Quarkonium in-medium properties from realistic lattice NRQCD

Abstract

We present the final results of our high statistics study on the properties of bottomonium and charmonium at finite temperature. We focus on the temperature range around the crossover transition 150 ≤ T ≤ 410MeV, relevant for current heavy ion collision experiments. The QCD medium degrees of freedom, which consist of dynamical u,d, and s quarks and gluons are captured by realistic state-of-the art (mπ ≈ 161MeV) lattice QCD simulations of the HotQCD collaboration. For the heavy quarks we deploy the non-relativistic effective field theory of QCD, NRQCD. The in-medium properties of quarkonium are deduced from their spectral functions, which are reconstructed using improved and novel Bayesian approaches. Through a systematic analysis we shed light on the origin of the discrepancies in melting temperatures previously reported in the literature, showing that they are owed to underestimated methods uncertainties of the deployed spectral reconstructions. Our simulations corroborate a picture of sequential in-medium modification, ordered according to the vacuum binding energy of the states. As a central quantitative result, our study reveals how the mass of the heavy quarkonium ground state reduces as temperature increases. The observed spectral modifications are interpreted in the light of, and compared to previous studies based on the complex lattice potential for heavy quarkonium. Thus for the first time we provide a robust picture of in-medium heavy quarkonium modification in the quark-gluon plasma consistent among different non-relativistic methods. We also critically discuss the perspectives for improving on these results.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    B.V. Jacak and B. Müller, The exploration of hot nuclear matter, Science 337 (2012) 310 [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    B. Müller, Investigation of hot QCD matter: theoretical aspects, Phys. Scripta T 158 (2013) 014004 [arXiv:1309.7616] [INSPIRE].

  3. [3]

    PHENIX collaboration, A. Adare et al., Enhanced production of direct photons in Au+Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV and implications for the initial temperature, Phys. Rev. Lett. 104 (2010) 132301 [arXiv:0804.4168] [INSPIRE].

  4. [4]

    ALICE collaboration, M. Wilde, Measurement of direct photons in pp and Pb-Pb collisions with ALICE, Nucl. Phys. A 904-905 (2013) 573c [arXiv:1210.5958] [INSPIRE].

  5. [5]

    C. Shen, U.W. Heinz, J.-F. Paquet and C. Gale, Thermal photons as a quark-gluon plasma thermometer reexamined, Phys. Rev. C 89 (2014) 044910 [arXiv:1308.2440] [INSPIRE].

  6. [6]

    J. Berges, K. Reygers, N. Tanji and R. Venugopalan, Parametric estimate of the relative photon yields from the glasma and the quark-gluon plasma in heavy-ion collisions, Phys. Rev. C 95 (2017) 054904 [arXiv:1701.05064] [INSPIRE].

  7. [7]

    N. Brambilla et al., Heavy quarkonium: progress, puzzles and opportunities, Eur. Phys. J. C 71 (2011) 1534 [arXiv:1010.5827] [INSPIRE].

  8. [8]

    A. Andronic et al., Heavy-flavour and quarkonium production in the LHC era: from proton-proton to heavy-ion collisions, Eur. Phys. J. C 76 (2016) 107 [arXiv:1506.03981] [INSPIRE].

  9. [9]

    Particle Data Group collaboration, M. Tanabashi et al., Review of particle physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  10. [10]

    T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].

  11. [11]

    PHENIX collaboration, A. Adare et al., J/ψ production vs centrality, transverse momentum and rapidity in Au+Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Rev. Lett. 98 (2007) 232301 [nucl-ex/0611020] [INSPIRE].

  12. [12]

    PHENIX collaboration, A. Adare et al., J/ψ production in \( \sqrt{s_{N\ N}}=200 \) GeV Cu+Cu collisions, Phys. Rev. Lett. 101 (2008) 122301 [arXiv:0801.0220] [INSPIRE].

  13. [13]

    PHENIX collaboration, A. Adare et al., J/ψ suppression at forward rapidity in Au+Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Rev. C 84 (2011) 054912 [arXiv:1103.6269] [INSPIRE].

