Skip to main content

Double field theory and membrane sigma-models

A preprint version of the article is available at arXiv.

Abstract

We investigate geometric aspects of double field theory (DFT) and its formulation as a doubled membrane sigma-model. Starting from the standard Courant algebroid over the phase space of an open membrane, we determine a splitting and a projection to a subbundle that sends the Courant algebroid operations to the corresponding operations in DFT. This describes precisely how the geometric structure of DFT lies in between two Courant algebroids and is reconciled with generalized geometry. We construct the membrane sigma-model that corresponds to DFT, and demonstrate how the standard T-duality orbit of geometric and non-geometric flux backgrounds is captured by its action functional in a unified way. This also clarifies the appearence of noncommutative and nonassociative deformations of geometry in non-geometric closed string theory. Gauge invariance of the DFT membrane sigma-model is compatible with the flux formulation of DFT and its strong constraint, whose geometric origin is explained. Our approach leads to a new generalization of a Courant algebroid, that we call a DFT algebroid and relate to other known generalizations, such as pre-Courant algebroids and symplectic nearly Lie 2-algebroids. We also describe the construction of a gauge-invariant doubled membrane sigma-model that does not require imposing the strong constraint.

References

  1. [1]

    M.R. Douglas and C.M. Hull, D-branes and the noncommutative torus, JHEP 02 (1998) 008 [hep-th/9711165] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  2. [2]

    C.-S. Chu and P.-M. Ho, Noncommutative open string and D-brane, Nucl. Phys. B 550 (1999) 151 [hep-th/9812219] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  3. [3]

    N. Seiberg and E. Witten, String theory and noncommutative geometry, JHEP 09 (1999) 032 [hep-th/9908142] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  4. [4]

    M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  5. [5]

    R.J. Szabo, Quantum field theory on noncommutative spaces, Phys. Rept. 378 (2003) 207 [hep-th/0109162] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  6. [6]

    R. Blumenhagen and E. Plauschinn, Nonassociative Gravity in String Theory?, J. Phys. A 44 (2011) 015401 [arXiv:1010.1263] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  7. [7]

    D. Lüst, T-duality and closed string non-commutative (doubled) geometry, JHEP 12 (2010) 084 [arXiv:1010.1361] [INSPIRE].

    Article  MATH  Google Scholar 

  8. [8]

    R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric Fluxes, Asymmetric Strings and Nonassociative Geometry, J. Phys. A 44 (2011) 385401 [arXiv:1106.0316] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  9. [9]

    D. Mylonas, P. Schupp and R.J. Szabo, Membrane Sigma-models and Quantization of Non-Geometric Flux Backgrounds, JHEP 09 (2012) 012 [arXiv:1207.0926] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. [10]

    E. Plauschinn, Non-geometric fluxes and non-associative geometry, PoS(CORFU2011)061 [arXiv:1203.6203] [INSPIRE].

  11. [11]

    D. Lüst, Twisted Poisson Structures and Non-commutative/non-associative Closed String Geometry, PoS(CORFU2011)086 [arXiv:1205.0100] [INSPIRE].

  12. [12]

    D. Mylonas, P. Schupp and R.J. Szabo, Nonassociative geometry and twist deformations in non-geometric string theory, PoS(ICMP 2013)007 [arXiv:1402.7306] [INSPIRE].

  13. [13]

    R. Blumenhagen, A Course on Noncommutative Geometry in String Theory, Fortsch. Phys. 62 (2014) 709 [arXiv:1403.4805] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  14. [14]

    G.E. Barnes, A. Schenkel and R.J. Szabo, Working with Nonassociative Geometry and Field Theory, PoS(CORFU2015)081 [arXiv:1601.07353] [INSPIRE].

  15. [15]

    C.M. Hull and R.A. Reid-Edwards, Non-geometric backgrounds, doubled geometry and generalised T-duality, JHEP 09 (2009) 014 [arXiv:0902.4032] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. [16]

    M.J. Duff, Duality Rotations in String Theory, Nucl. Phys. B 335 (1990) 610 [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  17. [17]

    A.A. Tseytlin, Duality Symmetric Formulation of String World Sheet Dynamics, Phys. Lett. B 242 (1990) 163 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. [18]

    W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  19. [19]

    W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. [20]

    C.M. Hull, A geometry for non-geometric string backgrounds, JHEP 10 (2005) 065 [hep-th/0406102] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. [21]

    C.M. Hull, Doubled Geometry and T-Folds, JHEP 07 (2007) 080 [hep-th/0605149] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. [22]

    C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. [23]

