Advertisement

Hunting all the hidden photons

  • Martin Bauer
  • Patrick Foldenauer
  • Joerg Jaeckel
Open Access
Regular Article - Theoretical Physics
  • 34 Downloads

Abstract

We explore constraints on gauge bosons of a weakly coupled U(1)BL, \( \mathrm{U}{(1)}_{L_{\mu }-{L}_e},\kern0.5em \mathrm{U}{(1)}_{L_e-{L}_{\tau }}\kern0.5em \mathrm{and}\kern0.5em \mathrm{U}{(1)}_{L_{\mu }-{L}_{\tau }} \). To do so we apply the full constraining power of experimental bounds derived for a hidden photon of a secluded U(1)X and translate them to the considered gauge groups. In contrast to the secluded hidden photon that acquires universal couplings to charged Standard Model particles through kinetic mixing with the photon, for these gauge groups the couplings to the different Standard Model particles can vary widely. We take finite, computable loop-induced kinetic mixing effects into account, which provide additional sensitivity in a range of experiments. In addition, we collect and extend limits from neutrino experiments as well as astrophysical and cosmological observations and include new constraints from white dwarf cooling. We discuss the reach of future experiments in searching for these gauge bosons.

Keywords

Beyond Standard Model Gauge Symmetry 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    B. Holdom, Two U(1)’s and Epsilon Charge Shifts, Phys. Lett. 166B (1986) 196 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    R. Foot, New Physics From Electric Charge Quantization?, Mod. Phys. Lett. A 6 (1991) 527 [INSPIRE].ADSCrossRefGoogle Scholar
  3. [3]
    X.G. He, G.C. Joshi, H. Lew and R.R. Volkas, New Z-prime Phenomenology, Phys. Rev. D 43 (1991) 22 [INSPIRE].ADSGoogle Scholar
  4. [4]
    X.-G. He, G.C. Joshi, H. Lew and R.R. Volkas, Simplest Z-prime model, Phys. Rev. D 44 (1991) 2118 [INSPIRE].ADSGoogle Scholar
  5. [5]
    J. Heeck and W. Rodejohann, Gauged L μL τ Symmetry at the Electroweak Scale, Phys. Rev. D 84 (2011) 075007 [arXiv:1107.5238] [INSPIRE].ADSGoogle Scholar
  6. [6]
    J. Kopp, New signals in dark matter detectors, J. Phys. Conf. Ser. 485 (2014) 012032 [arXiv:1210.2703] [INSPIRE].CrossRefGoogle Scholar
  7. [7]
    J. Heeck, Unbroken BL symmetry, Phys. Lett. B 739 (2014) 256 [arXiv:1408.6845] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  8. [8]
    S. Bilmis, I. Turan, T.M. Aliev, M. Deniz, L. Singh and H.T. Wong, Constraints on Dark Photon from Neutrino-Electron Scattering Experiments, Phys. Rev. D 92 (2015) 033009 [arXiv:1502.07763] [INSPIRE].ADSGoogle Scholar
  9. [9]
    Y.S. Jeong, C.S. Kim and H.-S. Lee, Constraints on the U(1)L gauge boson in a wide mass range, Int. J. Mod. Phys. A 31 (2016) 1650059 [arXiv:1512.03179] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  10. [10]
    P. Ilten, Y. Soreq, M. Williams and W. Xue, Serendipity in dark photon searches, JHEP 06 (2018) 004 [arXiv:1801.04847] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    M.B. Wise and Y. Zhang, Lepton Flavorful Fifth Force and Depth-dependent Neutrino Matter Interactions, JHEP 06 (2018) 053 [arXiv:1803.00591] [INSPIRE].ADSCrossRefGoogle Scholar
  12. [12]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Quark flavor transitions in Lμ − Lτ models, Phys. Rev. D 89 (2014) 095033 [arXiv:1403.1269] [INSPIRE].ADSGoogle Scholar
  13. [13]
    W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    A. Kamada and H.-B. Yu, Coherent Propagation of PeV Neutrinos and the Dip in the Neutrino Spectrum at IceCube, Phys. Rev. D 92 (2015) 113004 [arXiv:1504.00711] [INSPIRE].ADSGoogle Scholar
  15. [15]
    T. Araki, F. Kaneko, T. Ota, J. Sato and T. Shimomura, MeV scale leptonic force for cosmic neutrino spectrum and muon anomalous magnetic moment, Phys. Rev. D 93 (2016) 013014 [arXiv:1508.07471] [INSPIRE].ADSGoogle Scholar
  16. [16]
    T. Araki, S. Hoshino, T. Ota, J. Sato and T. Shimomura, Detecting the L μL τ gauge boson at Belle II, Phys. Rev. D 95 (2017) 055006 [arXiv:1702.01497] [INSPIRE].ADSGoogle Scholar
  17. [17]
    Y. Kaneta and T. Shimomura, On the possibility of a search for the L μL τ gauge boson at Belle-II and neutrino beam experiments, PTEP 2017 (2017) 053B04 [arXiv:1701.00156] [INSPIRE].
