Interaction induced quasi-particle spectrum in holography
- 23 Downloads
Abstract
It is often said that interactions destroy the particle nature of excitations. We report that, in holographic theory adding interaction term can create a new quasi particle spectrum, on the contrary. We show this by calculating the optical conductivity in a model with exact background solution and finding a new quasi-particle spectrum. Such new poles are consequence of some non-minimal interaction like Chern-Simon term. We also point out that the origin of the new peak in our example is the vortex formation by the anomalous magnetic moment induced by the interaction term.
Keywords
Holography and condensed matter physics (AdS/CMT) AdS-CFT Corre- spondence Gauge-gravity correspondenceNotes
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
References
- [1]N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys.57 (2009) 367 [arXiv:0903.2596] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [2]M. Edalati, R.G. Leigh and P.W. Phillips, Dynamically generated Mott gap from holography, Phys. Rev. Lett.106 (2011) 091602 [arXiv:1010.3238] [INSPIRE].ADSCrossRefGoogle Scholar
- [3]Y. Seo, G. Song, Y.-H. Qi and S.-J. Sin, Mott transition with holographic spectral function, JHEP08 (2018) 077 [arXiv:1803.01864] [INSPIRE].ADSCrossRefGoogle Scholar
- [4]Y. Seo, K.-Y. Kim, K.K. Kim and S.-J. Sin, Character of matter in holography: spin–orbit interaction, Phys. Lett.B 759 (2016) 104 [arXiv:1512.08916] [INSPIRE].ADSCrossRefGoogle Scholar
- [5]Y. Seo, G. Song, C. Park and S.-J. Sin, Small Fermi surfaces and strong correlation effects in Dirac materials with holography, JHEP10 (2017) 204 [arXiv:1708.02257] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [6]S. Nakamura, H. Ooguri and C.-S. Park, Gravity dual of spatially modulated phase, Phys. Rev.D 81 (2010) 044018 [arXiv:0911.0679] [INSPIRE].
- [7]A. Donos and J.P. Gauntlett, Holographic charge density waves, Phys. Rev.D 87 (2013) 126008 [arXiv:1303.4398] [INSPIRE].ADSGoogle Scholar
- [8]J. Erdmenger, X.-H. Ge and D.-W. Pang, Striped phases in the holographic insulator/superconductor transition, JHEP11 (2013) 027 [arXiv:1307.4609] [INSPIRE].ADSCrossRefGoogle Scholar
- [9]N. Jokela, M. Jarvinen and M. Lippert, Gravity dual of spin and charge density waves, JHEP12 (2014) 083 [arXiv:1408.1397] [INSPIRE].ADSCrossRefGoogle Scholar
- [10]Y. Ling, C. Niu, J. Wu, Z. Xian and H.-b. Zhang, Metal-insulator transition by holographic charge density waves, Phys. Rev. Lett.113 (2014) 091602 [arXiv:1404.0777] [INSPIRE].ADSCrossRefGoogle Scholar
- [11]A. Donos, B. Goutéraux and E. Kiritsis, Holographic metals and insulators with helical symmetry, JHEP09 (2014) 038 [arXiv:1406.6351] [INSPIRE].ADSCrossRefGoogle Scholar
- [12]R.G. Cai, L. Li, Y.Q. Wang and J. Zaanen, Intertwined order and holography: the case of parity breaking pair density waves, Phys. Rev. Lett.119 (2017) 181601.ADSCrossRefGoogle Scholar
- [13]A. Donos and J.P. Gauntlett, Holographic striped phases, JHEP08 (2011) 140 [arXiv:1106.2004] [INSPIRE].ADSCrossRefGoogle Scholar
- [14]A. Donos and S.A. Hartnoll, Interaction-driven localization in holography, Nature Phys.9 (2013) 649 [arXiv:1212.2998] [INSPIRE].ADSCrossRefGoogle Scholar
- [15]A. Donos, Striped phases from holography, JHEP05 (2013) 059 [arXiv:1303.7211] [INSPIRE].ADSCrossRefGoogle Scholar
- [16]B. Withers, Holographic checkerboards, JHEP09 (2014) 102 [arXiv:1407.1085] [INSPIRE].ADSCrossRefGoogle Scholar
- [17]R.-G. Cai, L. Li, Y.-Q. Wang and J. Zaanen, Intertwined order and holography: the case of parity breaking pair density waves, Phys. Rev. Lett.119 (2017) 181601 [arXiv:1706.01470] [INSPIRE].ADSCrossRefGoogle Scholar
- [18]T. Andrade, A. Krikun, K. Schalm and J. Zaanen, Doping the holographic Mott insulator, Nature Phys.14 (2018) 1049 [arXiv:1710.05791] [INSPIRE].ADSCrossRefGoogle Scholar
- [19]N. Jokela, M. Jarvinen and M. Lippert, Pinning of holographic sliding stripes, Phys. Rev.D 96 (2017) 106017 [arXiv:1708.07837] [INSPIRE].ADSMathSciNetGoogle Scholar
- [20]T. Andrade, M. Baggioli, A. Krikun and N. Poovuttikul, Pinning of longitudinal phonons in holographic spontaneous helices, JHEP02 (2018) 085 [arXiv:1708.08306] [INSPIRE].ADSCrossRefGoogle Scholar
- [21]A. Donos, D. Martin, C. Pantelidou and V. Ziogas, Incoherent hydrodynamics and density waves, arXiv:1906.03132 [INSPIRE].