  14. [14]

    STAR collaboration, L. Adamczyk et al., J/ψ production at low p T in Au+Au and Cu+Cu collisions at \( \sqrt{s_{N\ N}}=200 \) GeV with the STAR detector, Phys. Rev. C 90 (2014) 024906 [arXiv:1310.3563] [INSPIRE].

  15. [15]

    STAR collaboration, L. Adamczyk et al., Suppression of ϒ production in d+Au and Au+Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Lett. B 735 (2014) 127 [Erratum ibid. B 743 (2015)537] [arXiv:1312.3675] [INSPIRE].

  16. [16]

    PHENIX collaboration, A. Adare et al., Measurement of ϒ(1S + 2S + 3S) production in p+p and Au+Au collisions at \( \sqrt{s_{N\ N}}=200 \) GeV, Phys. Rev. C 91 (2015) 024913 [arXiv:1404.2246] [INSPIRE].

  17. [17]

    ALICE collaboration, Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions at \( \sqrt{s_{N\ N}}=2.76 \) TeV, Phys. Lett. B 734 (2014) 314 [arXiv:1311.0214] [INSPIRE].

  18. [18]

    ALICE collaboration, J/ψ suppression at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{N\ N}}=5.02 \) TeV, Phys. Lett. B 766 (2017) 212 [arXiv:1606.08197] [INSPIRE].

  19. [19]

    CMS collaboration, Indications of suppression of excited ϒ states in Pb+Pb collisions at \( \sqrt{s_{N\ N}}=2.76 \) TeV, Phys. Rev. Lett. 107 (2011) 052302 [arXiv:1105.4894] [INSPIRE].

  20. [20]

    CMS collaboration, Observation of sequential ϒ suppression in PbPb collisions, Phys. Rev. Lett. 109 (2012) 222301 [Erratum ibid. 120 (2018) 199903] [arXiv:1208.2826] [INSPIRE].

  21. [21]

    ALICE collaboration, Suppression of ϒ(1S) at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{N\ N}}=2.76 \) TeV, Phys. Lett. B 738 (2014) 361 [arXiv:1405.4493] [INSPIRE].

  22. [22]

    CMS collaboration, Suppression of ϒ(1S), ϒ(2S) and ϒ(3S) production in PbPb collisions at \( \sqrt{s_{N\ N}}=2.76 \) TeV, Phys. Lett. B 770 (2017) 357 [arXiv:1611.01510] [INSPIRE].

  23. [23]

    CMS collaboration, Suppression of excited ϒ states relative to the ground state in Pb-Pb collisions at \( \sqrt{s_{N\ N}}=5.02 \) TeV, Phys. Rev. Lett. 120 (2018) 142301 [arXiv:1706.05984] [INSPIRE].

  24. [24]

    F. Karsch, D. Kharzeev and H. Satz, Sequential charmonium dissociation, Phys. Lett. B 637 (2006) 75 [hep-ph/0512239] [INSPIRE].

  25. [25]

    A. Mócsy , P. Petreczky and M. Strickland, Quarkonia in the quark gluon plasma, Int. J. Mod. Phys. A 28 (2013) 1340012 [arXiv:1302.2180] [INSPIRE].

  26. [26]

    P. Paakkinen, Nuclear parton distribution functions, in Old and new strong interactions from LHC to future colliders (LFC17), Trento, Italy, 11-15 September 2017 [Frascati Phys. Ser. 65 (2017) 33] [arXiv:1802.05927] [INSPIRE].

  27. [27]

    P. Braun-Munzinger and J. Stachel, (Non)thermal aspects of charmonium production and a new look at J/ψ suppression, Phys. Lett. B 490 (2000) 196 [nucl-th/0007059] [INSPIRE].

  28. [28]

    A. Andronic, P. Braun-Munzinger, K. Redlich and J. Stachel, Heavy quark(onium) at LHC: the statistical hadronization case, J. Phys. G 37 (2010) 094014 [arXiv:1002.4441] [INSPIRE].

  29. [29]

    ALICE collaboration, J/ψ elliptic flow in Pb-Pb collisions at \( \sqrt{s_{N\ N}}=2.76 \) TeV, Phys. Rev. Lett. 111 (2013) 162301 [arXiv:1303.5880] [INSPIRE].