  18. [18]
    S.N. Gninenko and N.V. Krasnikov, Probing the muon g μ − 2 anomaly, L μL τ gauge boson and Dark Matter in dark photon experiments, Phys. Lett. B 783 (2018) 24 [arXiv:1801.10448] [INSPIRE].CrossRefGoogle Scholar
  19. [19]
    CHARM collaboration, F. Bergsma et al., A Search for Decays of Heavy Neutrinos in the Mass Range 0.5-GeV to 2.8-GeV, Phys. Lett. B 166B (1986) 473.Google Scholar
  20. [20]
    E.M. Riordan et al., A Search for Short Lived Axions in an Electron Beam Dump Experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].ADSGoogle Scholar
  22. [22]
    A. Bross, M. Crisler, S.H. Pordes, J. Volk, S. Errede and J. Wrbanek, A Search for Shortlived Particles Produced in an Electron Beam Dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    M. Davier and H. Nguyen Ngoc, An Unambiguous Search for a Light Higgs Boson, Phys. Lett. B 229 (1989) 150 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    SINDRUM I collaboration, R. Meijer Drees et al., Search for weakly interacting neutral bosons produced in πp interactions at rest and decaying into e + e pairs., Phys. Rev. Lett. 68 (1992) 3845 [INSPIRE].
  25. [25]
    LSND collaboration, C. Athanassopoulos et al., Evidence for ν μν e oscillations from pion decay in flight neutrinos, Phys. Rev. C 58 (1998) 2489 [nucl-ex/9706006] [INSPIRE].
  26. [26]
    LSND collaboration, A. Aguilar-Arevalo et al., Evidence for neutrino oscillations from the observation of anti-neutrino(electron) appearance in a anti-neutrino(muon) beam, Phys. Rev. D 64 (2001) 112007 [hep-ex/0104049] [INSPIRE].
  27. [27]
    J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New Fixed-Target Experiments to Search for Dark Gauge Forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].ADSGoogle Scholar
  28. [28]
    R. Essig, R. Harnik, J. Kaplan and N. Toro, Discovering New Light States at Neutrino Experiments, Phys. Rev. D 82 (2010) 113008 [arXiv:1008.0636] [INSPIRE].ADSGoogle Scholar
  29. [29]
    R. Essig, P. Schuster, N. Toro and B. Wojtsekhowski, An Electron Fixed Target Experiment to Search for a New Vector Boson ADecaying to e + e , JHEP 02 (2011) 009 [arXiv:1001.2557] [INSPIRE].ADSGoogle Scholar
  30. [30]
    A1 collaboration, H. Merkel et al., Search for Light Gauge Bosons of the Dark Sector at the Mainz Microtron, Phys. Rev. Lett. 106 (2011) 251802 [arXiv:1101.4091] [INSPIRE].