    C. Hull and B. Zwiebach, The gauge algebra of double field theory and Courant brackets, JHEP 09 (2009) 090 [arXiv:0908.1792] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. [24]

    O. Hohm, C. Hull and B. Zwiebach, Background independent action for double field theory, JHEP 07 (2010) 016 [arXiv:1003.5027] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  25. [25]

    O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  26. [26]

    L. Freidel, R.G. Leigh and D. Minic, Metastring Theory and Modular Space-time, JHEP 06 (2015) 006 [arXiv:1502.08005] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  27. [27]

    G. Aldazabal, D. Marqués and C. Núñez, Double Field Theory: A Pedagogical Review, Class. Quant. Grav. 30 (2013) 163001 [arXiv:1305.1907] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  28. [28]

    D.S. Berman and D.C. Thompson, Duality Symmetric String and M-theory, Phys. Rept. 566 (2014) 1 [arXiv:1306.2643] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. [29]

    O. Hohm, D. Lüst and B. Zwiebach, The Spacetime of Double Field Theory: Review, Remarks and Outlook, Fortsch. Phys. 61 (2013) 926 [arXiv:1309.2977] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  30. [30]

    T.J. Courant, Dirac manifolds, Trans. Am. Math. Soc. 319 (1990) 631.

    MathSciNet  Article  MATH  Google Scholar 

  31. [31]

    Z.-J. Liu, A. Weinstein and P. Xu, Manin Triples for Lie Bialgebroids, J. Diff. Geom. 45 (1997) 547 [dg-ga/9508013] [INSPIRE].

  32. [32]

    D. Roytenberg, Courant algebroids, derived brackets and even symplectic supermanifolds, Ph.D. Thesis, University of California at Berkeley, U.S.A., math.DG/9910078.

  33. [33]

    P. Ševera, Letters to Alan Weinstein about Courant algebroids, arXiv:1707.00265 [INSPIRE].

  34. [34]

    N. Hitchin, Generalized Calabi-Yau manifolds, Quart. J. Math. 54 (2003) 281 [math/0209099] [INSPIRE].

  35. [35]

    M. Gualtieri, Generalized complex geometry, Ph.D. thesis, Oxford U., 2003. math/0401221 [INSPIRE].

  36. [36]

    G.R. Cavalcanti and M. Gualtieri, Generalized complex geometry and T-duality CRM Proc. Lect. Notes 50 (2010) 341 [arXiv:1106.1747] [INSPIRE].

    MATH  Google Scholar 

  37. [37]

    P. Bouwknegt, K. Hannabuss and V. Mathai, T duality for principal torus bundles, JHEP 03 (2004) 018 [hep-th/0312284] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  38. [38]

    L. Freidel, F.J. Rudolph and D. Svoboda, Generalised Kinematics for Double Field Theory, JHEP 11 (2017) 175 [arXiv:1706.07089] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  39. [39]

    I. Vaisman, On the geometry of double field theory, J. Math. Phys. 53 (2012) 033509 [arXiv:1203.0836] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  40. [40]

    A. Deser and J. Stasheff, Even symplectic supermanifolds and double field theory, Commun. Math. Phys. 339 (2015) 1003 [arXiv:1406.3601] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  41. [41]

    A. Deser and C. Sämann, Extended Riemannian Geometry I: Local Double Field Theory, arXiv:1611.02772 [INSPIRE].

  42. [42]

    M.A. Heller, N. Ikeda and S. Watamura, Unified picture of non-geometric fluxes and T-duality in double field theory via graded symplectic manifolds, JHEP 02 (2017) 078 [arXiv:1611.08346] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  43. [43]

    D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, in Workshop on Quantization, Deformations and New Homological and Categorical Methods in Mathematical Physics Manchester, England, July 7-13, 2001, 2002, math/0203110 [INSPIRE].

  44. [44]

    M. Alexandrov, A. Schwarz, O. Zaboronsky and M. Kontsevich, The geometry of the master equation and topological quantum field theory, Int. J. Mod. Phys. A 12 (1997) 1405 [hep-th/9502010] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  45. [45]

    D. Roytenberg, AKSZ-BV Formalism and Courant Algebroid-induced Topological Field Theories, Lett. Math. Phys. 79 (2007) 143 [hep-th/0608150] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  46. [46]

    J.-S. Park, Topological open p-branes, in Symplectic geometry and mirror symmetry. Proceedings, 4th KIAS Annual International Conference, Seoul, South Korea, August 14–18, 2000, pp. 311–384, 2000, hep-th/0012141 [INSPIRE].

