Skip to main content
Log in

Quantum corrections to dynamical holographic thermalization: entanglement entropy and other non-local observables

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We investigate the thermalization time scale in the planar limit of the SU(N) \( \mathcal{N}=4 \) SYM plasma at strong yet finite ’t Hooft coupling by considering its supergravity dual description, including the full \( \mathcal{O} \) (α3) type IIB string theory corrections. We also discuss on the effects of the leading non-planar corrections. We use extended geometric probes in the bulk which are dual to different non-local observables in the \( \mathcal{N}=4 \) SYM theory. This is carried out within the framework of dynamical holographic thermalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, arXiv:1101.0618 [INSPIRE].

  2. J. Abajo-Arrastia, J. Aparicio and E. Lopez, Holographic evolution of entanglement entropy, JHEP 11 (2010) 149 [arXiv:1006.4090] [INSPIRE].

    Article  ADS  Google Scholar 

  3. T. Albash and C.V. Johnson, Evolution of holographic entanglement entropy after thermal and electromagnetic quenches, New J. Phys. 13 (2011) 045017 [arXiv:1008.3027] [INSPIRE].

    Article  ADS  Google Scholar 

  4. H. Ebrahim and M. Headrick, Instantaneous thermalization in holographic plasmas, arXiv:1010.5443 [INSPIRE].

  5. V. Balasubramanian et al., Thermalization of strongly coupled field theories, Phys. Rev. Lett. 106 (2011) 191601 [arXiv:1012.4753] [INSPIRE].

    Article  ADS  Google Scholar 

  6. V. Balasubramanian et al., Holographic thermalization, Phys. Rev. D 84 (2011) 026010 [arXiv:1103.2683] [INSPIRE].

    ADS  Google Scholar 

  7. D. Garfinkle and L.A. Pando Zayas, Rapid thermalization in field theory from gravitational collapse, Phys. Rev. D 84 (2011) 066006 [arXiv:1106.2339] [INSPIRE].

    ADS  Google Scholar 

  8. J. Aparicio and E. Lopez, Evolution of two-point functions from holography, JHEP 12 (2011) 082 [arXiv:1109.3571] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. A. Allais and E. Tonni, Holographic evolution of the mutual information, JHEP 01 (2012) 102 [arXiv:1110.1607] [INSPIRE].

    Article  ADS  Google Scholar 

  10. V. Keranen, E. Keski-Vakkuri and L. Thorlacius, Thermalization and entanglement following a non-relativistic holographic quench, Phys. Rev. D 85 (2012) 026005 [arXiv:1110.5035] [INSPIRE].

    ADS  Google Scholar 

  11. D. Garfinkle, L.A. Pando Zayas and D. Reichmann, On field theory thermalization from gravitational collapse, JHEP 02 (2012) 119 [arXiv:1110.5823] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. S.R. Das, Holographic quantum quench, J. Phys. Conf. Ser. 343 (2012) 012027 [arXiv:1111.7275] [INSPIRE].

    Article  ADS  Google Scholar 

  13. V.E. Hubeny, Extremal surfaces as bulk probes in AdS/CFT, JHEP 07 (2012) 093 [arXiv:1203.1044] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Galante and M. Schvellinger, Thermalization with a chemical potential from AdS spaces, JHEP 07 (2012) 096 [arXiv:1205.1548] [INSPIRE].

    Article  ADS  Google Scholar 

  15. E. Caceres and A. Kundu, Holographic thermalization with chemical potential, JHEP 09 (2012) 055 [arXiv:1205.2354] [INSPIRE].

    Article  ADS  Google Scholar 

  16. B. Wu, On holographic thermalization and gravitational collapse of massless scalar fields, JHEP 10 (2012) 133 [arXiv:1208.1393] [INSPIRE].

    Article  ADS  Google Scholar 

  17. W. Baron, D. Galante and M. Schvellinger, Dynamics of holographic thermalization, JHEP 03 (2013) 070 [arXiv:1212.5234] [INSPIRE].

    Article  ADS  Google Scholar 

  18. D. Steineder, S.A. Stricker and A. Vuorinen, Holographic thermalization at intermediate coupling, Phys. Rev. Lett. 110 (2013) 101601 [arXiv:1209.0291] [INSPIRE].

    Article  ADS  Google Scholar 

  19. D. Steineder, S.A. Stricker and A. Vuorinen, Probing the pattern of holographic thermalization with photons, JHEP 07 (2013) 014 [arXiv:1304.3404] [INSPIRE].

    Article  ADS  Google Scholar 

  20. M.B. Green and C. Stahn, D3-branes on the Coulomb branch and instantons, JHEP 09 (2003) 052 [hep-th/0308061] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S. de Haro, A. Sinkovics and K. Skenderis, On a supersymmetric completion of the R 4 term in IIB supergravity, Phys. Rev. D 67 (2003) 084010 [hep-th/0210080] [INSPIRE].