  31. [31]
    J. Blumlein and J. Brunner, New Exclusion Limits for Dark Gauge Forces from Beam-Dump Data, Phys. Lett. B 701 (2011) 155 [arXiv:1104.2747] [INSPIRE].ADSCrossRefGoogle Scholar
  32. [32]
    APEX collaboration, S. Abrahamyan et al., Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].
  33. [33]
    S. Andreas, C. Niebuhr and A. Ringwald, New Limits on Hidden Photons from Past Electron Beam Dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].ADSGoogle Scholar
  34. [34]
    S.N. Gninenko, Constraints on sub-GeV hidden sector gauge bosons from a search for heavy neutrino decays, Phys. Lett. B 713 (2012) 244 [arXiv:1204.3583] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    B. Wojtsekhowski, D. Nikolenko and I. Rachek, Searching for a new force at VEPP-3, arXiv:1207.5089 [INSPIRE].
  36. [36]
    Y. Kahn and J. Thaler, Searching for an invisible Avector boson with DarkLight, Phys. Rev. D 86 (2012) 115012 [arXiv:1209.0777] [INSPIRE].ADSGoogle Scholar
  37. [37]
    J. Blümlein and J. Brunner, New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].ADSCrossRefGoogle Scholar
  38. [38]
    H. Merkel et al., Search at the Mainz Microtron for Light Massive Gauge Bosons Relevant for the Muon g-2 Anomaly, Phys. Rev. Lett. 112 (2014) 221802 [arXiv:1404.5502] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Battaglieri et al., The Heavy Photon Search Test Detector, Nucl. Instrum. Meth. A 777 (2015) 91 [arXiv:1406.6115] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    J. Balewski et al., The DarkLight Experiment: A Precision Search for New Physics at Low Energies, arXiv:1412.4717 [INSPIRE].
  41. [41]
    NA48/2 collaboration, J.R. Batley et al., Search for the dark photon in π 0 decays, Phys. Lett. B 746 (2015) 178 [arXiv:1504.00607] [INSPIRE].
  42. [42]
    SHiP collaboration, M. Anelli et al., A facility to Search for Hidden Particles (SHiP) at the CERN SPS, arXiv:1504.04956 [INSPIRE].
  43. [43]
    S. Alekhin et al., A facility to Search for Hidden Particles at the CERN SPS: the SHiP physics case, Rept. Prog. Phys. 79 (2016) 124201 [arXiv:1504.04855] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    S. Gardner, R.J. Holt and A.S. Tadepalli, New Prospects in Fixed Target Searches for Dark Forces with the SeaQuest Experiment at Fermilab, Phys. Rev. D 93 (2016) 115015 [arXiv:1509.00050] [INSPIRE].ADSGoogle Scholar
  45. [45]
    NA64 collaboration, D. Banerjee et al., Search for invisible decays of sub-GeV dark photons in missing-energy events at the CERN SPS, Phys. Rev. Lett. 118 (2017) 011802 [arXiv:1610.02988] [INSPIRE].
  46. [46]
    BaBar collaboration, B. Aubert et al., Search for Dimuon Decays of a Light Scalar Boson in Radiative Transitions Y → γA 0, Phys. Rev. Lett. 103 (2009) 081803 [arXiv:0905.4539] [INSPIRE].
  47. [47]
    Belle-II collaboration, T. Abe et al., Belle II Technical Design Report, arXiv:1011.0352 [INSPIRE].
  48. [48]
    KLOE-2 collaboration, F. Archilli et al., Search for a vector gauge boson in φ meson decays with the KLOE detector, Phys. Lett. B 706 (2012) 251 [arXiv:1110.0411] [INSPIRE].
  49. [49]
    KLOE-2 collaboration, D. Babusci et al., Limit on the production of a light vector gauge boson in phi meson decays with the KLOE detector, Phys. Lett. B 720 (2013) 111 [arXiv:1210.3927] [INSPIRE].
