Holographic p-wave superconductor with disorder

  • D. Areán
  • A. Farahi
  • L. A. Pando Zayas
  • I. Salazar Landea
  • A. Scardicchio
Open Access
Regular Article - Theoretical Physics


We implement the effects of disorder on a holographic p-wave superconductor by introducing a random chemical potential which defines the local energy of the charge carriers. Since there are various possibilities for the orientation of the vector order parameter, we explore the behavior of the condensate in the parallel and perpendicular directions to the introduced disorder. We clarify the nature of various branches representing competing solutions and construct the disordered phase diagram. We find that moderate disorder enhances superconductivity as determined by the value of the condensate. Though we mostly focus on uncorrelated noise, we also consider a disorder characterized by its spectral properties and study in detail its influence on the spectral properties of the condensate and charge density. We find fairly universal responses of the resulting power spectra characterized by linear functions of the disorder power spectrum.


AdS-CFT Correspondence Holography and condensed matter physics (AdS/CMT) 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  4. [4]
    O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav. 26 (2009) 224002 [arXiv:0903.3246] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    C.P. Herzog, Lectures on Holographic Superfluidity and Superconductivity, J. Phys. A 42 (2009) 343001 [arXiv:0904.1975] [INSPIRE].MathSciNetzbMATHGoogle Scholar
  7. [7]
    J. McGreevy, Holographic duality with a view toward many-body physics, Adv. High Energy Phys. 2010 (2010) 723105 [arXiv:0909.0518] [INSPIRE].CrossRefzbMATHGoogle Scholar
  8. [8]
    S. Sachdev, Condensed Matter and AdS/CFT, Lect. Notes Phys. 828 (2011) 273 [arXiv:1002.2947] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic Superconductors, JHEP 12 (2008) 015 [arXiv:0810.1563] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S.S. Gubser, Colorful horizons with charge in anti-de Sitter space, Phys. Rev. Lett. 101 (2008) 191601 [arXiv:0803.3483] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP 11 (2008) 033 [arXiv:0805.2960] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    P.W. Anderson, Absence of Diffusion in Certain Random Lattices, Phys. Rev. 109 (1958) 1492 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    D. Basko, I. Aleiner and B. Altshuler, Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states, Ann. Phys. 321 (2006) 1126 [cond-mat/0506617].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    V. Oganesyan and D.A. Huse, Localization of interacting fermions at high temperature, Phys. Rev. B 75 (2007) 155111 [cond-mat/0610854].ADSCrossRefGoogle Scholar
  16. [16]
    A. Pal and D.A. Huse, Many-body localization phase transition, Phys. Rev. B 82 (2010) 174411 [arXiv:1010.1992].ADSCrossRefGoogle Scholar
  17. [17]
    F. Buccheri, A. De Luca and A. Scardicchio, Structure of typical states of a disordered richardson model and many-body localization, Phys. Rev. B 84 (2011) 094203 [arXiv:1103.3431].ADSCrossRefGoogle Scholar
  18. [18]
    A.D. Luca and A. Scardicchio, Ergodicity breaking in a model showing many-body localization, Europhys. Lett. 101 (2013) 37003 [arXiv:1206.2342].ADSCrossRefGoogle Scholar
  19. [19]
