De Sitter holography and entanglement entropy

  • Xi DongEmail author
  • Eva Silverstein
  • Gonzalo Torroba
Open Access
Regular Article - Theoretical Physics


We propose a new example of entanglement knitting spacetime together, satisfying a series of checks of the corresponding von Neumann and Renyi entropies. The conjectured dual of de Sitter in d + 1 dimensions involves two coupled CFT sectors constrained by residual d-dimensional gravity. In the d = 2 case, the gravitational constraints and the CFT spectrum are relatively tractable. We identify a finite portion of each CFT Hilbert space relevant for de Sitter. Its maximum energy level coincides with the transition to the universal Cardy behavior for theories with a large central charge and a sparse light spectrum, derived by Hartman, Keller, and Stoica. Significant interactions between the two CFTs, derived previously for other reasons, suggest a maximally mixed state upon tracing out one of the two sectors; we derive this by determining the holographic Renyi entropies. The resulting entanglement entropy matches the Gibbons-Hawking formula for de Sitter entropy, including the numerical coefficient. Finally, we interpret the Gibbons-Hawking horizon entropy in terms of the Ryu-Takayanagi entropy, and explore the time evolution of the entanglement entropy.


Gauge-gravity correspondence AdS-CFT Correspondence Conformal Field Theory Black Holes 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    X. Dong, Holographic Entanglement Entropy for General Higher Derivative Gravity, JHEP 01 (2014) 044 [arXiv:1310.5713] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    J. Camps, Generalized entropy and higher derivative Gravity, JHEP 03 (2014) 070 [arXiv:1310.6659] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    J.M. Maldacena, Eternal black holes in anti-de Sitter, JHEP 04 (2003) 021 [hep-th/0106112] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    M. Van Raamsdonk, Comments on quantum gravity and entanglement, arXiv:0907.2939 [INSPIRE].
  7. [7]
    J. Maldacena and L. Susskind, Cool horizons for entangled black holes, Fortsch. Phys. 61 (2013) 781 [arXiv:1306.0533] [INSPIRE].
  8. [8]
    S.H. Shenker and D. Stanford, Multiple Shocks, JHEP 12 (2014) 046 [arXiv:1312.3296] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  9. [9]
    P. Gao, D.L. Jafferis and A. Wall, Traversable Wormholes via a Double Trace Deformation, JHEP 12 (2017) 151 [arXiv:1608.05687] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J. Maldacena, D. Stanford and Z. Yang, Diving into traversable wormholes, Fortsch. Phys. 65 (2017) 1700034 [arXiv:1704.05333] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  11. [11]
    J. Maldacena and X.-L. Qi, Eternal traversable wormhole, arXiv:1804.00491 [INSPIRE].
  12. [12]
    V. Balasubramanian, M.B. McDermott and M. Van Raamsdonk, Momentum-space entanglement and renormalization in quantum field theory, Phys. Rev. D 86 (2012) 045014 [arXiv:1108.3568] [INSPIRE].ADSGoogle Scholar
  13. [13]
    A. Mollabashi, N. Shiba and T. Takayanagi, Entanglement between Two Interacting CFTs and Generalized Holographic Entanglement Entropy, JHEP 04 (2014) 185 [arXiv:1403.1393] [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    M.R. Mohammadi Mozaffar and A. Mollabashi, On the Entanglement Between Interacting Scalar Field Theories, JHEP 03 (2016) 015 [arXiv:1509.03829] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M.R. Mohammadi Mozaffar and A. Mollabashi, Entanglement in Lifshitz-type Quantum Field Theories, JHEP 07 (2017) 120 [arXiv:1705.00483] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    A. Karch and C.F. Uhlemann, Holographic entanglement entropy and the internal space, Phys. Rev. D 91 (2015) 086005 [arXiv:1501.00003] [INSPIRE].ADSGoogle Scholar
  17. [17]