  50. [50]
    KLOE-2 collaboration, D. Babusci et al., Search for light vector boson production in e + e μ + μ γ interactions with the KLOE experiment, Phys. Lett. B 736 (2014) 459 [arXiv:1404.7772] [INSPIRE].
  51. [51]
    D. Curtin, R. Essig, S. Gori and J. Shelton, Illuminating Dark Photons with High-Energy Colliders, JHEP 02 (2015) 157 [arXiv:1412.0018] [INSPIRE].ADSCrossRefGoogle Scholar
  52. [52]
    S.N. Gninenko, N.V. Krasnikov and V.A. Matveev, Muon g-2 and searches for a new leptophobic sub-GeV dark boson in a missing-energy experiment at CERN, Phys. Rev. D 91 (2015) 095015 [arXiv:1412.1400] [INSPIRE].ADSGoogle Scholar
  53. [53]
    BaBar collaboration, J.P. Lees et al., Search for a Dark Photon in e + e Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].
  54. [54]
    P. Ilten, J. Thaler, M. Williams and W. Xue, Dark photons from charm mesons at LHCb, Phys. Rev. D 92 (2015) 115017 [arXiv:1509.06765] [INSPIRE].ADSGoogle Scholar
  55. [55]
    P. Ilten, Y. Soreq, J. Thaler, M. Williams and W. Xue, Proposed Inclusive Dark Photon Search at LHCb, Phys. Rev. Lett. 116 (2016) 251803 [arXiv:1603.08926] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    G. Inguglia, Belle II studies of missing energy decays and searches for dark photon production, PoS(DIS2016)263 [arXiv:1607.02089] [INSPIRE].
  57. [57]
    KLOE-2 collaboration, A. Anastasi et al., Limit on the production of a new vector boson in e+e → Uγ, U → π + π with the KLOE experiment, Phys. Lett. B 757 (2016) 356 [arXiv:1603.06086] [INSPIRE].
  58. [58]
    LHCb collaboration, Search for Dark Photons Produced in 13 TeV pp Collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].
  59. [59]
    BaBar collaboration, J.P. Lees et al., Search for Invisible Decays of a Dark Photon Produced in e + e Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].
  60. [60]
    SINDRUM collaboration, W.H. Bertl et al., Search for the Decay μ +e + e + e , Nucl. Phys. B 260 (1985) 1 [INSPIRE].
  61. [61]
    CLEO collaboration, M.S. Alam et al., Tau decays into three charged leptons and two neutrinos, Phys. Rev. Lett. 76 (1996) 2637 [INSPIRE].
  62. [62]
    R. Bouchendira, P. Clade, S. Guellati-Khelifa, F. Nez and F. Biraben, New determination of the fine structure constant and test of the quantum electrodynamics, Phys. Rev. Lett. 106 (2011) 080801 [arXiv:1012.3627] [INSPIRE].ADSCrossRefGoogle Scholar
  63. [63]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, Dark Side of Higgs Diphoton Decays and Muon g-2, Phys. Rev. D 86 (2012) 095009 [arXiv:1208.2973] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M. Endo, K. Hamaguchi and G. Mishima, Constraints on Hidden Photon Models from Electron g-2 and Hydrogen Spectroscopy, Phys. Rev. D 86 (2012) 095029 [arXiv:1209.2558] [INSPIRE].ADSGoogle Scholar
  65. [65]
    A. Blondel et al., Research Proposal for an Experiment to Search for the Decay μeee, arXiv:1301.6113 [INSPIRE].
  66. [66]
    B. Echenard, R. Essig and Y.-M. Zhong, Projections for Dark Photon Searches at Mu3e, JHEP 01 (2015) 113 [arXiv:1411.1770] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    G. Bellini et al., Precision measurement of the 7Be solar neutrino interaction rate in Borexino, Phys. Rev. Lett. 107 (2011) 141302 [arXiv:1104.1816] [INSPIRE].ADSCrossRefGoogle Scholar
  68. [68]
    R. Harnik, J. Kopp and P.A.N. Machado, Exploring nu Signals in Dark Matter Detectors, JCAP 07 (2012) 026 [arXiv:1202.6073] [INSPIRE].ADSCrossRefGoogle Scholar
  69. [69]
    CHARM-II collaboration, P. Vilain et al., Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].