  47. [47]

    N. Ikeda, Chern-Simons gauge theory coupled with BF theory, Int. J. Mod. Phys. A 18 (2003) 2689 [hep-th/0203043] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  48. [48]

    C. Hofman and J.-S. Park, BV quantization of topological open membranes, Commun. Math. Phys. 249 (2004) 249 [hep-th/0209214] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  49. [49]

    P. Aschieri and R.J. Szabo, Triproducts, nonassociative star products and geometry of R-flux string compactifications, J. Phys. Conf. Ser. 634 (2015) 012004 [arXiv:1504.03915] [INSPIRE].

    Article  Google Scholar 

  50. [50]

    A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, Sigma-models for genuinely non-geometric backgrounds, JHEP 11 (2015) 182 [arXiv:1505.05457] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  51. [51]

    T. Bessho, M.A. Heller, N. Ikeda and S. Watamura, Topological Membranes, Current Algebras and H-flux - R-flux Duality based on Courant Algebroids, JHEP 04 (2016) 170 [arXiv:1511.03425] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. [52]

    A. Coimbra, C. Strickland-Constable and D. Waldram, Supergravity as Generalised Geometry I: Type II Theories, JHEP 11 (2011) 091 [arXiv:1107.1733] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  53. [53]

    M. Kontsevich, Deformation quantization of Poisson manifolds. 1., Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [INSPIRE].

  54. [54]

    A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212 (2000) 591 [math/9902090] [INSPIRE].

  55. [55]

    J. Shelton, W. Taylor and B. Wecht, Nongeometric flux compactifications, JHEP 10 (2005) 085 [hep-th/0508133] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  56. [56]

    G. Aldazabal, W. Baron, D. Marqués and C. Núñez, The effective action of Double Field Theory, JHEP 11 (2011) 052 [Erratum ibid. 11 (2011) 109] [arXiv:1109.0290] [INSPIRE].

  57. [57]

    D. Geissbühler, Double Field Theory and N = 4 Gauged Supergravity, JHEP 11 (2011) 116 [arXiv:1109.4280] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  58. [58]

    D. Geissbühler, D. Marqués, C. Núñez and V. Penas, Exploring Double Field Theory, JHEP 06 (2013) 101 [arXiv:1304.1472] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  59. [59]

    R. Blumenhagen, X. Gao, D. Herschmann and P. Shukla, Dimensional Oxidation of Non-geometric Fluxes in Type II Orientifolds, JHEP 10 (2013) 201 [arXiv:1306.2761] [INSPIRE].

    ADS  Article  Google Scholar 

  60. [60]

    N. Halmagyi, Non-geometric backgrounds and the first order string sigma-model, arXiv:0906.2891 [INSPIRE].

  61. [61]

    I. Bakas, D. Lüst and E. Plauschinn, Towards a world-sheet description of doubled geometry in string theory, Fortsch. Phys. 64 (2016) 730 [arXiv:1602.07705] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  62. [62]

    K. Uchino, Remarks on the definition of a Courant algebroid, Lett. Math. Phys. 60 (2002) 171 [math.DG/0204010].

  63. [63]

    I. Vaisman, Transitive Courant algebroids, Int. J. Math. Math. Sci. 2005 (2005) 1737 [math/0407399] [INSPIRE].

  64. [64]

    M. Hansen and T. Strobl, First Class Constrained Systems and Twisting of Courant Algebroids by a Closed 4-form, in Fundamental Interactions: A Memorial Volume for Wolfgang Kummer, eds. D. Grumiller, A. Rebhan and D.V. Vassilevich, World Scientific, (2010), pp. 115–144, arXiv:0904.0711 [INSPIRE].

  65. [65]

    A.J. Bruce and J. Grabowski, Pre-Courant algebroids, arXiv:1608.01585.

  66. [66]

    Z. Liu, Y. Sheng and X. Xu, Pre-Courant Algebroids and Associated Lie 2-Algebras, arXiv:1205.5898 [INSPIRE].

  67. [67]

    D. Svoboda, Algebroid Structures on Para-Hermitian Manifolds, arXiv:1802.08180 [INSPIRE].

  68. [68]

    R. Blumenhagen and M. Fuchs, Towards a Theory of Nonassociative Gravity, JHEP 07 (2016) 019 [arXiv:1604.03253] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  69. [69]

    P. Aschieri, M. Dimitrijević Ćirić and R.J. Szabo, Nonassociative differential geometry and gravity with non-geometric fluxes, JHEP 02 (2018) 036 [arXiv:1710.11467] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  70. [70]

    N. Ikeda, Lectures on AKSZ sigma-models for Physicists, in Noncommutative Geometry and Physics 4, eds. Y. Maeda, H. Moriyoshi, M. Kotani and S. Watamura, World Scientific, (2017), pp. 79–170, arXiv:1204.3714 [INSPIRE].

