Advertisement

Adding pseudo-observables to the four-lepton experimentalist’s toolbox

  • James S. GainerEmail author
  • Martín González-Alonso
  • Admir Greljo
  • Senad Isaković
  • Gino Isidori
  • Andrey Korytov
  • Joseph Lykken
  • David Marzocca
  • Konstantin T. Matchev
  • Predrag Milenović
  • Guenakh Mitselmakher
  • Stephen Mrenna
  • Myeonghun Park
  • Aurelijus Rinkevicius
  • Nudžeim Selimović
Open Access
Regular Article - Theoretical Physics

Abstract

The “golden” channel, in which the newly-discovered Higgs boson decays to four leptons by means of intermediate vector bosons, is important for determining the properties of the Higgs boson and for searching for subtle new physics effects. Different approaches exist for parametrizing the relevant Higgs couplings in this channel; here we relate the use of pseudo-observables to methods based on specifying the most general amplitude or Lagrangian terms for the HVV interactions. We also provide projections for sensitivity in this channel in several novel scenarios, illustrating the use of pseudo-observables, and analyze the role of kinematic distributions and (ratios of) rates in such H → 4 studies.

Keywords

Higgs Physics Beyond Standard Model 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
  2. [2]
    CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
  3. [3]
    ATLAS collaboration, Limits on the production of the Standard Model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Eur. Phys. J. C 71 (2011) 1728 [arXiv:1106.2748] [INSPIRE].
  4. [4]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the decay channel HZZ (*) → 4ℓ with the ATLAS detector, Phys. Lett. B 705 (2011) 435 [arXiv:1109.5945] [INSPIRE].
  5. [5]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson using up to 4.9 fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].
  6. [6]
    ATLAS collaboration, Search for the Standard Model Higgs boson in the decay channel HZZ (*) → 4ℓ with 4.8fb −1 of pp collision data at \( \sqrt{s}=7 \) TeV with ATLAS, Phys. Lett. B 710 (2012) 383 [arXiv:1202.1415] [INSPIRE].
  7. [7]
    CMS collaboration, Combined results of searches for the Standard Model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].
  8. [8]
    CMS collaboration, Search for the Standard Model Higgs boson in the decay channel HZZ → 4ℓ in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Rev. Lett. 108 (2012) 111804 [arXiv:1202.1997] [INSPIRE].
  9. [9]
    ATLAS collaboration, Combined search for the Standard Model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, Phys. Rev. D 86 (2012) 032003 [arXiv:1207.0319] [INSPIRE].
  10. [10]
    CMS collaboration, Observation of Z decays to four leptons with the CMS detector at the LHC, JHEP 12 (2012) 034 [arXiv:1210.3844] [INSPIRE].
  11. [11]
    ATLAS collaboration, A particle consistent with the Higgs boson observed with the ATLAS detector at the Large Hadron Collider, Science 338 (2012) 1576 [INSPIRE].
  12. [12]
    CMS collaboration, Search for exotic resonances decaying into WZ/ZZ in pp collisions at \( \sqrt{s}=7 \) TeV, JHEP 02 (2013) 036 [arXiv:1211.5779] [INSPIRE].
  13. [13]
    CMS collaboration, Study of the mass and spin-parity of the Higgs boson candidate via its decays to Z boson pairs, Phys. Rev. Lett. 110 (2013) 081803 [arXiv:1212.6639] [INSPIRE].
  14. [14]
    CMS collaboration, Observation of a new boson with mass near 125 GeV in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 06 (2013) 081 [arXiv:1303.4571] [INSPIRE].
  15. [15]
    CMS collaboration, Search for a Standard-Model-like Higgs boson with a mass in the range 145 to 1000 GeV at the LHC, Eur. Phys. J. C 73 (2013) 2469 [arXiv:1304.0213] [INSPIRE].
  16. [16]
    ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88 [Erratum ibid. B 734 (2014) 406] [arXiv:1307.1427] [INSPIRE].
  17. [17]
    ATLAS collaboration, Evidence for the spin-0 nature of the Higgs boson using ATLAS data, Phys. Lett. B 726 (2013) 120 [arXiv:1307.1432] [INSPIRE].
  18. [18]
    CMS collaboration, Measurement of the properties of a Higgs boson in the four-lepton final state, Phys. Rev. D 89 (2014) 092007 [arXiv:1312.5353] [INSPIRE].
  19. [19]
    CMS collaboration, Constraints on the Higgs boson width from off-shell production and decay to Z-boson pairs, Phys. Lett. B 736 (2014) 64 [arXiv:1405.3455] [INSPIRE].
  20. [20]
    ATLAS collaboration, Measurement of the Higgs boson mass from the Hγγ and HZZ * → 4ℓ channels with the ATLAS detector using 25fb −1 of pp collision data, Phys. Rev. D 90 (2014) 052004 [arXiv:1406.3827] [INSPIRE].
  21. [21]
    ATLAS collaboration, Fiducial and differential cross sections of Higgs boson production measured in the four-lepton decay channel in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 234 [arXiv:1408.3226] [INSPIRE].
  22. [22]
    CMS collaboration, Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV, Phys. Rev. D 92 (2015) 012004 [arXiv:1411.3441] [INSPIRE].
  23. [23]
    CMS collaboration, Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the Standard Model predictions using proton collisions at 7 and 8 TeV, Eur. Phys. J. C 75 (2015) 212 [arXiv:1412.8662] [INSPIRE].
  24. [24]
    ATLAS collaboration, Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector, Eur. Phys. J. C 75 (2015) 335 [arXiv:1503.01060] [INSPIRE].
  25. [25]
    ATLAS and CMS collaborations, Combined measurement of the Higgs boson mass in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114 (2015) 191803 [arXiv:1503.07589] [INSPIRE].
  26. [26]
    CMS collaboration, Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons, JHEP 10 (2015) 144 [arXiv:1504.00936] [INSPIRE].
  27. [27]
    ATLAS collaboration, Measurements of the total and differential Higgs boson production cross sections combining the Hγγ and HZZ * → 4ℓ decay channels at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. Lett. 115 (2015) 091801 [arXiv:1504.05833] [INSPIRE].
  28. [28]
    ATLAS collaboration, Search for new light gauge bosons in Higgs boson decays to four-lepton final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector at the LHC, Phys. Rev. D 92 (2015) 092001 [arXiv:1505.07645] [INSPIRE].
  29. [29]
    CMS collaboration, A search for pair production of new light bosons decaying into muons, Phys. Lett. B 752 (2016) 146 [arXiv:1506.00424] [INSPIRE].
  30. [30]
    ATLAS collaboration, Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector, Eur. Phys. J. C 75 (2015) 476 [Erratum ibid. C 76 (2016) 152] [arXiv:1506.05669] [INSPIRE].
  31. [31]
    ATLAS collaboration, Search for an additional, heavy Higgs boson in the HZZ decay channel at \( \sqrt{s}=8 \) TeV in pp collision data with the ATLAS detector, Eur. Phys. J. C 76 (2016) 45 [arXiv:1507.05930] [INSPIRE].
  32. [32]
    CMS collaboration, Limits on the Higgs boson lifetime and width from its decay to four charged leptons, Phys. Rev. D 92 (2015) 072010 [arXiv:1507.06656] [INSPIRE].
  33. [33]
    CMS collaboration, Measurement of differential and integrated fiducial cross sections for Higgs boson production in the four-lepton decay channel in pp collisions at \( \sqrt{s}=7 \) and 8 TeV, JHEP 04 (2016) 005 [arXiv:1512.08377] [INSPIRE].