  70. [70]
    CHARM-II collaboration, P. Vilain et al., Measurement of differential cross-sections for muon-neutrino electron scattering, Phys. Lett. B 302 (1993) 351 [INSPIRE].
  71. [71]
    COHERENT collaboration, D. Akimov et al., The COHERENT Experiment at the Spallation Neutron Source, arXiv:1509.08702 [INSPIRE].
  72. [72]
    COHERENT collaboration, D. Akimov et al., Observation of Coherent Elastic Neutrino-Nucleus Scattering, Science 357 (2017) 1123 [arXiv:1708.01294] [INSPIRE].
  73. [73]
    TEXONO collaboration, M. Deniz et al., Measurement of Nu(e)-bar -Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].
  74. [74]
    CHARM-II collaboration, D. Geiregat et al., First observation of neutrino trident production, Phys. Lett. B 245 (1990) 271 [INSPIRE].
  75. [75]
    CCFR collaboration, S.R. Mishra et al., Neutrino tridents and W Z interference, Phys. Rev. Lett. 66 (1991) 3117 [INSPIRE].
  76. [76]
    NuTeV collaboration, T. Adams et al., Neutrino trident production from NuTeV, in Proceedings of 29th International Conference on High-energy physics, ICHEP98, Vancouver Canada (1998), pg. 631 [hep-ex/9811012] [INSPIRE].
  77. [77]
    H.K. Dreiner, J.-F. Fortin, J. Isern and L. Ubaldi, White Dwarfs constrain Dark Forces, Phys. Rev. D 88 (2013) 043517 [arXiv:1303.7232] [INSPIRE].ADSGoogle Scholar
  78. [78]
    M. Pospelov, Secluded U(1) below the weak scale, Phys. Rev. D 80 (2009) 095002 [arXiv:0811.1030] [INSPIRE].ADSGoogle Scholar
  79. [79]
    E. Ma, D.P. Roy and S. Roy, Gauged L μL τ with large muon anomalous magnetic moment and the bimaximal mixing of neutrinos, Phys. Lett. B 525 (2002) 101 [hep-ph/0110146] [INSPIRE].
  80. [80]
    K. Harigaya, T. Igari, M.M. Nojiri, M. Takeuchi and K. Tobe, Muon g-2 and LHC phenomenology in the L μL τ gauge symmetric model, JHEP 03 (2014) 105 [arXiv:1311.0870] [INSPIRE].ADSCrossRefGoogle Scholar
  81. [81]
    T. Araki, F. Kaneko, Y. Konishi, T. Ota, J. Sato and T. Shimomura, Cosmic neutrino spectrum and the muon anomalous magnetic moment in the gauged L μL τ model, Phys. Rev. D 91 (2015) 037301 [arXiv:1409.4180] [INSPIRE].ADSGoogle Scholar
  82. [82]
    A. DiFranzo and D. Hooper, Searching for MeV-Scale Gauge Bosons with IceCube, Phys. Rev. D 92 (2015) 095007 [arXiv:1507.03015] [INSPIRE].ADSGoogle Scholar
  83. [83]
    A. Crivellin, G. D’Ambrosio and J. Heeck, Addressing the LHC flavor anomalies with horizontal gauge symmetries, Phys. Rev. D 91 (2015) 075006 [arXiv:1503.03477] [INSPIRE].ADSGoogle Scholar
  84. [84]
    W. Altmannshofer, S. Gori, S. Profumo and F.S. Queiroz, Explaining dark matter and B decay anomalies with an L μL τ model, JHEP 12 (2016) 106 [arXiv:1609.04026] [INSPIRE].ADSCrossRefGoogle Scholar
  85. [85]
    N. Arkani-Hamed, D.P. Finkbeiner, T.R. Slatyer and N. Weiner, A Theory of Dark Matter, Phys. Rev. D 79 (2009) 015014 [arXiv:0810.0713] [INSPIRE].ADSGoogle Scholar