  30. [30]

    ALICE collaboration, J/ψ elliptic flow in Pb-Pb collisions at \( \sqrt{s_{N\ N}}=5.02 \) TeV, Phys. Rev. Lett. 119 (2017) 242301 [arXiv:1709.05260] [INSPIRE].

  31. [31]

    B. Krouppa, A. Rothkopf and M. Strickland, Bottomonium suppression using a lattice QCD vetted potential, Phys. Rev. D 97 (2018) 016017 [arXiv:1710.02319] [INSPIRE].

  32. [32]

    X. Yao and B. Müller, Approach to equilibrium of quarkonium in quark-gluon plasma, Phys. Rev. C 97 (2018) 014908 [Erratum ibid. C 97 (2018) 049903] [arXiv:1709.03529] [INSPIRE].

  33. [33]

    R. Rapp, D. Blaschke and P. Crochet, Charmonium and bottomonium production in heavy-ion collisions, Prog. Part. Nucl. Phys. 65 (2010) 209 [arXiv:0807.2470] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    X. Zhao and R. Rapp, Charmonium in medium: from correlators to experiment, Phys. Rev. C 82 (2010) 064905 [arXiv:1008.5328] [INSPIRE].

  35. [35]

    X. Zhao and R. Rapp, Medium modifications and production of charmonia at LHC, Nucl. Phys. A 859 (2011) 114 [arXiv:1102.2194] [INSPIRE].

  36. [36]

    K. Zhou, N. Xu, Z. Xu and P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev. C 89 (2014) 054911 [arXiv:1401.5845] [INSPIRE].

  37. [37]

    T. Song, K.C. Han and C.M. Ko, Bottomonia suppression in heavy-ion collisions, Phys. Rev. C 85 (2012) 014902 [arXiv:1109.6691] [INSPIRE].

  38. [38]

    A. Emerick, X. Zhao and R. Rapp, Bottomonia in the quark-gluon plasma and their production at RHIC and LHC, Eur. Phys. J. A 48 (2012) 72 [arXiv:1111.6537] [INSPIRE].

  39. [39]

    K. Zhou, N. Xu and P. Zhuang, Y production in heavy ion collisions at LHC, Nucl. Phys. A 931 (2014) 654 [arXiv:1408.3900] [INSPIRE].

  40. [40]

    M. Strickland, Thermal ϒ 1s and χ b1 suppression in \( \sqrt{s_{N\ N}}=2.76 \) TeV Pb-Pb collisions at the LHC, Phys. Rev. Lett. 107 (2011) 132301 [arXiv:1106.2571] [INSPIRE].

  41. [41]

    M. Strickland and D. Bazow, Thermal bottomonium suppression at RHIC and LHC, Nucl. Phys. A 879 (2012) 25 [arXiv:1112.2761] [INSPIRE].

  42. [42]

    F. Nendzig and G. Wolschin, Y suppression in PbPb collisions at energies available at the CERN Large Hadron Collider, Phys. Rev. C 87 (2013) 024911 [arXiv:1210.8366] [INSPIRE].

  43. [43]

    B. Krouppa, R. Ryblewski and M. Strickland, Bottomonia suppression in 2.76 TeV Pb-Pb collisions, Phys. Rev. C 92 (2015) 061901 [arXiv:1507.03951] [INSPIRE].

  44. [44]

    B. Krouppa and M. Strickland, Predictions for bottomonia suppression in 5.023 TeV Pb-Pb collisions, Universe 2 (2016) 16 [arXiv:1605.03561] [INSPIRE].

  45. [45]

    J. Hoelck, F. Nendzig and G. Wolschin, In-medium ϒ suppression and feed-down in UU and PbPb collisions, Phys. Rev. C 95 (2017) 024905 [arXiv:1602.00019] [INSPIRE].

  46. [46]

    Y. Burnier, O. Kaczmarek and A. Rothkopf, Quarkonium at finite temperature: towards realistic phenomenology from first principles, JHEP 12 (2015) 101 [arXiv:1509.07366] [INSPIRE].

    ADS  Google Scholar 

  47. [47]

    L.D. McLerran and T. Toimela, Photon and dilepton emission from the quark-gluon plasma: some general considerations, Phys. Rev. D 31 (1985) 545 [INSPIRE].