  34. [34]
    CMS collaboration, Combined search for anomalous pseudoscalar HVV couplings in VH(H\( b\overline{b} \)) production and HVV decay, Phys. Lett. B 759 (2016) 672 [arXiv:1602.04305] [INSPIRE].
  35. [35]
    CMS collaboration, Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width, JHEP 09 (2016) 051 [arXiv:1605.02329] [INSPIRE].
  36. [36]
    ATLAS and CMS collaborations, Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at \( \sqrt{s}=7 \) and 8 TeV, JHEP 08 (2016) 045 [arXiv:1606.02266] [INSPIRE].
  37. [37]
    ATLAS collaboration, Searches for heavy diboson resonances in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 09 (2016) 173 [arXiv:1606.04833] [INSPIRE].
  38. [38]
    CMS collaboration, Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 11 (2017) 047 [arXiv:1706.09936] [INSPIRE].
  39. [39]
    CMS collaboration, Constraints on anomalous Higgs boson couplings using production and decay information in the four-lepton final state, Phys. Lett. B 775 (2017) 1 [arXiv:1707.00541] [INSPIRE].
  40. [40]
    ATLAS collaboration, Measurement of the Higgs boson coupling properties in the HZZ * → 4ℓ decay channel at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 03 (2018) 095 [arXiv:1712.02304] [INSPIRE].
  41. [41]
    CMS collaboration, Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at \( \sqrt{s}=13 \) TeV, JHEP 06 (2018) 127 [arXiv:1804.01939] [INSPIRE].
  42. [42]
    J.R. Dell’Aquila and C.A. Nelson, P or CP determination by sequential decays: V1V2 modes with decays into \( {\overline{\ell}}_A{\ell}_B \) and/or \( {\overline{q}}_A{q}_B \), Phys. Rev. D 33 (1986) 80 [INSPIRE].ADSGoogle Scholar
  43. [43]
    C.A. Nelson, Correlation between decay planes in Higgs boson decays into W pair (into Z pair), Phys. Rev. D 37 (1988) 1220 [INSPIRE].ADSGoogle Scholar
  44. [44]
    B.A. Kniehl, The Higgs boson decay HZgg, Phys. Lett. B 244 (1990) 537 [INSPIRE].ADSGoogle Scholar
  45. [45]
    A. Soni and R.M. Xu, Probing CP-violation via Higgs decays to four leptons, Phys. Rev. D 48 (1993) 5259 [hep-ph/9301225] [INSPIRE].
  46. [46]
    D. Chang, W.-Y. Keung and I. Phillips, CP odd correlation in the decay of neutral Higgs boson into ZZ, W + W , or \( t\overline{t} \), Phys. Rev. D 48 (1993) 3225 [hep-ph/9303226] [INSPIRE].
  47. [47]
    V.D. Barger, K.-M. Cheung, A. Djouadi, B.A. Kniehl and P.M. Zerwas, Higgs bosons: intermediate mass range at e + e colliders, Phys. Rev. D 49 (1994) 79 [hep-ph/9306270] [INSPIRE].
  48. [48]
    T. Arens and L.M. Sehgal, Energy spectra and energy correlations in the decay HZZμ + μ μ + μ , Z. Phys. C 66 (1995) 89 [hep-ph/9409396] [INSPIRE].
  49. [49]
    S.Y. Choi, D.J. Miller, M.M. Muhlleitner and P.M. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].
  50. [50]
    B.C. Allanach, K. Odagiri, M.J. Palmer, M.A. Parker, A. Sabetfakhri and B.R. Webber, Exploring small extra dimensions at the Large Hadron Collider, JHEP 12 (2002) 039 [hep-ph/0211205] [INSPIRE].
  51. [51]
    C.P. Buszello, I. Fleck, P. Marquard and J.J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in H → ZZ →  1+ 1 2+ 2 at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].
  52. [52]
    S. Schalla, Study on the measurement of the CP-eigenstate of Higgs bosons with the CMS experiment at the LHC, Diploma, IEKP-KA-2004-14, Karlsruhe U., Karlsruhe, Germany, (2004) [INSPIRE].
  53. [53]
    R.M. Godbole, D.J. Miller and M.M. Muhlleitner, Aspects of CP-violation in the HZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].ADSGoogle Scholar
  54. [54]
    V.A. Kovalchuk, Model-independent analysis of CP-violation effects in decays of the Higgs boson into a pair of the W and Z bosons, J. Exp. Theor. Phys. 107 (2008) 774 [INSPIRE].ADSGoogle Scholar
  55. [55]
    W.-Y. Keung, I. Low and J. Shu, Landau-Yang theorem and decays of a Zboson into two Z bosons, Phys. Rev. Lett. 101 (2008) 091802 [arXiv:0806.2864] [INSPIRE].ADSGoogle Scholar
  56. [56]
    O. Antipin and A. Soni, Towards establishing the spin of warped gravitons, JHEP 10 (2008) 018 [arXiv:0806.3427] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  57. [57]
    Q.-H. Cao, C.B. Jackson, W.-Y. Keung, I. Low and J. Shu, The Higgs mechanism and loop-induced decays of a scalar into two Z bosons, Phys. Rev. D 81 (2010) 015010 [arXiv:0911.3398] [INSPIRE].ADSGoogle Scholar
  58. [58]
    Y. Gao, A.V. Gritsan, Z. Guo, K. Melnikov, M. Schulze and N.V. Tran, Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  59. [59]
    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].ADSGoogle Scholar
  60. [60]
    C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev. D 82 (2010) 114024 [arXiv:1010.0676] [INSPIRE].
  61. [61]
    A. Matsuzaki and H. Tanaka, Determination of the Higgs CP property in hadron colliders, arXiv:1101.2104 [INSPIRE].
  62. [62]
    U. De Sanctis, M. Fabbrichesi and A. Tonero, Telling the spin of theHiggs bosonat the LHC, Phys. Rev. D 84 (2011) 015013 [arXiv:1103.1973] [INSPIRE].ADSGoogle Scholar
  63. [63]
    H.E. Logan and J.Z. Salvail, Model-independent Higgs coupling measurements at the LHC using the HZZ → 4ℓ lineshape, Phys. Rev. D 84 (2011) 073001 [arXiv:1107.4342] [INSPIRE].ADSGoogle Scholar
  64. [64]
    J.S. Gainer, K. Kumar, I. Low and R. Vega-Morales, Improving the sensitivity of Higgs boson searches in the golden channel, JHEP 11 (2011) 027 [arXiv:1108.2274] [INSPIRE].ADSGoogle Scholar
  65. [65]
    I. Low, P. Schwaller, G. Shaughnessy and C.E.M. Wagner, The dark side of the Higgs boson, Phys. Rev. D 85 (2012) 015009 [arXiv:1110.4405] [INSPIRE].ADSGoogle Scholar
  66. [66]
    C. Englert, M. Spannowsky and M. Takeuchi, Measuring Higgs CP and couplings with hadronic event shapes, JHEP 06 (2012) 108 [arXiv:1203.5788] [INSPIRE].ADSGoogle Scholar
  67. [67]
    J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].ADSGoogle Scholar
  68. [68]
    J.M. Campbell, W.T. Giele and C. Williams, Extending the matrix element method to next-to-leading order, in Proceedings, 47th Rencontres de Moriond on QCD and high energy interactions, FERMILAB-CONF-12-176-T, La Thuile, Italy, 10–17 March 2012, pg. 319 [arXiv:1205.3434] [INSPIRE].