  86. [86]
    M. Cicoli, M. Goodsell, J. Jaeckel and A. Ringwald, Testing String Vacua in the Lab: From a Hidden CMB to Dark Forces in Flux Compactifications, JHEP 07 (2011) 114 [arXiv:1103.3705] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  87. [87]
    C.P. Burgess, J.P. Conlon, L.-Y. Hung, C.H. Kom, A. Maharana and F. Quevedo, Continuous Global Symmetries and Hyperweak Interactions in String Compactifications, JHEP 07 (2008) 073 [arXiv:0805.4037] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  88. [88]
    F. Brummer, J. Jaeckel and V.V. Khoze, Magnetic Mixing: Electric Minicharges from Magnetic Monopoles, JHEP 06 (2009) 037 [arXiv:0905.0633] [INSPIRE].ADSCrossRefGoogle Scholar
  89. [89]
    J. Fleischer, The on-shell renormalization scheme in the GWS model, Acta Phys. Polon. B 17 (1986) 897 [INSPIRE].Google Scholar
  90. [90]
    T. Araki, J. Heeck and J. Kubo, Vanishing Minors in the Neutrino Mass Matrix from Abelian Gauge Symmetries, JHEP 07 (2012) 083 [arXiv:1203.4951] [INSPIRE].ADSCrossRefGoogle Scholar
  91. [91]
    V.V. Ezhela, S.B. Lugovsky and O.V. Zenin, Hadronic part of the muon g-2 estimated on the sigma**2003 (tot)(e + e hadrons) evaluated data compilation, hep-ph/0312114 [INSPIRE].
  92. [92]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  93. [93]
    L.W. Mo and Y.-S. Tsai, Radiative Corrections to Elastic and Inelastic e p and mu p Scattering, Rev. Mod. Phys. 41 (1969) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  94. [94]
    S. Andreas, Light Weakly Interacting Particles: Constraints and Connection to Dark Matter, Ph.D. Thesis, Universität Hamburg, Hamburg Germany (2013), DESY-THESIS-2013-02, http://www-library.desy.de/preparch/desy/thesis/desy-thesis-13-024.pdf.
  95. [95]
    J.L. Feng, I. Galon, F. Kling and S. Trojanowski, ForwArd Search ExpeRiment at the LHC, Phys. Rev. D 97 (2018) 035001 [arXiv:1708.09389] [INSPIRE].ADSGoogle Scholar
  96. [96]
    J.P. Chou, D. Curtin and H.J. Lubatti, New Detectors to Explore the Lifetime Frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].ADSCrossRefGoogle Scholar
  97. [97]
    J.A. Evans, Detecting Hidden Particles with MATHUSLA, Phys. Rev. D 97 (2018) 055046 [arXiv:1708.08503] [INSPIRE].ADSGoogle Scholar
  98. [98]
    V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb, Phys. Rev. D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].ADSGoogle Scholar
  99. [99]
    J.R. Cudell et al., Hadronic scattering amplitudes: Medium-energy constraints on asymptotic behavior, Phys. Rev. D 65 (2002) 074024 [hep-ph/0107219] [INSPIRE].
  100. [100]
    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].
  101. [101]
    French-Soviet collaboration, V.V. Ammosov et al., π ± Meson and Proton Production in Inclusive and Semiinclusive Processes in p p Interactions at 69-GeV/c. 2., Nuovo Cim. A 40 (1977) 237 [INSPIRE].