  48. [48]

    Y. Burnier, O. Kaczmarek and A. Rothkopf, In-medium P-wave quarkonium from the complex lattice QCD potential, JHEP 10 (2016) 032 [arXiv:1606.06211] [INSPIRE].

    ADS  Article  Google Scholar 

  49. [49]

    H. Satz, Heavy quark interactions and quarkonium binding, J. Phys. G 36 (2009) 064011 [arXiv:0812.3829] [INSPIRE].

  50. [50]

    A. Mócsy and P. Petreczky, Color screening melts quarkonium, Phys. Rev. Lett. 99 (2007) 211602 [arXiv:0706.2183] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    C. Young and K. Dusling, Quarkonium above deconfinement as an open quantum system, Phys. Rev. C 87 (2013) 065206 [arXiv:1001.0935] [INSPIRE].

  52. [52]

    Y. Akamatsu and A. Rothkopf, Stochastic potential and quantum decoherence of heavy quarkonium in the quark-gluon plasma, Phys. Rev. D 85 (2012) 105011 [arXiv:1110.1203] [INSPIRE].

  53. [53]

    N. Borghini and C. Gombeaud, Heavy quarkonia in a medium as a quantum dissipative system: master equation approach, Eur. Phys. J. C 72 (2012) 2000 [arXiv:1109.4271] [INSPIRE].

  54. [54]

    Y. Akamatsu, Heavy quark master equations in the Lindblad form at high temperatures, Phys. Rev. D 91 (2015) 056002 [arXiv:1403.5783] [INSPIRE].

  55. [55]

    J.-P. Blaizot, D. De Boni, P. Faccioli and G. Garberoglio, Heavy quark bound states in a quark-gluon plasma: dissociation and recombination, Nucl. Phys. A 946 (2016) 49 [arXiv:1503.03857] [INSPIRE].

  56. [56]

    Y. Akamatsu, Langevin dynamics and decoherence of heavy quarks at high temperatures, Phys. Rev. C 92 (2015) 044911 [arXiv:1503.08110] [INSPIRE].

  57. [57]

    R. Katz and P.B. Gossiaux, The Schrödinger-Langevin equation with and without thermal fluctuations, Annals Phys. 368 (2016) 267 [arXiv:1504.08087] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  58. [58]

    N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo, Quarkonium suppression in heavy-ion collisions: an open quantum system approach, Phys. Rev. D 96 (2017) 034021 [arXiv:1612.07248] [INSPIRE].

  59. [59]

    N. Brambilla, M.A. Escobedo, J. Soto and A. Vairo, Heavy quarkonium suppression in a fireball, Phys. Rev. D 97 (2018) 074009 [arXiv:1711.04515] [INSPIRE].

  60. [60]

    J.-P. Blaizot and M.A. Escobedo, Quantum and classical dynamics of heavy quarks in a quark-gluon plasma, JHEP 06 (2018) 034 [arXiv:1711.10812] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  61. [61]

    D. De Boni, Fate of in-medium heavy quarks via a Lindblad equation, JHEP 08 (2017) 064 [arXiv:1705.03567] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  62. [62]

    J.-P. Blaizot and M.A. Escobedo, Approach to equilibrium of a quarkonium in a quark-gluon plasma, Phys. Rev. D 98 (2018) 074007 [arXiv:1803.07996] [INSPIRE].

  63. [63]

    M. Laine, O. Philipsen, P. Romatschke and M. Tassler, Real-time static potential in hot QCD, JHEP 03 (2007) 054 [hep-ph/0611300] [INSPIRE].

  64. [64]

    A. Beraudo, J.P. Blaizot and C. Ratti, Real and imaginary-time \( Q\overline{Q} \) correlators in a thermal medium, Nucl. Phys. A 806 (2008) 312 [arXiv:0712.4394] [INSPIRE].

  65. [65]

    N. Brambilla, J. Ghiglieri, A. Vairo and P. Petreczky, Static quark-antiquark pairs at finite temperature, Phys. Rev. D 78 (2008) 014017 [arXiv:0804.0993] [INSPIRE].