  69. [69]
    N. Kauer and G. Passarino, Inadequacy of zero-width approximation for a light Higgs boson signal, JHEP 08 (2012) 116 [arXiv:1206.4803] [INSPIRE].ADSGoogle Scholar
  70. [70]
    B.A. Kniehl and O.L. Veretin, Low-mass Higgs decays to four leptons at one loop and beyond, Phys. Rev. D 86 (2012) 053007 [arXiv:1206.7110] [INSPIRE].ADSGoogle Scholar
  71. [71]
    J.W. Moffat, Identification of the 125 GeV resonance as a pseudoscalar quarkonium meson, arXiv:1207.6015 [INSPIRE].
  72. [72]
    B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys. Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].ADSGoogle Scholar
  73. [73]
    S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, Phys. Rev. D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].ADSGoogle Scholar
  74. [74]
    R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring theHiggsboson spin and CP properties, arXiv:1208.4311 [INSPIRE].
  75. [75]
    D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, Phys. Rev. D 86 (2012) 117504 [arXiv:1208.4840] [INSPIRE].ADSGoogle Scholar
  76. [76]
    P. Cea, Comment on the evidence of the Higgs boson at LHC, arXiv:1209.3106 [INSPIRE].
  77. [77]
    J. Kumar, A. Rajaraman and D. Yaylali, Spin determination for fermiophobic bosons, Phys. Rev. D 86 (2012) 115019 [arXiv:1209.5432] [INSPIRE].ADSGoogle Scholar
  78. [78]
    C.-Q. Geng, D. Huang, Y. Tang and Y.-L. Wu, Note on 125 GeV spin-2 particle, Phys. Lett. B 719 (2013) 164 [arXiv:1210.5103] [INSPIRE].ADSGoogle Scholar
  79. [79]
    P. Avery et al., Precision studies of the Higgs boson decay channel HZZ → 4ℓ with MEKD, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].ADSGoogle Scholar
  80. [80]
    E. Massó and V. Sanz, Limits on anomalous couplings of the Higgs boson to electroweak gauge bosons from LEP and the LHC, Phys. Rev. D 87 (2013) 033001 [arXiv:1211.1320] [INSPIRE].ADSGoogle Scholar
  81. [81]
    Y. Chen, N. Tran and R. Vega-Morales, Scrutinizing the Higgs signal and background in the 2e2μ golden channel, JHEP 01 (2013) 182 [arXiv:1211.1959] [INSPIRE].ADSGoogle Scholar
  82. [82]
    A. Menon, T. Modak, D. Sahoo, R. Sinha and H.-Y. Cheng, Inferring the nature of the boson at 125126 GeV, Phys. Rev. D 89 (2014) 095021 [arXiv:1301.5404] [INSPIRE].ADSGoogle Scholar
  83. [83]
    S. Kanemura, M. Kikuchi and K. Yagyu, Probing exotic Higgs sectors from the precise measurement of Higgs boson couplings, Phys. Rev. D 88 (2013) 015020 [arXiv:1301.7303] [INSPIRE].ADSGoogle Scholar
  84. [84]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].ADSGoogle Scholar
  85. [85]
    G. Isidori, A.V. Manohar and M. Trott, Probing the nature of the Higgs-like boson via h\( \mathcal{V}\mathrm{\mathcal{F}} \) decays, Phys. Lett. B 728 (2014) 131 [arXiv:1305.0663] [INSPIRE].ADSGoogle Scholar
  86. [86]
    J. Frank, M. Rauch and D. Zeppenfeld, Higgs spin determination in the WW channel and beyond, Eur. Phys. J. C 74 (2014) 2918 [arXiv:1305.1883] [INSPIRE].ADSGoogle Scholar
  87. [87]
    B. Grinstein, C.W. Murphy and D. Pirtskhalava, Searching for new physics in the three-body decays of the Higgs-like particle, JHEP 10 (2013) 077 [arXiv:1305.6938] [INSPIRE].ADSGoogle Scholar
  88. [88]
    F. Caola and K. Melnikov, Constraining the Higgs boson width with ZZ production at the LHC, Phys. Rev. D 88 (2013) 054024 [arXiv:1307.4935] [INSPIRE].ADSGoogle Scholar
  89. [89]
    S. Banerjee, S. Mukhopadhyay and B. Mukhopadhyaya, Higher dimensional operators and the LHC Higgs data: the role of modified kinematics, Phys. Rev. D 89 (2014) 053010 [arXiv:1308.4860] [INSPIRE].ADSGoogle Scholar
  90. [90]
    Y. Sun, X.-F. Wang and D.-N. Gao, CP mixed property of the Higgs-like particle in the decay channel hZZ * → 4, Int. J. Mod. Phys. A 29 (2014) 1450086 [arXiv:1309.4171] [INSPIRE].ADSGoogle Scholar
  91. [91]
    I. Anderson et al., Constraining anomalous HVV interactions at proton and lepton colliders, Phys. Rev. D 89 (2014) 035007 [arXiv:1309.4819] [INSPIRE].ADSGoogle Scholar
  92. [92]
    M. Chen et al., The role of interference in unraveling the ZZ-couplings of the newly discovered boson at the LHC, Phys. Rev. D 89 (2014) 034002 [arXiv:1310.1397] [INSPIRE].ADSGoogle Scholar
  93. [93]
    G. Buchalla, O. Catà and G. D’Ambrosio, Nonstandard Higgs couplings from angular distributions in hZℓ + , Eur. Phys. J. C 74 (2014) 2798 [arXiv:1310.2574] [INSPIRE].ADSGoogle Scholar
  94. [94]
    Y. Chen and R. Vega-Morales, Extracting effective Higgs couplings in the golden channel, JHEP 04 (2014) 057 [arXiv:1310.2893] [INSPIRE].ADSGoogle Scholar
  95. [95]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC using full analytic results for gge e + μ μ +, JHEP 04 (2014) 060 [arXiv:1311.3589] [INSPIRE].ADSGoogle Scholar
  96. [96]
    D. Curtin et al., Exotic decays of the 125 GeV Higgs boson, Phys. Rev. D 90 (2014) 075004 [arXiv:1312.4992] [INSPIRE].ADSGoogle Scholar
  97. [97]
    Y. Chen, E. Di Marco, J. Lykken, M. Spiropulu, R. Vega-Morales and S. Xie, 8D likelihood effective Higgs couplings extraction framework in h → 4, JHEP 01 (2015) 125 [arXiv:1401.2077] [INSPIRE].ADSGoogle Scholar
  98. [98]
    M. González-Alonso and G. Isidori, The h → 4ℓ spectrum at low m 34 : Standard Model vs. light new physics, Phys. Lett. B 733 (2014) 359 [arXiv:1403.2648] [INSPIRE].
  99. [99]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Beyond geolocating: constraining higher dimensional operators in H → 4ℓ with off-shell production and more, Phys. Rev. D 91 (2015) 035011 [arXiv:1403.4951] [INSPIRE].ADSGoogle Scholar
  100. [100]
    Y. Chen, R. Harnik and R. Vega-Morales, Probing the Higgs couplings to photons in h → 4ℓ at the LHC, Phys. Rev. Lett. 113 (2014) 191801 [arXiv:1404.1336] [INSPIRE].ADSGoogle Scholar
  101. [101]
    A. Falkowski and R. Vega-Morales, Exotic Higgs decays in the golden channel, JHEP 12 (2014) 037 [arXiv:1405.1095] [INSPIRE].ADSGoogle Scholar
  102. [102]
    M. Beneke, D. Boito and Y.-M. Wang, Anomalous Higgs couplings in angular asymmetries of HZℓ + and e + e HZ, JHEP 11 (2014) 028 [arXiv:1406.1361] [INSPIRE].ADSGoogle Scholar
  103. [103]
    D.-N. Gao, A note on Higgs decays into Z boson and J/Ψ(ϒ), Phys. Lett. B 737 (2014) 366 [arXiv:1406.7102] [INSPIRE].ADSGoogle Scholar
  104. [104]
    T. Modak, D. Sahoo, R. Sinha, H.-Y. Cheng and T.-C. Yuan, Disentangling the spin-parity of a resonance via the gold-plated decay mode, Chin. Phys. C 40 (2016) 033002 [arXiv:1408.5665] [INSPIRE].ADSGoogle Scholar
  105. [105]
    Y. Chen, E. Di Marco, J. Lykken, M. Spiropulu, R. Vega-Morales and S. Xie, Technical note for 8D likelihood effective Higgs couplings extraction framework in the golden channel, arXiv:1410.4817 [INSPIRE].
