Provenance of classical Hamiltonian time crystals

Abstract

Classical Hamiltonian systems with conserved charges and those with constraints often describe dynamics on a pre-symplectic manifold. Here we show that a pre-symplectic manifold is also the proper stage to describe autonomous energy conserving Hamiltonian time crystals. We explain how the occurrence of a time crystal relates to the wider concept of spontaneously broken symmetries; in the case of a time crystal, the symmetry breaking takes place in a dynamical context. We then analyze in detail two examples of timecrystalline Hamiltonian dynamics. The first example is a piecewise linear closed string, with dynamics determined by a Lie-Poisson bracket and Hamiltonian that relates to membrane stability. We explain how the Lie-Poisson brackets descents to a time-crystalline pre-symplectic bracket, and we show that the Hamiltonian dynamics supports two phases; in one phase we have a time crystal and in the other phase time crystals are absent. The second example is a discrete one dimensional model of a Hamiltonian chain. It is obtained by a reduction from the Q-ball Lagrangian that describes time dependent nontopological solitons. We show that a time crystal appears as a minimum energy domain wall configuration, along the chain.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    F. Wilczek, Quantum time crystals, Phys. Rev. Lett. 109 (2012) 160401 [arXiv:1202.2539] [INSPIRE].

    ADS  Article  Google Scholar 

  2. [2]

    A. Shapere and F. Wilczek, Classical time crystals, Phys. Rev. Lett. 109 (2012) 160402 [arXiv:1202.2537] [INSPIRE].

    ADS  Article  Google Scholar 

  3. [3]

    F. Wilczek, Superfluidity and space-time translation symmetry breaking, Phys. Rev. Lett. 111 (2013) 250402.

    ADS  Article  Google Scholar 

  4. [4]

    A. Shapere and F. Wilczek, Regularizations of time-crystal dynamics, PNAS 116 (2019) 18772.

    MathSciNet  Article  Google Scholar 

  5. [5]

    K. Sacha and J. Zakrzewski, Time crystals: a review, Rep. Prog. Phys. 81 (2018) 016401 [arXiv:1704.03735].

    ADS  MathSciNet  Article  Google Scholar 

  6. [6]

    N.Y. Yao and C. Nayak, Time crystals in periodically driven systems, Phys. Today 71 (2018) 40.

    Article  Google Scholar 

  7. [7]

    K. Sacha, Modeling spontaneous breaking of time-translation symmetry, Phys. Rev. A 91 (2015) 033617 [arXiv:1410.3638] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    V. Khemani, A. Lazarides, R. Moessner and S.L. Sondhi, Phase structure of driven quantum systems, Phys. Rev. Lett. 116 (2016) 250401.

    ADS  Article  Google Scholar 

  9. [9]

    D.V. Else and C. Nayak, Classification of topological phases in periodically driven interacting systems, Phys. Rev. B 93 (2016) 201103.

    ADS  Article  Google Scholar 

  10. [10]

    D.V. Else, B. Bauer and C. Nayak, Floquet time crystals, Phys. Rev. Lett. 117 (2016) 090402.

    ADS  Article  Google Scholar 

  11. [11]

    D.V. Else, B. Bauer and C. Nayak, Prethermal phases of matter protected by time-translation symmetry, Phys. Rev. X 7 (2017) 011026 [arXiv:1607.05277] [INSPIRE].

    Google Scholar 

  12. [12]

    N.Y. Yao, A.C. Potter, I.-D. Potirniche and A. Vishwanath, Discrete time crystals: rigidity, criticality, and realizations, Phys. Rev. Lett. 118 (2017) 030401 [Erratum ibid. 118 (2017) 269901].

  13. [13]

    D.V. Else, C. Monroe, C. Nayak and N.Y. Yao, Discrete time crystals, arXiv:1905.13232.

  14. [14]

    J. Zhang et al., Observation of a discrete time crystal, Nature 543 (2017) 217.

    ADS  Article  Google Scholar 

  15. [15]

    S. Choi et al., Dynamics of interacting fermions under spin-orbit coupling in an optical lattice clock, Nature Phys. 543 (2017) 221.

    ADS  Article  Google Scholar 

  16. [16]

    S. Pal, N. Nishad, T.S. Mahesh and G.J. Sreejith, Temporal order in periodically driven spins in star-shaped clusters, Phys. Rev. Lett. 120 (2018) 180602.

    ADS  Article  Google Scholar 

  17. [17]

    J. Rovny, R.L. Blum, S.E. Barrett, Observation of discrete-time-crystal signatures in an ordered dipolar many-body system, Phys. Rev. Lett. 120 (2018) 180603.