  66. [66]

    A. Rothkopf, T. Hatsuda and S. Sasaki, Complex heavy-quark potential at finite temperature from lattice QCD, Phys. Rev. Lett. 108 (2012) 162001 [arXiv:1108.1579] [INSPIRE].

    ADS  Article  Google Scholar 

  67. [67]

    Y. Burnier, O. Kaczmarek and A. Rothkopf, Static quark-antiquark potential in the quark-gluon plasma from lattice QCD, Phys. Rev. Lett. 114 (2015) 082001 [arXiv:1410.2546] [INSPIRE].

  68. [68]

    Y. Burnier and A. Rothkopf, Complex heavy-quark potential and Debye mass in a gluonic medium from lattice QCD, Phys. Rev. D 95 (2017) 054511 [arXiv:1607.04049] [INSPIRE].

  69. [69]

    TUMQCD collaboration, P. Petreczky and J. Weber, Lattice calculations of heavy quark potential at finite temperature, Nucl. Phys. A 967 (2017) 592 [arXiv:1704.08573] [INSPIRE].

  70. [70]

    Y. Burnier, M. Laine and M. Vepsäläinen, Heavy quarkonium in any channel in resummed hot QCD, JHEP 01 (2008) 043 [arXiv:0711.1743] [INSPIRE].

    ADS  Article  Google Scholar 

  71. [71]

    P. Petreczky, C. Miao and A. Mócsy , Quarkonium spectral functions with complex potential, Nucl. Phys. A 855 (2011) 125 [arXiv:1012.4433] [INSPIRE].

  72. [72]

    A. Bazavov et al., The chiral and deconfinement aspects of the QCD transition, Phys. Rev. D 85 (2012) 054503 [arXiv:1111.1710] [INSPIRE].

  73. [73]

    S. Borsányi, Z. Fodor, C. Hölbling, S.D. Katz, S. Krieg and K.K. Szabo, Full result for the QCD equation of state with 2 + 1 flavors, Phys. Lett. B 730 (2014) 99 [arXiv:1309.5258] [INSPIRE].

  74. [74]

    HotQCD collaboration, A. Bazavov et al., Equation of state in (2 + 1)-flavor QCD, Phys. Rev. D 90 (2014) 094503 [arXiv:1407.6387] [INSPIRE].

  75. [75]

    S. Borsányi et al., Calculation of the axion mass based on high-temperature lattice quantum chromodynamics, Nature 539 (2016) 69 [arXiv:1606.07494] [INSPIRE].

    ADS  Article  Google Scholar 

  76. [76]

    A. Bazavov, P. Petreczky and J.H. Weber, Equation of state in 2 + 1 flavor QCD at high temperatures, Phys. Rev. D 97 (2018) 014510 [arXiv:1710.05024] [INSPIRE].

  77. [77]

    TUMQCD collaboration, A. Bazavov, N. Brambilla, P. Petreczky, A. Vairo and J.H. Weber, Color screening in (2 + 1)-flavor QCD, Phys. Rev. D 98 (2018) 054511 [arXiv:1804.10600] [INSPIRE].

  78. [78]

    H.T. Ding, S. Mukherjee, H. Ohno, P. Petreczky and H.P. Schadler, Diagonal and off-diagonal quark number susceptibilities at high temperatures, Phys. Rev. D 92 (2015) 074043 [arXiv:1507.06637] [INSPIRE].

  79. [79]

    R. Bellwied et al., Fluctuations and correlations in high temperature QCD, Phys. Rev. D 92 (2015) 114505 [arXiv:1507.04627] [INSPIRE].

  80. [80]

    A. Bazavov et al., Quark number susceptibilities at high temperatures, Phys. Rev. D 88 (2013) 094021 [arXiv:1309.2317] [INSPIRE].

  81. [81]

    M. Berwein, N. Brambilla, P. Petreczky and A. Vairo, Polyakov loop at next-to-next-to-leading order, Phys. Rev. D 93 (2016) 034010 [arXiv:1512.08443] [INSPIRE].

  82. [82]

    A. Bazavov et al., Polyakov loop in 2 + 1 flavor QCD from low to high temperatures, Phys. Rev. D 93 (2016) 114502 [arXiv:1603.06637] [INSPIRE].