    ADS  Google Scholar 

  22. M.F. Paulos, Higher derivative terms including the Ramond-Ramond five-form, JHEP 10 (2008) 047 [arXiv:0804.0763] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. R.C. Myers, M.F. Paulos and A. Sinha, Quantum corrections to η/s, Phys. Rev. D 79 (2009) 041901 [arXiv:0806.2156] [INSPIRE].

    ADS  Google Scholar 

  24. M.B. Green and M. Gutperle, Effects of D instantons, Nucl. Phys. B 498 (1997) 195 [hep-th/9701093] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. T. Banks and M.B. Green, Nonperturbative effects in AdS in five-dimensions ×S 5 string theory and D = 4 SUSY Yang-Mills, JHEP 05 (1998) 002 [hep-th/9804170] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  26. M.B. Green, K. Peeters and C. Stahn, Superfield integrals in high dimensions, JHEP 08 (2005) 093 [hep-th/0506161] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  27. S.S. Gubser, I.R. Klebanov and A.A. Tseytlin, Coupling constant dependence in the thermodynamics of N = 4 supersymmetric Yang-Mills theory, Nucl. Phys. B 534 (1998) 202 [hep-th/9805156] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  28. J. Pawelczyk and S. Theisen, AdS 5 × S 5 black hole metric at \( \mathcal{O} \) (α3), JHEP 09 (1998) 010 [hep-th/9808126] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. S. de Haro, A. Sinkovics and K. Skenderis, On αcorrections to D-brane solutions, Phys. Rev. D 68 (2003) 066001 [hep-th/0302136] [INSPIRE].

    ADS  Google Scholar 

  30. S. Bhattacharyya and S. Minwalla, Weak field black hole formation in asymptotically AdS spacetimes, JHEP 09 (2009) 034 [arXiv:0904.0464] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. V. Balasubramanian and S.F. Ross, Holographic particle detection, Phys. Rev. D 61 (2000) 044007 [hep-th/9906226] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  32. J.M. Maldacena, Wilson loops in large-N field theories, Phys. Rev. Lett. 80 (1998) 4859 [hep-th/9803002] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  34. V.E. Hubeny and M. Rangamani, Holographic entanglement entropy for disconnected regions, JHEP 03 (2008) 006 [arXiv:0711.4118] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  36. L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

    Article  ADS  Google Scholar 

  37. H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  38. D.A. Galante and R.C. Myers, Holographic Rényi entropies at finite coupling, arXiv:1305.7191 [INSPIRE].

  39. N. Drukker and D.J. Gross, An exact prediction of N = 4 SUSYM theory for string theory, J. Math. Phys. 42 (2001) 2896 [hep-th/0010274] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. S. Förste, D. Ghoshal and S. Theisen, Stringy corrections to the Wilson loop in N = 4 super Yang-Mills theory, JHEP 08 (1999) 013 [hep-th/9903042] [INSPIRE].

    Article  Google Scholar 

  41. S. Caron-Huot, P. Kovtun, G.D. Moore, A. Starinets and L.G. Yaffe, Photon and dilepton production in supersymmetric Yang-Mills plasma, JHEP 12 (2006) 015 [hep-th/0607237] [INSPIRE].

    Article  ADS  Google Scholar 

  42. B. Hassanain and M. Schvellinger, Holographic current correlators at finite coupling and scattering off a supersymmetric plasma, JHEP 04 (2010) 012 [arXiv:0912.4704] [INSPIRE].

    Article  ADS  Google Scholar 

  43. B. Hassanain and M. Schvellinger, Holographic current correlators at finite coupling and scattering off a supersymmetric plasma, JHEP 04 (2010) 012 [arXiv:0912.4704] [INSPIRE].

    Article  ADS  Google Scholar 

  44. B. Hassanain and M. Schvellinger, Towardst Hooft parameter corrections to charge transport in strongly-coupled plasma, JHEP 10 (2010) 068 [arXiv:1006.5480] [INSPIRE].

    Article  ADS  Google Scholar 

  45. B. Hassanain and M. Schvellinger, Diagnostics of plasma photoemission at strong coupling, Phys. Rev. D 85 (2012) 086007 [arXiv:1110.0526] [INSPIRE].

    ADS  Google Scholar 

  46. B. Hassanain and M. Schvellinger, Plasma photoemission from string theory, JHEP 12 (2012) 095 [arXiv:1209.0427] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schvellinger.

Additional information

ArXiv ePrint: 1305.2237

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baron, W.H., Schvellinger, M. Quantum corrections to dynamical holographic thermalization: entanglement entropy and other non-local observables. J. High Energ. Phys. 2013, 35 (2013). https://doi.org/10.1007/JHEP08(2013)035

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2013)035

Keywords

Navigation