  106. [106]
    T. Modak and R. Srivastava, Probing anomalous Higgs couplings in HZV decays, Mod. Phys. Lett. A 32 (2017) 1750004 [arXiv:1411.2210] [INSPIRE].ADSzbMATHGoogle Scholar
  107. [107]
    M. Beneke, D. Boito and Y.-M. Wang, Signatures of anomalous Higgs couplings in angular asymmetries of HZℓ + and e + e HZ, Nucl. Part. Phys. Proc. 273-275 (2016) 846 [arXiv:1411.3942] [INSPIRE].
  108. [108]
    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating dark photons with high-energy colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].ADSGoogle Scholar
  109. [109]
    N. Belyaev, R. Konoplich, L.E. Pedersen and K. Prokofiev, Angular asymmetries as a probe for anomalous contributions to HZZ vertex at the LHC, Phys. Rev. D 91 (2015) 115014 [arXiv:1502.03045] [INSPIRE].ADSGoogle Scholar
  110. [110]
    C. Englert, I. Low and M. Spannowsky, On-shell interference effects in Higgs boson final states, Phys. Rev. D 91 (2015) 074029 [arXiv:1502.04678] [INSPIRE].ADSGoogle Scholar
  111. [111]
    Y. Chen, R. Harnik and R. Vega-Morales, New opportunities in h → 4, JHEP 09 (2015) 185 [arXiv:1503.05855] [INSPIRE].ADSGoogle Scholar
  112. [112]
    B. Bhattacherjee, T. Modak, S.K. Patra and R. Sinha, Probing Higgs couplings at LHC and beyond, arXiv:1503.08924 [INSPIRE].
  113. [113]
    S. Furui, Cartans supersymmetry and the decay of a H 0(0+), arXiv:1504.03795 [INSPIRE].
  114. [114]
    M. González-Alonso, A. Greljo, G. Isidori and D. Marzocca, Electroweak bounds on Higgs pseudo-observables and h → 4ℓ decays, Eur. Phys. J. C 75 (2015) 341 [arXiv:1504.04018] [INSPIRE].ADSGoogle Scholar
  115. [115]
    T.V. Zagoskin and A. Yu. Korchin, Decays of a neutral particle with zero spin and arbitrary CP parity into two off-mass-shell Z bosons, J. Exp. Theor. Phys. 122 (2016) 663 [arXiv:1504.07187] [INSPIRE].ADSGoogle Scholar
  116. [116]
    S. Banerjee, T. Mandal, B. Mellado and B. Mukhopadhyaya, Cornering dimension-6 HVV interactions at high luminosity LHC: the role of event ratios, JHEP 09 (2015) 057 [arXiv:1505.00226] [INSPIRE].Google Scholar
  117. [117]
    Y. Zhou, Constraining the Higgs boson coupling to light quarks in the HZZ final states, Phys. Rev. D 93 (2016) 013019 [arXiv:1505.06369] [INSPIRE].ADSGoogle Scholar
  118. [118]
    Y. Chen, D. Stolarski and R. Vega-Morales, Golden probe of the top Yukuwa coupling, Phys. Rev. D 92 (2015) 053003 [arXiv:1505.01168] [INSPIRE].ADSGoogle Scholar
  119. [119]
    D. Curtin and C.B. Verhaaren, Discovering uncolored naturalness in exotic Higgs decays, JHEP 12 (2015) 072 [arXiv:1506.06141] [INSPIRE].ADSGoogle Scholar
  120. [120]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, Low Q 2 weak mixing angle measurements and rare Higgs decays, Phys. Rev. D 92 (2015) 055005 [arXiv:1507.00352] [INSPIRE].ADSGoogle Scholar
  121. [121]
    A. Djouadi, J. Quevillon and R. Vega-Morales, Into the multi-TeV scale with a Higgs golden ratio, Phys. Lett. B 757 (2016) 412 [arXiv:1509.03913] [INSPIRE].ADSGoogle Scholar
  122. [122]
    A. Delgado, M. Garcia-Pepin, M. Quirós, J. Santiago and R. Vega-Morales, Diphoton and diboson probes of fermiophobic Higgs bosons at the LHC, JHEP 06 (2016) 042 [arXiv:1603.00962] [INSPIRE].ADSGoogle Scholar
  123. [123]
    S. Dwivedi, D.K. Ghosh, B. Mukhopadhyaya and A. Shivaji, Distinguishing CP-odd couplings of the Higgs boson to weak boson pairs, Phys. Rev. D 93 (2016) 115039 [arXiv:1603.06195] [INSPIRE].ADSGoogle Scholar
  124. [124]
    F. Caola, M. Dowling, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to vector boson pair production in gluon fusion including interference effects with off-shell Higgs at the LHC, JHEP 07 (2016) 087 [arXiv:1605.04610] [INSPIRE].ADSGoogle Scholar
  125. [125]
    Y. Chen, J. Lykken, M. Spiropulu, D. Stolarski and R. Vega-Morales, Golden probe of electroweak symmetry breaking, Phys. Rev. Lett. 117 (2016) 241801 [arXiv:1608.02159] [INSPIRE].ADSMathSciNetGoogle Scholar
  126. [126]
    I.F. Ginzburg, What tell us LHC data about Higgs boson parity, arXiv:1610.08196 [INSPIRE].
  127. [127]
    C. Grojean, Physics of the Brout-Englert-Higgs boson: theory, Nucl. Part. Phys. Proc. 273-275 (2016) 11 [INSPIRE].
  128. [128]
    LHC Higgs Cross Section Working Group collaboration, D. de Florian et al., Handbook of LHC Higgs cross sections: 4. Deciphering the nature of the Higgs sector, arXiv:1610.07922 [INSPIRE].
  129. [129]
    T.V. Zagoskin and A. Yu. Korchin, The Higgs boson decay into ZZ decaying to identical fermion pairs, Int. J. Mod. Phys. A 32 (2017) 1750166 [arXiv:1701.06335] [INSPIRE].ADSGoogle Scholar
  130. [130]
    J. Chang, K. Cheung, J.S. Lee, C.-T. Lu and J. Park, Measuring properties of a heavy Higgs boson in the HZZ → 4ℓ decay, JHEP 12 (2017) 053 [arXiv:1708.05583] [INSPIRE].ADSGoogle Scholar
  131. [131]
    R. Vega, R. Vega-Morales and K. Xie, The supersymmetric Georgi-Machacek model, JHEP 03 (2018) 168 [arXiv:1711.05329] [INSPIRE].Google Scholar
  132. [132]
    J. Brehmer, F. Kling, T. Plehn and T.M.P. Tait, Better Higgs-CP tests through information geometry, Phys. Rev. D 97 (2018) 095017 [arXiv:1712.02350] [INSPIRE].ADSGoogle Scholar
  133. [133]
    T. Zagoskin and A. Korchin, The Higgs boson ZZ couplings in the Higgs-strahlung at the ILC, arXiv:1804.10011 [INSPIRE].
  134. [134]
    J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, Constraining effective field theories with machine learning, Phys. Rev. Lett. 121 (2018) 111801 [arXiv:1805.00013] [INSPIRE].ADSGoogle Scholar
  135. [135]
    J. Brehmer, K. Cranmer, G. Louppe and J. Pavez, A guide to constraining effective field theories with machine learning, Phys. Rev. D 98 (2018) 052004 [arXiv:1805.00020] [INSPIRE].ADSGoogle Scholar
  136. [136]
    M.B. Wise, H. Georgi and S.L. Glashow, SU(5) and the invisible axion, Phys. Rev. Lett. 47 (1981) 402 [INSPIRE].
