.7211] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    B. Withers, Holographic checkerboards, JHEP09 (2014) 102 [arXiv:1407.1085] [INSPIRE].ADSCrossRefGoogle Scholar
  17. [17]
    R.-G. Cai, L. Li, Y.-Q. Wang and J. Zaanen, Intertwined order and holography: the case of parity breaking pair density waves, Phys. Rev. Lett.119 (2017) 181601 [arXiv:1706.01470] [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    T. Andrade, A. Krikun, K. Schalm and J. Zaanen, Doping the holographic Mott insulator, Nature Phys.14 (2018) 1049 [arXiv:1710.05791] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    N. Jokela, M. Jarvinen and M. Lippert, Pinning of holographic sliding stripes, Phys. Rev.D 96 (2017) 106017 [arXiv:1708.07837] [INSPIRE].ADSMathSciNetGoogle Scholar
  20. [20]
    T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP02 (2018) 085 [arXiv:1708.08306] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Incoherent hydrodynamics and density waves, arXiv:1906.03132 [INSPIRE].
  22. [22]
    L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Bad metals from fluctuating density waves, SciPost Phys.3 (2017) 025.Google Scholar
  23. [23]
    H. Fukuyama and P.A. Lee, Dynamics of the charge-density wave. I. Impurity pinning in a single chain, Phys. Rev.B 17 (1978) 535.Google Scholar
  24. [24]
    G. Grüner et al., Frequency-dependent conductivity in nbse3 , Phys. Rev. Lett.45 (1980) 935.Google Scholar
  25. [25]
    H. Fukuyama, Pinning and conductivity of two-dimensional charge-density waves in magnetic fields, Phys. Rev.B 18 (1978) 6245.ADSCrossRefGoogle Scholar
  26. [26]
    K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP12 (2014) 170 [arXiv:1409.8346] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    L. Alberte et al., Black hole elasticity and gapped transverse phonons in holography, JHEP01 (2018) 129 [arXiv:1708.08477] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  30. [30]
    M. Ammon, M. Baggioli and A. Jiménez-Alba, A unified description of translational symmetry breaking in holography, JHEP09 (2019) 124 [arXiv:1904.05785] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    W.J. Li and J.P. Wu, A simple holographic model for spontaneous breaking of translational symmetry, Eur. Phys. J.C 79 (2019) 243 [arXiv:1808.03142].ADSCrossRefGoogle Scholar
  32. [32]
    A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Universal relaxation in a holographic metallic density wave phase, arXiv:1812.08118 [INSPIRE].
  33. [33]
    A. Donos and C. Pantelidou, Holographic transport and density waves, JHEP05 (2019) 079.ADSMathSciNetCrossRefGoogle Scholar
  34. [34]
    S.A. Hartnoll and C.P. Herzog, Ohm’s law at strong coupling: S duality and the cyclotron resonance, Phys. Rev.D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].ADSMathSciNetGoogle Scholar
  35. [35]
    K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Thermoelectric conductivities at finite magnetic field and the Nernst effect, JHEP07 (2015) 027 [arXiv:1502.05386] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev.B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].ADSCrossRefGoogle Scholar
  37. [37]
    R.C. Myers, S. Sachdev and A. Singh, Holographic quantum critical transport without self-duality, Phys. Rev.D 83 (2011) 066017 [arXiv:1010.0443] [INSPIRE].
  38. [38]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev.D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

Copyright information

© The Author(s) 2019

Authors and Affiliations

  • Geunho Song
    • 1
  • Yunseok Seo
    • 2
  • Keun-Young Kim
    • 3
  • Sang-Jin Sin
    • 1
    Email author
  1. 1.Department of PhysicsHanyang UniversitySeoulKorea
  2. 2.GIST collegeGwangju Institute of Science and TechnologyGwangjuKorea
  3. 3.School of Physics and ChemistryGwangju Institute of Science and TechnologyGwangjuKorea

Personalised recommendations