    G.W. Gibbons and S.W. Hawking, Cosmological Event Horizons, Thermodynamics and Particle Creation, Phys. Rev. D 15 (1977) 2738 [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Micromanaging de Sitter holography, Class. Quant. Grav. 27 (2010) 245020 [arXiv:1005.5403] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    D. Anninos, T. Hartman and A. Strominger, Higher Spin Realization of the dS/CFT Correspondence, Class. Quant. Grav. 34 (2017) 015009 [arXiv:1108.5735] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    M. Alishahiha, A. Karch and E. Silverstein, Hologravity, JHEP 06 (2005) 028 [hep-th/0504056] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    M. Alishahiha, A. Karch, E. Silverstein and D. Tong, The dS/dS correspondence, AIP Conf. Proc. 743 (2005) 393 [hep-th/0407125] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    X. Dong, B. Horn, S. Matsuura, E. Silverstein and G. Torroba, FRW solutions and holography from uplifted AdS/CFT, Phys. Rev. D 85 (2012) 104035 [arXiv:1108.5732] [INSPIRE].ADSGoogle Scholar
  24. [24]
    B. Freivogel, Y. Sekino, L. Susskind and C.-P. Yeh, A holographic framework for eternal inflation, Phys. Rev. D 74 (2006) 086003 [hep-th/0606204] [INSPIRE].ADSMathSciNetGoogle Scholar
  25. [25]
    E. Silverstein, TASI lectures on cosmological observables and string theory, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015): Boulder, CO, U.S.A., June 1–26, 2015, pp. 545–606, 2017, arXiv:1606.03640 [INSPIRE].
  26. [26]
    D. Anninos, de Sitter Musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].
  27. [27]
    L. Randall and R. Sundrum, An alternative to compactification, Phys. Rev. Lett. 83 (1999) 4690 [hep-th/9906064] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    X. Dong, B. Horn, E. Silverstein and G. Torroba, Moduli Stabilization and the Holographic RG for AdS and dS, JHEP 06 (2013) 089 [arXiv:1209.5392] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  29. [29]
    D. Harlow and D. Stanford, Operator Dictionaries and Wave Functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].
  30. [30]
    J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].
  31. [31]
    A.B. Zamolodchikov, Expectation value of composite field \( T\overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
  32. [32]
    S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS 2 holography and \( T\overline{T} \), JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  33. [33]
    W. Cottrell and A. Hashimoto, Comments on \( T\overline{T} \) double trace deformations and boundary conditions, arXiv:1801.09708 [INSPIRE].
  34. [34]
    J. Cardy, The \( T\overline{T} \) deformation of quantum field theory as a stochastic process, arXiv:1801.06895 [INSPIRE].
  35. [35]
    P. Kraus, J. Liu and D. Marolf, Cutoff AdS 3 versus the \( T\overline{T} \) deformation, arXiv:1801.02714 [INSPIRE].
  36. [36]
    L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with \( T\overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].
  37. [37]
    S. Dimopoulos, S. Kachru, N. Kaloper, A.E. Lawrence and E. Silverstein, Generating small numbers by tunneling in multithroat compactifications, Int. J. Mod. Phys. A 19 (2004) 2657 [hep-th/0106128] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  38. [38]
    S. Dimopoulos, S. Kachru, N. Kaloper, A.E. Lawrence and E. Silverstein, Small numbers from tunneling between brane throats, Phys. Rev. D 64 (2001) 121702 [hep-th/0104239] [INSPIRE].ADSMathSciNetGoogle Scholar
  39. [39]
    T. Hartman, C.A. Keller and B. Stoica, Universal Spectrum of 2d Conformal Field Theory in the Large c Limit, JHEP 09 (2014) 118 [arXiv:1405.5137] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    C.A. Keller and A. Maloney, Poincaré Series, 3D Gravity and CFT Spectroscopy, JHEP 02 (2015) 080 [arXiv:1407.6008] [INSPIRE].