  137. [137]
    R.E. Shrock and M. Suzuki, Invisible decays of Higgs bosons, Phys. Lett. B 110 (1982) 250 [INSPIRE].ADSGoogle Scholar
  138. [138]
    K. Griest and H.E. Haber, Invisible decays of Higgs bosons in supersymmetric models, Phys. Rev. D 37 (1988) 719 [INSPIRE].ADSGoogle Scholar
  139. [139]
    J.C. Romao, F. de Campos and J.W.F. Valle, New Higgs signatures in supersymmetry with spontaneous broken R parity, Phys. Lett. B 292 (1992) 329 [hep-ph/9207269] [INSPIRE].
  140. [140]
    J.F. Gunion, Detecting an invisibly decaying Higgs boson at a hadron supercollider, Phys. Rev. Lett. 72 (1994) 199 [hep-ph/9309216] [INSPIRE].
  141. [141]
    D. Choudhury and D.P. Roy, Signatures of an invisibly decaying Higgs particle at LHC, Phys. Lett. B 322 (1994) 368 [hep-ph/9312347] [INSPIRE].
  142. [142]
    S.G. Frederiksen, N. Johnson, G.L. Kane and J. Reid, Detecting invisible Higgs bosons at the CERN Large Hadron Collider, Phys. Rev. D 50 (1994) R4244 [INSPIRE].ADSGoogle Scholar
  143. [143]
    A. Djouadi, P. Janot, J. Kalinowski and P.M. Zerwas, SUSY decays of Higgs particles, Phys. Lett. B 376 (1996) 220 [hep-ph/9603368] [INSPIRE].
  144. [144]
    S.P. Martin and J.D. Wells, Motivation and detectability of an invisibly decaying Higgs boson at the Fermilab Tevatron, Phys. Rev. D 60 (1999) 035006 [hep-ph/9903259] [INSPIRE].
  145. [145]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSGoogle Scholar
  146. [146]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
  147. [147]
    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].
  148. [148]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the Standard Model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].
  149. [149]
    E.E. Boos, M.N. Dubinin, V.A. Ilyin, A.E. Pukhov and V.I. Savrin, CompHEP: specialized package for automatic calculations of elementary particle decays and collisions, hep-ph/9503280 [INSPIRE].
  150. [150]
    A. Pukhov et al., CompHEP: a package for evaluation of Feynman diagrams and integration over multiparticle phase space, hep-ph/9908288 [INSPIRE].
  151. [151]
    CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [INSPIRE].
  152. [152]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].
  153. [153]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].
  154. [154]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSGoogle Scholar
  155. [155]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSzbMATHGoogle Scholar
  156. [156]
    M. González-Alonso, A. Greljo, G. Isidori and D. Marzocca, Pseudo-observables in Higgs decays, Eur. Phys. J. C 75 (2015) 128 [arXiv:1412.6038] [INSPIRE].ADSGoogle Scholar
  157. [157]
    A. David and G. Passarino, Through precision straits to next Standard Model heights, Rev. Phys. 1 (2016) 13 [arXiv:1510.00414] [INSPIRE].Google Scholar
  158. [158]
    D. Yu. Bardin, M. Grunewald and G. Passarino, Precision calculation project report, hep-ph/9902452 [INSPIRE].
  159. [159]
    SLD Electroweak Group, DELPHI, ALEPH, SLD, SLD Heavy Flavour Group, OPAL, LEP Electroweak Working Group and L3 collaborations, S. Schael et al., Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
  160. [160]
    M. Bordone, A. Greljo, G. Isidori, D. Marzocca and A. Pattori, Higgs pseudo observables and radiative corrections, Eur. Phys. J. C 75 (2015) 385 [arXiv:1507.02555] [INSPIRE].ADSGoogle Scholar
  161. [161]
    R. Gomez-Ambrosio, Effective field theories and pseudo-observables in the quest for physics beyond the Standard Model, PoS(PLANCK 2015)049 [arXiv:1510.02233] [INSPIRE].
  162. [162]
    A. Greljo, G. Isidori, J.M. Lindert and D. Marzocca, Pseudo-observables in electroweak Higgs production, Eur. Phys. J. C 76 (2016) 158 [arXiv:1512.06135] [INSPIRE].ADSGoogle Scholar
  163. [163]
    A. Greljo, G. Isidori, J.M. Lindert, D. Marzocca and H. Zhang, Electroweak Higgs production with HiggsPO at NLO QCD, Eur. Phys. J. C 77 (2017) 838 [arXiv:1710.04143] [INSPIRE].ADSGoogle Scholar
  164. [164]
    N. Kauer, Inadequacy of zero-width approximation for a light Higgs boson signal, Mod. Phys. Lett. A 28 (2013) 1330015 [arXiv:1305.2092] [INSPIRE].ADSGoogle Scholar
  165. [165]
    J.M. Campbell, R.K. Ellis and C. Williams, Bounding the Higgs width at the LHC: complementary results from HWW, Phys. Rev. D 89 (2014) 053011 [arXiv:1312.1628] [INSPIRE].ADSGoogle Scholar
  166. [166]
    G. Passarino, Higgs CAT, Eur. Phys. J. C 74 (2014) 2866 [arXiv:1312.2397] [INSPIRE].ADSGoogle Scholar
  167. [167]
    C. Englert and M. Spannowsky, Limitations and opportunities of off-shell coupling measurements, Phys. Rev. D 90 (2014) 053003 [arXiv:1405.0285] [INSPIRE].ADSGoogle Scholar
  168. [168]
    I. Brivio, O.J.P. Éboli, M.B. Gavela, M.C. Gonzalez-Garcia, L. Merlo and S. Rigolin, Higgs ultraviolet softening, JHEP 12 (2014) 004 [arXiv:1405.5412] [INSPIRE].ADSGoogle Scholar
  169. [169]
    G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings: disentangling new physics with off-shell measurements, Phys. Rev. Lett. 113 (2014) 201802 [arXiv:1406.1757] [INSPIRE].ADSGoogle Scholar
  170. [170]
    A. Azatov, C. Grojean, A. Paul and E. Salvioni, Taming the off-shell Higgs boson, Zh. Eksp. Teor. Fiz. 147 (2015) 410 [J. Exp. Theor. Phys. 120 (2015) 354] [arXiv:1406.6338] [INSPIRE].
  171. [171]
    J.M. Campbell, R.K. Ellis, E. Furlan and R. Röntsch, Interference effects for Higgs boson mediated Z-pair plus jet production, Phys. Rev. D 90 (2014) 093008 [arXiv:1409.1897] [INSPIRE].ADSGoogle Scholar
  172. [172]
    C. Englert, Y. Soreq and M. Spannowsky, Off-shell Higgs coupling measurements in BSM scenarios, JHEP 05 (2015) 145 [arXiv:1410.5440] [INSPIRE].ADSGoogle Scholar
  173. [173]
    M. Buschmann, D. Goncalves, S. Kuttimalai, M. Schonherr, F. Krauss and T. Plehn, Mass effects in the Higgs-gluon coupling: boosted vs off-shell production, JHEP 02 (2015) 038 [arXiv:1410.5806] [INSPIRE].ADSGoogle Scholar
  174. [174]
    H.E. Logan, Hiding a Higgs width enhancement from off-shell gg(→ h *) → ZZ measurements, Phys. Rev. D 92 (2015) 075038 [arXiv:1412.7577] [INSPIRE].ADSGoogle Scholar
  175. [175]
    N. Kauer, Off-shell Higgs signal and total width determination at the LHC, PoS(FFP14)114, (2016) [arXiv:1502.02581] [INSPIRE].