  83. [83]

    Y. Burnier and A. Rothkopf, Bayesian approach to spectral function reconstruction for Euclidean quantum field theories, Phys. Rev. Lett. 111 (2013) 182003 [arXiv:1307.6106] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    C.S. Fischer, J.M. Pawlowski, A. Rothkopf and C.A. Welzbacher, Bayesian analysis of quark spectral properties from the Dyson-Schwinger equation, Phys. Rev. D 98 (2018) 014009 [arXiv:1705.03207] [INSPIRE].

  85. [85]

    M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040] [INSPIRE].

  86. [86]

    I. Wetzorke, F. Karsch, E. Laermann, P. Petreczky and S. Stickan, Meson spectral functions at finite temperature, Nucl. Phys. Proc. Suppl. 106 (2002) 510 [hep-lat/0110132] [INSPIRE].

  87. [87]

    B.A. Thacker and G.P. Lepage, Heavy quark bound states in lattice QCD, Phys. Rev. D 43 (1991) 196 [INSPIRE].

  88. [88]

    G.P. Lepage, L. Magnea, C. Nakhleh, U. Magnea and K. Hornbostel, Improved nonrelativistic QCD for heavy quark physics, Phys. Rev. D 46 (1992) 4052 [hep-lat/9205007] [INSPIRE].

  89. [89]

    N. Brambilla, A. Pineda, J. Soto and A. Vairo, Effective field theories for heavy quarkonium, Rev. Mod. Phys. 77 (2005) 1423 [hep-ph/0410047] [INSPIRE].

  90. [90]

    B. Colquhoun, C.T.H. Davies, R.J. Dowdall, J. Koponen, G.P. Lepage and A.T. Lytle, Phenomenology with lattice NRQCD b quarks, PoS(LATTICE 2015)334 [arXiv:1511.01852] [INSPIRE].

  91. [91]

    T. Umeda, A constant contribution in meson correlators at finite temperature, Phys. Rev. D 75 (2007) 094502 [hep-lat/0701005] [INSPIRE].

  92. [92]

    G. Aarts and J.M. Martinez Resco, Transport coefficients, spectral functions and the lattice, JHEP 04 (2002) 053 [hep-ph/0203177] [INSPIRE].

  93. [93]

    P. Petreczky, On temperature dependence of quarkonium correlators, Eur. Phys. J. C 62 (2009) 85 [arXiv:0810.0258] [INSPIRE].

  94. [94]

    F. Karsch, S. Datta, E. Laermann, P. Petreczky, S. Stickan and I. Wetzorke, Hadron correlators, spectral functions and thermal dilepton rates from lattice QCD, Nucl. Phys. A 715 (2003) 701 [hep-ph/0209028] [INSPIRE].

  95. [95]

    M. Asakawa and T. Hatsuda, J/ψ and η c in the deconfined plasma from lattice QCD, Phys. Rev. Lett. 92 (2004) 012001 [hep-lat/0308034] [INSPIRE].

  96. [96]

    S. Datta, F. Karsch, P. Petreczky and I. Wetzorke, Behavior of charmonium systems after deconfinement, Phys. Rev. D 69 (2004) 094507 [hep-lat/0312037] [INSPIRE].

  97. [97]

    A. Jakovac, P. Petreczky, K. Petrov and A. Velytsky, Quarkonium correlators and spectral functions at zero and finite temperature, Phys. Rev. D 75 (2007) 014506 [hep-lat/0611017] [INSPIRE].

  98. [98]

    H. Iida, T. Doi, N. Ishii, H. Suganuma and K. Tsumura, Charmonium properties in deconfinement phase in anisotropic lattice QCD, Phys. Rev. D 74 (2006) 074502 [hep-lat/0602008] [INSPIRE].

  99. [99]

    WHOT-QCD collaboration, H. Ohno et al., Charmonium spectral functions with the variational method in zero and finite temperature lattice QCD, Phys. Rev. D 84 (2011) 094504 [arXiv:1104.3384] [INSPIRE].

  100. [100]

    H.T. Ding, A. Francis, O. Kaczmarek, F. Karsch, H. Satz and W. Soeldner, Charmonium properties in hot quenched lattice QCD, Phys. Rev. D 86 (2012) 014509 [arXiv:1204.4945] [INSPIRE].