- [22]L.V. Delacrétaz, B. Goutéraux, S.A. Hartnoll and A. Karlsson, Bad metals from fluctuating density waves, SciPost Phys.3 (2017) 025.Google Scholar
- [23]H. Fukuyama and P.A. Lee, Dynamics of the charge-density wave. I. Impurity pinning in a single chain, Phys. Rev.B 17 (1978) 535.Google Scholar
- [24]G. Grüner et al., Frequency-dependent conductivity in nbse3 , Phys. Rev. Lett.45 (1980) 935.Google Scholar
- [25]H. Fukuyama, Pinning and conductivity of two-dimensional charge-density waves in magnetic fields, Phys. Rev.B 18 (1978) 6245.ADSCrossRefGoogle Scholar
- [26]K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Coherent/incoherent metal transition in a holographic model, JHEP12 (2014) 170 [arXiv:1409.8346] [INSPIRE].ADSCrossRefGoogle Scholar
- [27]T. Andrade and B. Withers, A simple holographic model of momentum relaxation, JHEP05 (2014) 101 [arXiv:1311.5157] [INSPIRE].ADSCrossRefGoogle Scholar
- [28]M. Baggioli and O. Pujolàs, Electron-phonon interactions, metal-insulator transitions and holographic massive gravity, Phys. Rev. Lett.114 (2015) 251602 [arXiv:1411.1003] [INSPIRE].ADSCrossRefGoogle Scholar
- [29]L. Alberte et al., Black hole elasticity and gapped transverse phonons in holography, JHEP01 (2018) 129 [arXiv:1708.08477] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [30]M. Ammon, M. Baggioli and A. Jiménez-Alba, A unified description of translational symmetry breaking in holography, JHEP09 (2019) 124 [arXiv:1904.05785] [INSPIRE].ADSCrossRefGoogle Scholar
- [31]W.J. Li and J.P. Wu, A simple holographic model for spontaneous breaking of translational symmetry, Eur. Phys. J.C 79 (2019) 243 [arXiv:1808.03142].ADSCrossRefGoogle Scholar
- [32]A. Amoretti, D. Areán, B. Goutéraux and D. Musso, Universal relaxation in a holographic metallic density wave phase, arXiv:1812.08118 [INSPIRE].
- [33]A. Donos and C. Pantelidou, Holographic transport and density waves, JHEP05 (2019) 079.ADSMathSciNetCrossRefGoogle Scholar
- [34]S.A. Hartnoll and C.P. Herzog, Ohm’s law at strong coupling: S duality and the cyclotron resonance, Phys. Rev.D 76 (2007) 106012 [arXiv:0706.3228] [INSPIRE].ADSMathSciNetGoogle Scholar
- [35]K.-Y. Kim, K.K. Kim, Y. Seo and S.-J. Sin, Thermoelectric conductivities at finite magnetic field and the Nernst effect, JHEP07 (2015) 027 [arXiv:1502.05386] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
- [36]S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev.B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].ADSCrossRefGoogle Scholar
- [37]R.C. Myers, S. Sachdev and A. Singh, Holographic quantum critical transport without self-duality, Phys. Rev.D 83 (2011) 066017 [arXiv:1010.0443] [INSPIRE].
- [38]A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev.D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].