  102. [102]
    M. Aguilar-Benitez et al., Inclusive particle production in 400-GeV/c pp interactions, Z. Phys. C 50 (1991) 405 [INSPIRE].Google Scholar
  103. [103]
    A. Anastasi et al., Limit on the production of a low-mass vector boson in e+e → Uγ, U → e+e with the KLOE experiment,Phys. Lett. B 750(2015) 633 [arXiv:1509.00740] [INSPIRE].ADSCrossRefGoogle Scholar
  104. [104]
    R. Essig, P. Schuster and N. Toro, Probing Dark Forces and Light Hidden Sectors at Low-Energy e + e Colliders, Phys. Rev. D 80 (2009) 015003 [arXiv:0903.3941] [INSPIRE].ADSGoogle Scholar
  105. [105]
    T. Ferber, B2TIP, to be submitted to PTEP (2018).Google Scholar
  106. [106]
    J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].ADSCrossRefGoogle Scholar
  107. [107]
    M.A. Arroyo-Ureña, E. Díaz, O. Meza-Aldama and G. Tavares-Velasco, \( {\tau}^{-}\to {\ell}_i^{-}{\ell}_i^{+}{\ell}_j^{-}{\overline{\nu}}_j{\nu}_{\tau } \) decays with a magnetic dipole term, Int. J. Mod. Phys. A 32 (2017) 1750195 [arXiv:1711.01393] [INSPIRE].
  108. [108]
    B. Van de Vyver and P. Zucchelli, Prompt tau-neutrino background in wide band muon-neutrino beams, Nucl. Instrum. Meth. A 385 (1997) 91 [INSPIRE].ADSCrossRefGoogle Scholar
  109. [109]
    CCFR/NuTeV collaboration, A. Romosan et al., A High statistics search for muon-neutrino (anti-muon-neutrino)electron-neutrino (anti-electron-neutrino) oscillations in the small mixing angle regime, Phys. Rev. Lett. 78 (1997) 2912 [hep-ex/9611013] [INSPIRE].
  110. [110]
    S.-F. Ge, M. Lindner and W. Rodejohann, Atmospheric Trident Production for Probing New Physics, Phys. Lett. B 772 (2017) 164 [arXiv:1702.02617] [INSPIRE].ADSCrossRefGoogle Scholar
  111. [111]
    H. Nunokawa, S.J. Parke and R. Zukanovich Funchal, What fraction of boron-8 solar neutrinos arrive at the earth as a nu(2) mass eigenstate?, Phys. Rev. D 74 (2006) 013006 [hep-ph/0601198] [INSPIRE].
  112. [112]
    M. Lindner, F.S. Queiroz, W. Rodejohann and X.-J. Xu, Neutrino-electron scattering: general constraints on Zand dark photon models, JHEP 05 (2018) 098 [arXiv:1803.00060] [INSPIRE].ADSCrossRefGoogle Scholar
  113. [113]
    M. Abdullah, J.B. Dent, B. Dutta, G.L. Kane, S. Liao and L.E. Strigari, Coherent Elastic Neutrino Nucleus Scattering (CEνNS) as a probe of Zthrough kinetic and mass mixing effects, Phys. Rev. D 98 (2018) 015005 [arXiv:1803.01224] [INSPIRE].Google Scholar
  114. [114]
    Super-Kamiokande collaboration, G. Mitsuka et al., Study of Non-Standard Neutrino Interactions with Atmospheric Neutrino Data in Super-Kamiokande I and II, Phys. Rev. D 84 (2011) 113008 [arXiv:1109.1889] [INSPIRE].