  41. [41]
    S. Hellerman, A Universal Inequality for CFT and Quantum Gravity, JHEP 08 (2011) 130 [arXiv:0902.2790] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  42. [42]
    N. Benjamin, M.C.N. Cheng, S. Kachru, G.W. Moore and N.M. Paquette, Elliptic Genera and 3d Gravity, Annales Henri Poincaré 17 (2016) 2623 [arXiv:1503.04800] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    T. Banks, Cosmological breaking of supersymmetry?, Int. J. Mod. Phys. A 16 (2001) 910 [hep-th/0007146] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    R. Bousso, Positive vacuum energy and the N bound, JHEP 11 (2000) 038 [hep-th/0010252] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  45. [45]
    K. Narayan, On extremal surfaces and de Sitter entropy, Phys. Lett. B 779 (2018) 214 [arXiv:1711.01107] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  46. [46]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    X. Dong, The Gravity Dual of Renyi Entropy, Nature Commun. 7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    Y. Nomura, P. Rath and N. Salzetta, Spacetime from Unentanglement, Phys. Rev. D 97 (2018) 106010 [arXiv:1711.05263] [INSPIRE].
  49. [49]
    L. Susskind and E. Witten, The holographic bound in anti-de Sitter space, hep-th/9805114 [INSPIRE].
  50. [50]
    M. Miyaji and T. Takayanagi, Surface/State Correspondence as a Generalized Holography, PTEP 2015 (2015) 073B03 [arXiv:1503.03542] [INSPIRE].
  51. [51]
    Y. Sato, Comments on Entanglement Entropy in the dS/CFT Correspondence, Phys. Rev. D 91 (2015) 086009 [arXiv:1501.04903] [INSPIRE].
  52. [52]
    K. Narayan, Extremal surfaces in de Sitter spacetime, Phys. Rev. D 91 (2015) 126011 [arXiv:1501.03019] [INSPIRE].ADSMathSciNetGoogle Scholar
  53. [53]
    S. Fischetti and D. Marolf, Complex Entangling Surfaces for AdS and Lifshitz Black Holes?, Class. Quant. Grav. 31 (2014) 214005 [arXiv:1407.2900] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  55. [55]
    M. Headrick, Entanglement Renyi entropies in holographic theories, Phys. Rev. D 82 (2010) 126010 [arXiv:1006.0047] [INSPIRE].ADSGoogle Scholar
  56. [56]
    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  58. [58]
    A. Almheiri, X. Dong and D. Harlow, Bulk Locality and Quantum Error Correction in AdS/CFT, JHEP 04 (2015) 163 [arXiv:1411.7041] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  59. [59]
    X. Dong, D. Harlow and D. Marolf, to appear.Google Scholar
  60. [60]
    R. Bousso, A covariant entropy conjecture, JHEP 07 (1999) 004 [hep-th/9905177] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    J. Polchinski, A Two-Dimensional Model for Quantum Gravity, Nucl. Phys. B 324 (1989) 123 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  62. [62]
    A.R. Cooper, L. Susskind and L. Thorlacius, Two-dimensional quantum cosmology, Nucl. Phys. B 363 (1991) 132 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  63. [63]
    B. Carneiro da Cunha and E.J. Martinec, Closed string tachyon condensation and world sheet inflation, Phys. Rev. D 68 (2003) 063502 [hep-th/0303087] [INSPIRE].ADSGoogle Scholar
  64. [64]
    M. Dodelson, E. Silverstein and G. Torroba, Varying dilaton as a tracer of classical string interactions, Phys. Rev. D 96 (2017) 066011 [arXiv:1704.02625] [INSPIRE].ADSGoogle Scholar
  65. [65]
    M.M. Wolf, F. Verstraete, M.B. Hastings and J.I. Cirac, Area Laws in Quantum Systems: Mutual Information and Correlations, Phys. Rev. Lett. 100 (2008) 070502 [arXiv:0704.3906] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  66. [66]
    I.R. Klebanov, D. Kutasov and A. Murugan, Entanglement as a probe of confinement, Nucl. Phys. B 796 (2008) 274 [arXiv:0709.2140] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Department of PhysicsUniversity of CaliforniaSanta BarbaraU.S.A.
  2. 2.Stanford Institute for Theoretical PhysicsStanford UniversityStanfordU.S.A.
  3. 3.Centro Atómico Bariloche and CONICETBarilocheArgentina

Personalised recommendations