  176. [176]
    S. Liebler, G. Moortgat-Pick and G. Weiglein, Off-shell effects in Higgs processes at a linear collider and implications for the LHC, JHEP 06 (2015) 093 [arXiv:1502.07970] [INSPIRE].ADSGoogle Scholar
  177. [177]
    C.S. Li, H.T. Li, D.Y. Shao and J. Wang, Soft gluon resummation in the signal-background interference process of gg(→ h *) → ZZ, JHEP 08 (2015) 065 [arXiv:1504.02388] [INSPIRE].ADSGoogle Scholar
  178. [178]
    C. Englert, M. McCullough and M. Spannowsky, Combining LEP and LHC to bound the Higgs width, Nucl. Phys. B 902 (2016) 440 [arXiv:1504.02458] [INSPIRE].ADSMathSciNetGoogle Scholar
  179. [179]
    F. Campanario, M. Rauch and S. Sapeta, ZZ production at high transverse momenta beyond NLO QCD, JHEP 08 (2015) 070 [arXiv:1504.05588] [INSPIRE].ADSzbMATHGoogle Scholar
  180. [180]
    A. Azatov, R. Contino and J. Galloway, Model-independent bounds on a light Higgs, JHEP 04 (2012) 127 [Erratum ibid. 04 (2013) 140] [arXiv:1202.3415] [INSPIRE].
  181. [181]
    M. Klute, R. Lafaye, T. Plehn, M. Rauch and D. Zerwas, Measuring Higgs couplings from LHC data, Phys. Rev. Lett. 109 (2012) 101801 [arXiv:1205.2699] [INSPIRE].ADSGoogle Scholar
  182. [182]
    M. Montull and F. Riva, Higgs discovery: the beginning or the end of natural EWSB?, JHEP 11 (2012) 018 [arXiv:1207.1716] [INSPIRE].ADSGoogle Scholar
  183. [183]
    J.R. Espinosa, C. Grojean, M. Muhlleitner and M. Trott, First glimpses at Higgsface, JHEP 12 (2012) 045 [arXiv:1207.1717] [INSPIRE].ADSGoogle Scholar
  184. [184]
    D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, Higgs after the discovery: a status report, JHEP 10 (2012) 196 [arXiv:1207.1718] [INSPIRE].ADSGoogle Scholar
  185. [185]
    A. Freitas and P. Schwaller, Higgs CP properties from early LHC data, Phys. Rev. D 87 (2013) 055014 [arXiv:1211.1980] [INSPIRE].
  186. [186]
    P.P. Giardino, K. Kannike, I. Masina, M. Raidal and A. Strumia, The universal Higgs fit, JHEP 05 (2014) 046 [arXiv:1303.3570] [INSPIRE].ADSGoogle Scholar
  187. [187]
    J. Ellis and T. You, Updated global analysis of Higgs couplings, JHEP 06 (2013) 103 [arXiv:1303.3879] [INSPIRE].ADSGoogle Scholar
  188. [188]
    W. Buchmüller and D. Wyler, Effective Lagrangian analysis of new interactions and flavor conservation, Nucl. Phys. B 268 (1986) 621 [INSPIRE].ADSGoogle Scholar
  189. [189]
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSGoogle Scholar
  190. [190]
    G.F. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The strongly-interacting light Higgs, JHEP 06 (2007) 045 [hep-ph/0703164] [INSPIRE].
  191. [191]
    B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-six terms in the Standard Model Lagrangian, JHEP 10 (2010) 085 [arXiv:1008.4884] [INSPIRE].ADSzbMATHGoogle Scholar
  192. [192]
    F. Bonnet, M.B. Gavela, T. Ota and W. Winter, Anomalous Higgs couplings at the LHC and their theoretical interpretation, Phys. Rev. D 85 (2012) 035016 [arXiv:1105.5140] [INSPIRE].ADSGoogle Scholar
  193. [193]
    T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Constraining anomalous Higgs interactions, Phys. Rev. D 86 (2012) 075013 [arXiv:1207.1344] [INSPIRE].ADSGoogle Scholar
  194. [194]
    J. Ellis and T. You, Global analysis of the Higgs candidate with mass ∼ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].
  195. [195]
    G. Cacciapaglia, A. Deandrea, G. Drieu La Rochelle and J.-B. Flament, Higgs couplings beyond the Standard Model, JHEP 03 (2013) 029 [arXiv:1210.8120] [INSPIRE].ADSGoogle Scholar
  196. [196]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Higgs couplings at the end of 2012, JHEP 02 (2013) 053 [arXiv:1212.5244] [INSPIRE].Google Scholar
  197. [197]
    T. Corbett, O.J.P. Eboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Robust determination of the Higgs couplings: power to the data, Phys. Rev. D 87 (2013) 015022 [arXiv:1211.4580] [INSPIRE].ADSGoogle Scholar
  198. [198]
    C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization group scaling of Higgs operators and Γ(hγγ), JHEP 04 (2013) 016 [arXiv:1301.2588] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  199. [199]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs precision (Higgcision) era begins, JHEP 05 (2013) 134 [arXiv:1302.3794] [INSPIRE].
  200. [200]
    J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays hγγ, γZ, JHEP 08 (2013) 033 [arXiv:1302.5661] [INSPIRE].ADSGoogle Scholar
  201. [201]
    A. Falkowski, F. Riva and A. Urbano, Higgs at last, JHEP 11 (2013) 111 [arXiv:1303.1812] [INSPIRE].ADSGoogle Scholar
  202. [202]
    R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner and M. Spira, Effective Lagrangian for a light Higgs-like scalar, JHEP 07 (2013) 035 [arXiv:1303.3876] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  203. [203]
    A. Djouadi and G. Moreau, The couplings of the Higgs boson and its CP properties from fits of the signal strengths and their ratios at the 7 + 8 TeV LHC, Eur. Phys. J. C 73 (2013) 2512 [arXiv:1303.6591] [INSPIRE].
  204. [204]
    T. Corbett, O.J.P. Éboli, J. Gonzalez-Fraile and M.C. Gonzalez-Garcia, Determining triple gauge boson couplings from Higgs data, Phys. Rev. Lett. 111 (2013) 011801 [arXiv:1304.1151] [INSPIRE].ADSGoogle Scholar
  205. [205]
    B. Dumont, S. Fichet and G. von Gersdorff, A Bayesian view of the Higgs sector with higher dimensional operators, JHEP 07 (2013) 065 [arXiv:1304.3369] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  206. [206]
    P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak and G. Weiglein, HiggsSignals: confronting arbitrary Higgs sectors with measurements at the Tevatron and the LHC, Eur. Phys. J. C 74 (2014) 2711 [arXiv:1305.1933] [INSPIRE].
  207. [207]
    G. Bélanger, B. Dumont, U. Ellwanger, J.F. Gunion and S. Kraml, Global fit to Higgs signal strengths and couplings and implications for extended Higgs sectors, Phys. Rev. D 88 (2013)075008 [arXiv:1306.2941] [INSPIRE].