  115. [115]
    T. Ohlsson, Status of non-standard neutrino interactions, Rept. Prog. Phys. 76 (2013) 044201 [arXiv:1209.2710] [INSPIRE].ADSCrossRefGoogle Scholar
  116. [116]
    M.C. Gonzalez-Garcia and M. Maltoni, Determination of matter potential from global analysis of neutrino oscillation data, JHEP 09 (2013) 152 [arXiv:1307.3092] [INSPIRE].ADSCrossRefGoogle Scholar
  117. [117]
    S. Roy, etheses.dur.ac.uk/6386/.Google Scholar
  118. [118]
    E. Rrapaj and S. Reddy, Nucleon-nucleon bremsstrahlung of dark gauge bosons and revised supernova constraints, Phys. Rev. C 94 (2016) 045805 [arXiv:1511.09136] [INSPIRE].ADSGoogle Scholar
  119. [119]
    J.H. Chang, R. Essig and S.D. McDermott, Revisiting Supernova 1987A Constraints on Dark Photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].ADSMATHGoogle Scholar
  120. [120]
    E. Hardy and R. Lasenby, Stellar cooling bounds on new light particles: plasma mixing effects, JHEP 02 (2017) 033 [arXiv:1611.05852] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  121. [121]
    C. Mahoney, A.K. Leibovich and A.R. Zentner, Updated Constraints on Self-Interacting Dark Matter from Supernova 1987A, Phys. Rev. D 96 (2017) 043018 [arXiv:1706.08871] [INSPIRE].ADSGoogle Scholar
  122. [122]
    S. Knapen, T. Lin and K.M. Zurek, Light Dark Matter: Models and Constraints, Phys. Rev. D 96 (2017) 115021 [arXiv:1709.07882] [INSPIRE].ADSGoogle Scholar
  123. [123]
    V. Popov, On the experimental search for photon mixing, Turk. J. Phys. 23 (1999) 943.Google Scholar
  124. [124]
    J. Redondo, Helioscope Bounds on Hidden Sector Photons, JCAP 07 (2008) 008 [arXiv:0801.1527] [INSPIRE].ADSCrossRefGoogle Scholar
  125. [125]
    H. An, M. Pospelov and J. Pradler, New stellar constraints on dark photons, Phys. Lett. B 725 (2013) 190 [arXiv:1302.3884] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  126. [126]
    J. Redondo and G. Raffelt, Solar constraints on hidden photons re-visited, JCAP 08 (2013) 034 [arXiv:1305.2920] [INSPIRE].ADSCrossRefGoogle Scholar
  127. [127]
    A. Fradette, M. Pospelov, J. Pradler and A. Ritz, Cosmological Constraints on Very Dark Photons, Phys. Rev. D 90 (2014) 035022 [arXiv:1407.0993] [INSPIRE].ADSGoogle Scholar
  128. [128]
    W. Altmannshofer, C.-Y. Chen, P.S. Bhupal Dev and A. Soni, Lepton flavor violating Zexplanation of the muon anomalous magnetic moment, Phys. Lett. B 762 (2016) 389 [arXiv:1607.06832] [INSPIRE].ADSCrossRefGoogle Scholar
  129. [129]
    P. Foldenauer and J. Jaeckel, Purely flavor-changing Zbosons and where they might hide, JHEP 05 (2017) 010 [arXiv:1612.07789] [INSPIRE].ADSCrossRefGoogle Scholar
  130. [130]
    A.-K. Perrevoort and A. Schöning, private communication.Google Scholar
  131. [131]
    S. Gopalakrishna, S. Jung and J.D. Wells, Higgs boson decays to four fermions through an abelian hidden sector, Phys. Rev. D 78 (2008) 055002 [arXiv:0801.3456] [INSPIRE].ADSGoogle Scholar
  132. [132]
    H. Davoudiasl, H.-S. Lee and W.J. Marciano, ’DarkZ implications for Parity Violation, Rare Meson Decays and Higgs Physics, Phys. Rev. D 85 (2012) 115019 [arXiv:1203.2947] [INSPIRE].
  133. [133]
    Wolfram Research, Inc., Mathematica, Versions 11.1 & 11.2, Champaign U.S.A. (2017).Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Martin Bauer
    • 1
  • Patrick Foldenauer
    • 1
  • Joerg Jaeckel
    • 1
  1. 1.Institut für Theoretische PhysikUniversität HeidelbergHeidelbergGermany

Personalised recommendations