  71. [71]

    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, A geometric action for non-geometric fluxes, Phys. Rev. Lett. 108 (2012) 261602 [arXiv:1202.3060] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  72. [72]

    C. Condeescu, I. Florakis and D. Lüst, Asymmetric Orbifolds, Non-Geometric Fluxes and Non-Commutativity in Closed String Theory, JHEP 04 (2012) 121 [arXiv:1202.6366] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  73. [73]

    L. Freidel, R.G. Leigh and D. Minic, Intrinsic non-commutativity of closed string theory, JHEP 09 (2017) 060 [arXiv:1706.03305] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  74. [74]

    D. Andriot, O. Hohm, M. Larfors, D. Lüst and P. Patalong, Non-Geometric Fluxes in Supergravity and Double Field Theory, Fortsch. Phys. 60 (2012) 1150 [arXiv:1204.1979] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  75. [75]

    M. Graña, R. Minasian, M. Petrini and D. Waldram, T-duality, Generalized Geometry and Non-Geometric Backgrounds, JHEP 04 (2009) 075 [arXiv:0807.4527] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  76. [76]

    I. Bakas and D. Lüst, 3-Cocycles, Non-Associative Star-Products and the Magnetic Paradigm of R-Flux String Vacua, JHEP 01 (2014) 171 [arXiv:1309.3172] [INSPIRE].

    ADS  Article  Google Scholar 

  77. [77]

    D. Mylonas, P. Schupp and R.J. Szabo, Non-Geometric Fluxes, Quasi-Hopf Twist Deformations and Nonassociative Quantum Mechanics, J. Math. Phys. 55 (2014) 122301 [arXiv:1312.1621] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  78. [78]

    G.E. Barnes, A. Schenkel and R.J. Szabo, Nonassociative geometry in quasi-Hopf representation categories I: Bimodules and their internal homomorphisms, J. Geom. Phys. 89 (2014) 111 [arXiv:1409.6331] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  79. [79]

    I. Bakas and D. Lüst, T-duality, Quotients and Currents for Non-Geometric Closed Strings, Fortsch. Phys. 63 (2015) 543 [arXiv:1505.04004] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  80. [80]

    V.G. Kupriyanov and D.V. Vassilevich, Nonassociative Weyl star products, JHEP 09 (2015) 103 [arXiv:1506.02329] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  81. [81]

    R. Blumenhagen, M. Fuchs, F. Haßler, D. Lüst and R. Sun, Non-associative Deformations of Geometry in Double Field Theory, JHEP 04 (2014) 141 [arXiv:1312.0719] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  82. [82]

    Z. Kökényesi, A. Sinkovics and R.J. Szabo, Double field theory for the A/B-models and topological S-duality in generalized geometry, arXiv:1805.11485 [INSPIRE].

  83. [83]

    A. Chatzistavrakidis, L. Jonke and O. Lechtenfeld, Dirac structures on nilmanifolds and coexistence of fluxes, Nucl. Phys. B 883 (2014) 59 [arXiv:1311.4878] [INSPIRE].

    ADS  MathSciNet  Article  MATH  Google Scholar 

  84. [84]

    R. Blumenhagen, A. Deser, E. Plauschinn and F. Rennecke, Bianchi Identities for Non-Geometric Fluxes - From Quasi-Poisson Structures to Courant Algebroids, Fortsch. Phys. 60 (2012) 1217 [arXiv:1205.1522] [INSPIRE].

    ADS  Article  MATH  Google Scholar 

  85. [85]

    C. Sämann and R.J. Szabo, Groupoids, Loop Spaces and Quantization of 2-Plectic Manifolds, Rev. Math. Phys. 25 (2013) 1330005 [arXiv:1211.0395] [INSPIRE].

    MathSciNet  Article  MATH  Google Scholar 

  86. [86]

    P. Ševera, Some title containing the wordshomotopyandsymplectic, e.g. this one, Trav. Math. 16 (2005) 121 [math.SG/0105080].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Athanasios Chatzistavrakidis.

Additional information

ArXiv ePrint: 1802.07003

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chatzistavrakidis, A., Jonke, L., Khoo, F.S. et al. Double field theory and membrane sigma-models. J. High Energ. Phys. 2018, 15 (2018). https://doi.org/10.1007/JHEP07(2018)015

Download citation

Keywords

  • Differential and Algebraic Geometry
  • Sigma Models
  • String Duality
  • Topological Field Theories