    P. Anderson, Theory of dirty superconductors, J. Phys. Chem. Solids 11 (1959) 26.ADSCrossRefzbMATHGoogle Scholar
  20. [20]
    S. Maekawa and H. Fukuyama, Localization effects in two-dimensional superconductors, J. Phys. Soc. Jpn. 51 (1982) 1380.ADSCrossRefGoogle Scholar
  21. [21]
    A. Kapitulnik and G. Kotliar, Anderson localization and the theory of dirty superconductors, Phys. Rev. Lett. 54 (1985) 473.ADSCrossRefGoogle Scholar
  22. [22]
    G. Kotliar and A. Kapitulnik, Anderson localization and the theory of dirty superconductors. II, Phys. Rev. B 33 (1986) 3146.ADSCrossRefGoogle Scholar
  23. [23]
    M. Ma and P.A. Lee, Localized superconductors, Phys. Rev. B 32 (1985) 5658.ADSCrossRefGoogle Scholar
  24. [24]
    D. Arean, A. Farahi, L.A. Pando Zayas, I.S. Landea and A. Scardicchio, Holographic superconductor with disorder, Phys. Rev. D 89 (2014) 106003 [arXiv:1308.1920] [INSPIRE].ADSGoogle Scholar
  25. [25]
    S.A. Hartnoll, P.K. Kovtun, M. Muller and S. Sachdev, Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev. B 76 (2007) 144502 [arXiv:0706.3215] [INSPIRE].ADSCrossRefGoogle Scholar
  26. [26]
    S.A. Hartnoll and C.P. Herzog, Impure AdS/CFT correspondence, Phys. Rev. D 77 (2008) 106009 [arXiv:0801.1693] [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    M. Fujita, Y. Hikida, S. Ryu and T. Takayanagi, Disordered Systems and the Replica Method in AdS/CFT, JHEP 12 (2008) 065 [arXiv:0810.5394] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    S. Ryu, T. Takayanagi and T. Ugajin, Holographic Conductivity in Disordered Systems, JHEP 04 (2011) 115 [arXiv:1103.6068] [INSPIRE].ADSCrossRefGoogle Scholar
  29. [29]
    A. Adams and S. Yaida, Disordered Holographic Systems I: Functional Renormalization, arXiv:1102.2892 [INSPIRE].
  30. [30]
    A. Adams and S. Yaida, Disordered holographic systems: Marginal relevance of imperfection, Phys. Rev. D 90 (2014) 046007 [arXiv:1201.6366] [INSPIRE].ADSGoogle Scholar
  31. [31]
    O. Saremi, Disorder in Gauge/Gravity Duality, Pole Spectrum Statistics and Random Matrix Theory, Class. Quant. Grav. 31 (2014) 095014 [arXiv:1206.1856] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  32. [32]
    H.B. Zeng, Possible Anderson localization in a holographic superconductor, Phys. Rev. D 88 (2013) 126004 [arXiv:1310.5753] [INSPIRE].ADSGoogle Scholar
  33. [33]
    S.A. Hartnoll and J.E. Santos, Disordered horizons: Holography of randomly disordered fixed points, Phys. Rev. Lett. 112 (2014) 231601 [arXiv:1402.0872] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    A. Lucas, S. Sachdev and K. Schalm, Scale-invariant hyperscaling-violating holographic theories and the resistivity of strange metals with random-field disorder, Phys. Rev. D 89 (2014) 066018 [arXiv:1401.7993] [INSPIRE].ADSGoogle Scholar
  35. [35]
    S.A. Hartnoll and D.M. Hofman, Locally Critical Resistivities from Umklapp Scattering, Phys. Rev. Lett. 108 (2012) 241601 [arXiv:1201.3917] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    J. Sonner, On universality of charge transport in AdS/CFT, JHEP 07 (2013) 145 [arXiv:1304.7774] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    C.P. Herzog, K.-W. Huang and R. Vaz, Linear Resistivity from Non-Abelian Black Holes, JHEP 11 (2014) 066 [arXiv:1405.3714] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    D. Vegh, Holography without translational symmetry, arXiv:1301.0537 [INSPIRE].