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    J. Rovny, R.L. Blum and S.E. Barrett, 31 P NMR study of discrete time-crystalline signatures in an ordered crystal of ammonium dihydrogen phosphate, Phys. Rev. B 97 (2018) 184301.

    ADS  Article  Google Scholar 

  19. [19]

    J. Smits, L. Liao, H.T.C. Stoof and P. van der Straten, Observation of a space-time crystal in a superfluid quantum gas, Phys. Rev. Lett. 121 (2018) 185301.

    ADS  Article  Google Scholar 

  20. [20]

    J. Smits, L. Liao, H.T.C. Stoof and P. van der Straten, Dynamics of a space-time crystal in an atomic Bose-Einstein condensate, Phys. Rev. A 99 (2018) 013625.

    Google Scholar 

  21. [21]

    K. Giergiel, A. Kosior, P. Hannaford and K. Sacha, Time crystals: analysis of experimental conditions, Phys. Rev. A 98 (2018) 013613.

    ADS  Article  Google Scholar 

  22. [22]

    P. Bruno, Comment on “Quantum time crystals”, Phys. Rev. Lett. 110 (2013) 118901 [arXiv:1210.4128] [INSPIRE].

    ADS  Article  Google Scholar 

  23. [23]

    H. Watanabe and M. Oshikawa, Absence of quantum time crystals, Phys. Rev. Lett. 114 (2015) 251603 [arXiv:1410.2143] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    J. Dai, A.J. Niemi, X. Peng and F. Wilczek, Truncated dynamics, ring molecules, and mechanical time crystals, Phys. Rev. A 99 (2019) 023425.

    ADS  Article  Google Scholar 

  25. [25]

    J.E. Marsden and T.S. Ratiu, Introduction to mechanics and symmetry a basic exposition of classical mechanical systems, second Edition, Springer, Germany (1999).

    Book  Google Scholar 

  26. [26]

    P.A.M. Dirac, Lectures on quantum mechanics, Belfer Graduate School of Science Monographs Series volume 2, New York, U.S.A. (1964).

    Google Scholar 

  27. [27]

    A. Wasserman, Equivariant differential topology, Topology 8 (1969) 127.

    MathSciNet  Article  Google Scholar 

  28. [28]

    A.J. Niemi and K. Palo, Equivariant Morse theory and quantum integrability, hep-th/9406068 [INSPIRE].

  29. [29]

    D.M. Austin and P.J. Braam, Morse-Bott theory and equivariant cohomology in The Floer memorial volume, H. Hofer et al. eds., Progress in Mathematics volume 133, Birkhäuser, Basel Switzerland (1995).

  30. [30]

    L. Nicolaescu, An invitation to morse theory, second edition, Springer, Germany (2011).

    Book  Google Scholar 

  31. [31]

    A.Y. Alekseev, A. Recknagel and V. Schomerus, Brane dynamics in background fluxes and noncommutative geometry, JHEP 05 (2000) 010 [hep-th/0003187] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    S. Monnier, D-branes in Lie groups of rank ¿ 1, JHEP 08 (2005) 062 [hep-th/0507159] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. [33]

    A. Alekseev and F. Petrov, A principle of variations in representation theory, in The orbit method in geometry and physics: in honor of A.A. Kirillov, C. Duval et al. eds., Progress in Mathematics volume 213, Birkhäuser, Boston U.S.A. (2000).

  34. [34]

    S.R. Coleman, Q balls, Nucl. Phys. B 262 (1985) 263 [Erratum ibid. 269 (1986) 744] [INSPIRE].

  35. [35]

    T.D. Lee and Y. Pang, Nontopological solitons, Phys. Rept, 221 (1992) 251.

    ADS  MathSciNet  Article  Google Scholar 

  36. [36]

    E. Radu and M.S. Volkov, Existence of stationary, non-radiating ring solitons in field theory: knots and vortons, Phys. Rept. 468 (2008) 101 [arXiv:0804.1357] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    R.H. Byrd, J.C. Gilbert and J. Nocedal, A trust region method based on interior point techniques for nonlinear programming, Math. Progr. 89 (2000) 149.

    MathSciNet  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Antti J. Niemi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2002.07023

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alekseev, A., Dai, J. & Niemi, A.J. Provenance of classical Hamiltonian time crystals. J. High Energ. Phys. 2020, 35 (2020). https://doi.org/10.1007/JHEP08(2020)035

Download citation

Keywords

  • Differential and Algebraic Geometry
  • Field Theories in Lower Dimensions