  208. [208]
    S. Choi, S. Jung and P. Ko, Implications of LHC data on 125 GeV Higgs-like boson for the Standard Model and its various extensions, JHEP 10 (2013) 225 [arXiv:1307.3948] [INSPIRE].ADSGoogle Scholar
  209. [209]
    J. Elias-Miró, J.R. Espinosa, E. Masso and A. Pomarol, Higgs windows to new physics through d = 6 operators: constraints and one-loop anomalous dimensions, JHEP 11 (2013) 066 [arXiv:1308.1879] [INSPIRE].ADSGoogle Scholar
  210. [210]
    A. Pomarol and F. Riva, Towards the ultimate SM fit to close in on Higgs physics, JHEP 01 (2014) 151 [arXiv:1308.2803] [INSPIRE].ADSGoogle Scholar
  211. [211]
    E. Boos, V. Bunichev, M. Dubinin and Y. Kurihara, Higgs boson signal at complete tree level in the SM extension by dimension-six operators, Phys. Rev. D 89 (2014) 035001 [arXiv:1309.5410] [INSPIRE].ADSGoogle Scholar
  212. [212]
    A. Alloul, B. Fuks and V. Sanz, Phenomenology of the Higgs effective Lagrangian via FeynRules, JHEP 04 (2014) 110 [arXiv:1310.5150] [INSPIRE].ADSGoogle Scholar
  213. [213]
    R.L. Delgado, A. Dobado and F.J. Llanes-Estrada, One-loop W L W L and Z L Z L scattering from the electroweak chiral Lagrangian with a light Higgs-like scalar, JHEP 02 (2014) 121 [arXiv:1311.5993] [INSPIRE].ADSGoogle Scholar
  214. [214]
    S. Willenbrock and C. Zhang, Effective field theory beyond the Standard Model, Ann. Rev. Nucl. Part. Sci. 64 (2014) 83 [arXiv:1401.0470] [INSPIRE].ADSGoogle Scholar
  215. [215]
    C. Englert et al., Precision measurements of Higgs couplings: implications for new physics scales, J. Phys. G 41 (2014) 113001 [arXiv:1403.7191] [INSPIRE].ADSGoogle Scholar
  216. [216]
    J. Ellis, V. Sanz and T. You, Complete Higgs sector constraints on dimension-6 operators, JHEP 07 (2014) 036 [arXiv:1404.3667] [INSPIRE].ADSGoogle Scholar
  217. [217]
    E. Masso, An effective guide to beyond the Standard Model physics, JHEP 10 (2014) 128 [arXiv:1406.6376] [INSPIRE].ADSGoogle Scholar
  218. [218]
    A. Biekötter, A. Knochel, M. Krämer, D. Liu and F. Riva, Vices and virtues of Higgs effective field theories at large energy, Phys. Rev. D 91 (2015) 055029 [arXiv:1406.7320] [INSPIRE].ADSGoogle Scholar
  219. [219]
    J. de Blas et al., Global Bayesian analysis of the Higgs-boson couplings, Nucl. Part. Phys. Proc. 273-275 (2016) 834 [arXiv:1410.4204] [INSPIRE].
  220. [220]
    J. Ellis, V. Sanz and T. You, The effective Standard Model after LHC run I, JHEP 03 (2015) 157 [arXiv:1410.7703] [INSPIRE].
  221. [221]
    K. Cheung, J.S. Lee, E. Senaha and P.-Y. Tseng, Confronting Higgcision with electric dipole moments, JHEP 06 (2014) 149 [arXiv:1403.4775] [INSPIRE].ADSGoogle Scholar
  222. [222]
    F. Goertz, A. Papaefstathiou, L.L. Yang and J. Zurita, Higgs boson pair production in the D = 6 extension of the SM, JHEP 04 (2015) 167 [arXiv:1410.3471] [INSPIRE].ADSGoogle Scholar
  223. [223]
    J. Bergstrom and S. Riad, Bayesian model comparison of Higgs couplings, Phys. Rev. D 91 (2015) 075008 [arXiv:1411.4876] [INSPIRE].ADSGoogle Scholar
  224. [224]
    T. Corbett, O.J.P. Éboli and M.C. Gonzalez-Garcia, Unitarity constraints on dimension-six operators, Phys. Rev. D 91 (2015) 035014 [arXiv:1411.5026] [INSPIRE].ADSGoogle Scholar
  225. [225]
    J. Gonzalez-Fraile, Effective Lagrangian approach to the EWSB sector, Nucl. Part. Phys. Proc. 273-275 (2016) 684 [arXiv:1411.5364] [INSPIRE].
  226. [226]
    K. Cheung, J.S. Lee and P.-Y. Tseng, Higgs data constraints on the minimal supersymmetric Standard Model, Phys. Rev. D 92 (2015) 095004 [arXiv:1501.03552] [INSPIRE].ADSGoogle Scholar
  227. [227]
    M. Gorbahn, J.M. No and V. Sanz, Benchmarks for Higgs effective theory: extended Higgs sectors, JHEP 10 (2015) 036 [arXiv:1502.07352] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  228. [228]
    A. Falkowski, Effective field theory approach to LHC Higgs data, Pramana 87 (2016) 39 [arXiv:1505.00046] [INSPIRE].ADSGoogle Scholar
  229. [229]
    A. Falkowski, M. Gonzalez-Alonso, A. Greljo and D. Marzocca, Global constraints on anomalous triple gauge couplings in effective field theory approach, Phys. Rev. Lett. 116 (2016)011801 [arXiv:1508.00581] [INSPIRE].
  230. [230]
    M. Ghezzi, R. Gomez-Ambrosio, G. Passarino and S. Uccirati, NLO Higgs effective field theory and κ-framework, JHEP 07 (2015) 175 [arXiv:1505.03706] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  231. [231]
    T. Corbett, O.J.P. Eboli, D. Goncalves, J. Gonzalez-Fraile, T. Plehn and M. Rauch, The Higgs legacy of the LHC run I, JHEP 08 (2015) 156 [arXiv:1505.05516] [INSPIRE].ADSGoogle Scholar
  232. [232]
    S. Dwivedi, D.K. Ghosh, B. Mukhopadhyaya and A. Shivaji, Constraints on CP-violating gauge-Higgs operators, Phys. Rev. D 92 (2015) 095015 [arXiv:1505.05844] [INSPIRE].ADSGoogle Scholar
  233. [233]
    S. Fichet and G. Moreau, Anatomy of the Higgs fits: a first guide to statistical treatments of the theoretical uncertainties, Nucl. Phys. B 905 (2016) 391 [arXiv:1509.00472] [INSPIRE].ADSzbMATHGoogle Scholar
  234. [234]
    K.D. Gregersen and J.B. Hansen, Frequentist limit setting in effective field theories, arXiv:1509.01808 [INSPIRE].