  101. [101]

    G. Aarts, C. Allton, M.B. Oktay, M. Peardon and J.-I. Skullerud, Charmonium at high temperature in two-flavor QCD, Phys. Rev. D 76 (2007) 094513 [arXiv:0705.2198] [INSPIRE].

  102. [102]

    S. Borsányi et al., Charmonium spectral functions from 2 + 1 flavour lattice QCD, JHEP 04 (2014) 132 [arXiv:1401.5940] [INSPIRE].

  103. [103]

    H. Ohno, H.T. Ding and O. Kaczmarek, Quark mass dependence of quarkonium properties at finite temperature, PoS(LATTICE2014)219, (2014) [arXiv:1412.6594] [INSPIRE].

  104. [104]

    A. Ikeda, M. Asakawa and M. Kitazawa, In-medium dispersion relations of charmonia studied by maximum entropy method, Phys. Rev. D 95 (2017) 014504 [arXiv:1610.07787] [INSPIRE].

  105. [105]

    H.-T. Ding, O. Kaczmarek, S. Mukherjee, H. Ohno and H.T. Shu, Stochastic reconstructions of spectral functions: application to lattice QCD, Phys. Rev. D 97 (2018) 094503 [arXiv:1712.03341] [INSPIRE].

  106. [106]

    Y. Burnier et al., Thermal quarkonium physics in the pseudoscalar channel, JHEP 11 (2017) 206 [arXiv:1709.07612] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  107. [107]

    A. Kelly, A. Rothkopf and J.-I. Skullerud, Bayesian study of relativistic open and hidden charm in anisotropic lattice QCD, Phys. Rev. D 97 (2018) 114509 [arXiv:1802.00667] [INSPIRE].

  108. [108]

    H.-T. Ding, O. Kaczmarek, A.-L. Kruse, H. Ohno and H. Sandmeyer, Continuum extrapolation of quarkonium correlators at non-zero temperature, EPJ Web Conf. 175 (2018) 07010 [arXiv:1710.08858] [INSPIRE].

  109. [109]

    G. Aarts et al., What happens to the ϒ and η b in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD, JHEP 11 (2011) 103 [arXiv:1109.4496] [INSPIRE].

  110. [110]

    G. Aarts et al., S wave bottomonium states moving in a quark-gluon plasma from lattice NRQCD, JHEP 03 (2013) 084 [arXiv:1210.2903] [INSPIRE].

  111. [111]

    G. Aarts, C. Allton, S. Kim, M.P. Lombardo, S.M. Ryan and J.I. Skullerud, Melting of P wave bottomonium states in the quark-gluon plasma from lattice NRQCD, JHEP 12 (2013) 064 [arXiv:1310.5467] [INSPIRE].

    ADS  Article  Google Scholar 

  112. [112]

    G. Aarts et al., The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD, JHEP 07 (2014) 097 [arXiv:1402.6210] [INSPIRE].

  113. [113]

    A. Rothkopf, What lattice QCD spectral functions can tell us about heavy quarkonium in the QGP, PoS(ICHEP2016)362, (2016) [arXiv:1611.06517] [INSPIRE].

  114. [114]

    S. Kim, P. Petreczky and A. Rothkopf, High statistics study of in-medium S- and P-wave quarkonium states in lattice non-relativistic QCD, Nucl. Phys. A 967 (2017) 724 [arXiv:1704.05221] [INSPIRE].

  115. [115]

    P. Steinbrecher, The QCD crossover at zero and non-zero baryon densities from lattice QCD, arXiv:1807.05607 [INSPIRE].

  116. [116]

    H. Georgi, An effective field theory for heavy quarks at low-energies, Phys. Lett. B 240 (1990) 447 [INSPIRE].

  117. [117]

    E. Eichten and B.R. Hill, An effective field theory for the calculation of matrix elements involving heavy quarks, Phys. Lett. B 234 (1990) 511 [INSPIRE].

  118. [118]

    T.C. Hammant, A.G. Hart, G.M. von Hippel, R.R. Horgan and C.J. Monahan, Radiative improvement of the lattice nonrelativistic QCD action using the background field method with applications to quarkonium spectroscopy, Phys. Rev. D 88 (2013) 014505 [Erratum ibid. D 92 (2015) 119904] [arXiv:1303.3234] [INSPIRE].

  119. [119]

    C.T.H. Davies et al., Precision ϒ spectroscopy from nonrelativistic lattice QCD, Phys. Rev. D 50 (1994) 6963 [hep-lat/9406017] [INSPIRE].

  120. [120]

    J. Fingberg, Heavy quarkonia at high temperature, Phys. Lett. B 424 (1998) 343 [hep-lat/9707012] [INSPIRE].

  121. [121]

    S. Kim, P. Petreczky and A. Rothkopf, Lattice NRQCD study of S- and P-wave bottomonium states in a thermal medium with N f = 2 + 1 light flavors, Phys. Rev. D 91 (2015) 054511 [arXiv:1409.3630] [INSPIRE].

  122. [122]

    J. Skilling and S.F. Gull, Bayesian maximum entropy image reconstruction, in Institute of Mathematical Statistics Lecture Notes — Monograph Series 20, Institute of Mathematical Statistics, Hayward, CA, U.S.A., (1991), pg. 341.

  123. [123]

    M. Jarrell and J.E. Gubernatis, Bayesian inference and the analytic continuation of imaginary-time quantum Monte Carlo data, Phys. Rept. 269 (1996) 133 [INSPIRE].

  124. [124]

    C.M. Bishop, Pattern recognition and machine learning, Springer, New York, U.S.A., (2006).

  125. [125]

    W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Numerical recipes in C: the art of scientific computing, 2nd ed., Cambridge University Press, New York, NY, U.S.A., (1992).

  126. [126]

    R.-A. Tripolt, P. Gubler, M. Ulybyshe and L. Von Smekal, Numerical analytic continuation of Euclidean data, arXiv:1801.10348 [INSPIRE].

  127. [127]

    A. Rothkopf, Improved maximum entropy analysis with an extended search space, J. Comput. Phys. 238 (2013) 106 [arXiv:1110.6285] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  128. [128]

    A. Rothkopf, Bayesian inference of nonpositive spectral functions in quantum field theory, Phys. Rev. D 95 (2017) 056016 [arXiv:1611.00482] [INSPIRE].

  129. [129]

    Y. Burnier and A. Rothkopf, A hard thermal loop benchmark for the extraction of the nonperturbative \( Q\overline{Q} \) potential, Phys. Rev. D 87 (2013) 114019 [arXiv:1304.4154] [INSPIRE].

  130. [130]

    N. Brambilla, M.A. Escobedo, J. Ghiglieri, J. Soto and A. Vairo, Heavy quarkonium in a weakly-coupled quark-gluon plasma below the melting temperature, JHEP 09 (2010) 038 [arXiv:1007.4156] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  131. [131]

    A.K. Cyrol, J.M. Pawlowski, A. Rothkopf and N. Wink, Reconstructing the gluon, arXiv:1804.00945 [INSPIRE].

  132. [132]

    F. Karsch, E. Laermann, P. Petreczky and S. Stickan, Infinite temperature limit of meson spectral functions calculated on the lattice, Phys. Rev. D 68 (2003) 014504 [hep-lat/0303017] [INSPIRE].

  133. [133]

    G. Aarts and J.M. Martinez Resco, Continuum and lattice meson spectral functions at nonzero momentum and high temperature, Nucl. Phys. B 726 (2005) 93 [hep-lat/0507004] [INSPIRE].

  134. [134]

    C.T.H. Davies and B.A. Thacker, Heavy quark renormalization parameters in nonrelativistic QCD, Phys. Rev. D 45 (1992) 915 [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Alexander Rothkopf.

Additional information

ArXiv ePrint: 1808.08781

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Petreczky, P. & Rothkopf, A. Quarkonium in-medium properties from realistic lattice NRQCD. J. High Energ. Phys. 2018, 88 (2018). https://doi.org/10.1007/JHEP11(2018)088

Download citation

Keywords

  • Effective Field Theories
  • Lattice QCD
  • Quark-Gluon Plasma