  235. [235]
    C. Englert, R. Kogler, H. Schulz and M. Spannowsky, Higgs coupling measurements at the LHC, Eur. Phys. J. C 76 (2016) 393 [arXiv:1511.05170] [INSPIRE].ADSGoogle Scholar
  236. [236]
    A. Drozd, J. Ellis, J. Quevillon and T. You, The universal one-loop effective action, JHEP 03 (2016) 180 [arXiv:1512.03003] [INSPIRE].ADSGoogle Scholar
  237. [237]
    L. Reina et al., Precision constraints on non-standard Higgs-boson couplings with HEPfit, PoS(EPS-HEP2015)187 [INSPIRE].
  238. [238]
    A. Butter, O.J.P. Éboli, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia, T. Plehn and M. Rauch, The gauge-Higgs legacy of the LHC run I, JHEP 07 (2016) 152 [arXiv:1604.03105] [INSPIRE].ADSGoogle Scholar
  239. [239]
    I. Brivio, J. Gonzalez-Fraile, M.C. Gonzalez-Garcia and L. Merlo, The complete HEFT Lagrangian after the LHC run I, Eur. Phys. J. C 76 (2016) 416 [arXiv:1604.06801] [INSPIRE].ADSGoogle Scholar
  240. [240]
    S. Dawson and I.M. Lewis, Singlet model interference effects with high scale UV physics, Phys. Rev. D 95 (2017) 015004 [arXiv:1605.04944] [INSPIRE].ADSGoogle Scholar
  241. [241]
    M. Bauer, A. Butter, J. Gonzalez-Fraile, T. Plehn and M. Rauch, Learning from a Higgs-like scalar resonance, Phys. Rev. D 95 (2017) 055011 [arXiv:1607.04562] [INSPIRE].ADSGoogle Scholar
  242. [242]
    A. Freitas, D. López-Val and T. Plehn, When matching matters: loop effects in Higgs effective theory, Phys. Rev. D 94 (2016) 095007 [arXiv:1607.08251] [INSPIRE].ADSGoogle Scholar
  243. [243]
    C. Englert, K. Nordström, K. Sakurai and M. Spannowsky, Perturbative Higgs CP-violation, unitarity and phenomenology, Phys. Rev. D 95 (2017) 015018 [arXiv:1611.05445] [INSPIRE].ADSGoogle Scholar
  244. [244]
    M. Ciuchini et al., Updates on fits to electroweak parameters, PoS(LeptonPhoton2015)013 [INSPIRE].
  245. [245]
    T. Corbett, A. Joglekar, H.-L. Li and J.-H. Yu, Exploring extended scalar sectors with di-Higgs signals: a Higgs EFT perspective, JHEP 05 (2018) 061 [arXiv:1705.02551] [INSPIRE].ADSGoogle Scholar
  246. [246]
    T. Corbett, O.J.P. Éboli and M.C. Gonzalez-Garcia, Unitarity constraints on dimension-six operators II: including fermionic operators, Phys. Rev. D 96 (2017) 035006 [arXiv:1705.09294] [INSPIRE].ADSGoogle Scholar
  247. [247]
    I. Brivio and M. Trott, The Standard Model as an effective field theory, arXiv:1706.08945 [INSPIRE].
  248. [248]
    A. Helset and M. Trott, On interference and non-interference in the SMEFT, JHEP 04 (2018) 038 [arXiv:1711.07954] [INSPIRE].ADSGoogle Scholar
  249. [249]
    A. Dedes, M. Paraskevas, J. Rosiek, K. Suxho and L. Trifyllis, The decay hγγ in the Standard-Model effective field theory, JHEP 08 (2018) 103 [arXiv:1805.00302] [INSPIRE].ADSGoogle Scholar
  250. [250]
    ATLAS collaboration, Measurement of inclusive and differential cross sections in the HZZ * → 4ℓ decay channel in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017) 132 [arXiv:1708.02810] [INSPIRE].
  251. [251]
    G. Mancini, Sensitivity studies based on the EFT parametrization in the double differential cross section for the HZZ * → 4ℓ decay channel at LHC, Nuovo Cim. C 39 (2016) 210 [INSPIRE].ADSGoogle Scholar
  252. [252]
    C. Anastasiou et al., High precision determination of the gluon fusion Higgs boson cross-section at the LHC, JHEP 05 (2016) 058 [arXiv:1602.00695] [INSPIRE].ADSGoogle Scholar
  253. [253]
    T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
  254. [254]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  255. [255]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSGoogle Scholar
  256. [256]
    K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap. 57 (1988) 4126 [INSPIRE].
  257. [257]
    K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 2: mass spectra for 2 → 2 processes, J. Phys. Soc. Jap. 60 (1991) 836 [INSPIRE].
  258. [258]
    K. Kondo, T. Chikamatsu and S.H. Kim, Dynamical likelihood method for reconstruction of events with missing momentum. 3: analysis of a CDF high p T eμ event as \( t\overline{t} \) production, J. Phys. Soc. Jap. 62 (1993) 1177 [INSPIRE].
  259. [259]
    R.H. Dalitz and G.R. Goldstein, The decay and polarization properties of the top quark, Phys. Rev. D 45 (1992) 1531 [INSPIRE].ADSGoogle Scholar
  260. [260]
    D0 collaboration, B. Abbott et al., Measurement of the top quark mass in the dilepton channel, Phys. Rev. D 60 (1999) 052001 [hep-ex/9808029] [INSPIRE].
  261. [261]
    J.C. Estrada Vigil, Maximal use of kinematic information for the extraction of the mass of the top quark in single-lepton \( t\overline{t} \) events at D0, Ph.D. thesis, FERMILAB-THESIS-2001-07, University of Rochester, Rochester, NY, U.S.A., (2001) [UMI-30-23733] [INSPIRE].
  262. [262]
    M.F. Canelli, Helicity of the W boson in single-lepton \( t\overline{t} \) events, Ph.D. thesis, FERMILAB-THESIS-2003-22, University of Rochester, Rochester, NY, U.S.A., (2003) [UMI-31-14921] [INSPIRE].
  263. [263]
    D0 collaboration, V.M. Abazov et al., A precision measurement of the mass of the top quark, Nature 429 (2004) 638 [hep-ex/0406031] [INSPIRE].
  264. [264]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, The matrix element method: past, present and future, in Proceedings, 2013 Community Summer Study on the Future of U.S. Particle Physics: Snowmass on the Mississippi (CSS2013), Minneapolis, MN, U.S.A., 29 July–6 August 2013 [arXiv:1307.3546] [INSPIRE].
  265. [265]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Exploring theory space with Monte Carlo reweighting, JHEP 10 (2014) 078 [arXiv:1404.7129] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • James S. Gainer
    • 1
    Email author
  • Martín González-Alonso
    • 2
  • Admir Greljo
    • 3
    • 4
  • Senad Isaković
    • 4
  • Gino Isidori
    • 5
  • Andrey Korytov
    • 6
  • Joseph Lykken
    • 7
  • David Marzocca
    • 8
  • Konstantin T. Matchev
    • 6
  • Predrag Milenović
    • 9
  • Guenakh Mitselmakher
    • 6
  • Stephen Mrenna
    • 10
  • Myeonghun Park
    • 11
  • Aurelijus Rinkevicius
    • 12
  • Nudžeim Selimović
    • 4
  1. 1.Dept. of Physics and AstronomyUniversity of HawaiiHonoluluU.S.A.
  2. 2.Theoretical Physics DepartmentCERNGeneva 23Switzerland
  3. 3.PRISMA Cluster of Excellence and Mainz Institute for Theoretical PhysicsJohannes Gutenberg Universität MainzMainzGermany
  4. 4.Faculty of ScienceUniversity of SarajevoSarajevoBosnia and Herzegovina
  5. 5.Physik-InstitutUniversität ZürichZürichSwitzerland
  6. 6.Physics DepartmentUniversity of FloridaGainesvilleU.S.A.
  7. 7.Theoretical Physics DepartmentFermilabBataviaU.S.A.
  8. 8.INFN, Sezione di Trieste, SISSATriesteItaly
  9. 9.Experimental Physics DepartmentCERNGeneva 23Switzerland
  10. 10.SSE Group, Computing DivisionFermilabBataviaU.S.A.
  11. 11.Institute of Convergence Fundamental Studies and School of Liberal ArtsSeoultechSeoulKorea
  12. 12.Department of PhysicsCornell UniversityIthacaU.S.A.

Personalised recommendations