  39. [39]
    M. Blake, D. Tong and D. Vegh, Holographic Lattices Give the Graviton an Effective Mass, Phys. Rev. Lett. 112 (2014) 071602 [arXiv:1310.3832] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Thermo-electric transport in gauge/gravity models with momentum dissipation, JHEP 09 (2014) 160 [arXiv:1406.4134] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    A. Amoretti, A. Braggio, N. Maggiore, N. Magnoli and D. Musso, Analytic dc thermoelectric conductivities in holography with massive gravitons, Phys. Rev. D 91 (2015) 025002 [arXiv:1407.0306] [INSPIRE].ADSGoogle Scholar
  42. [42]
    I. Amado et al., Holographic Type II Goldstone bosons, JHEP 07 (2013) 108 [arXiv:1302.5641] [INSPIRE].ADSCrossRefGoogle Scholar
  43. [43]
    I. Amado et al., Holographic Superfluids and the Landau Criterion, JHEP 02 (2014) 063 [arXiv:1307.8100] [INSPIRE].ADSCrossRefGoogle Scholar
  44. [44]
    I. Amado, D. Arean, A. Jimenez-Alba, L. Melgar and I. Salazar Landea, Holographic s + p Superconductors, Phys. Rev. D 89 (2014) 026009 [arXiv:1309.5086] [INSPIRE].ADSGoogle Scholar
  45. [45]
    P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped Holographic Superconductors, Phys. Lett. B 689 (2010) 45 [arXiv:0911.4999] [INSPIRE].ADSCrossRefGoogle Scholar
  46. [46]
    M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On Holographic p-wave Superfluids with Back-reaction, Phys. Lett. B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE].ADSCrossRefGoogle Scholar
  47. [47]
    S. Gangopadhyay and D. Roychowdhury, Analytic study of properties of holographic p-wave superconductors, JHEP 08 (2012) 104 [arXiv:1207.5605] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    D. Roychowdhury, Holographic droplets in p-wave insulator/superconductor transition, JHEP 05 (2013) 162 [arXiv:1304.6171] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  49. [49]
    R.E. Arias and I.S. Landea, Backreacting p-wave Superconductors, JHEP 01 (2013) 157 [arXiv:1210.6823] [INSPIRE].ADSCrossRefGoogle Scholar
  50. [50]
    B.I. Halperin, Dynamic properties of the multicomponent bose fluid, Phys. Rev. B 11 (1975) 178.ADSCrossRefGoogle Scholar
  51. [51]
    P. Phillips, Advanced solid state physics, Cambridge University Press, Cambridge New York, (2012).CrossRefzbMATHGoogle Scholar
  52. [52]
    E. Orlandini, M.C. Tesi and S.G. Whittington, Self-averaging in the statistical mechanics of some lattice models, J. Phys. A 35 (2002) 4219.ADSMathSciNetzbMATHGoogle Scholar
  53. [53]
    K. Binder and A.P. Young, Spin glasses: Experimental facts, theoretical concepts and open questions, Rev. Mod. Phys. 58 (1986) 801 [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    P. Basu, A. Mukherjee and H.-H. Shieh, Supercurrent: Vector Hair for an AdS Black Hole, Phys. Rev. D 79 (2009) 045010 [arXiv:0809.4494] [INSPIRE].ADSGoogle Scholar
  55. [55]
    J. Erdmenger, X.-H. Ge and D.-W. Pang, Striped phases in the holographic insulator/superconductor transition, JHEP 11 (2013) 027 [arXiv:1307.4609] [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    D. Arean et al., The Holographic Disorder-Driven Supeconductor-Metal Transition, in preparation.Google Scholar
  57. [57]
    L. Dang, M. Boninsegni and L. Pollet, Disorder-induced superfluidity, Phys. Rev. B 79 (2009) 214529 [arXiv:0812.3417].ADSCrossRefGoogle Scholar
  58. [58]
    A. Niederberger, J. Wehr, M. Lewenstein and K. Sacha, Disorder-induced phase control in superfluid fermi-bose mixtures, Europhys. Lett. 86 (2009) 26004 [arXiv:0808.0259].ADSCrossRefGoogle Scholar
  59. [59]
    L.A. Pando Zayas and D. Reichmann, A Holographic Chiral px + ipy Superconductor, Phys. Rev. D 85 (2012) 106012 [arXiv:1108.4022] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • D. Areán
    • 1
  • A. Farahi
    • 2
  • L. A. Pando Zayas
    • 2
  • I. Salazar Landea
    • 3
    • 4
  • A. Scardicchio
    • 4
    • 5
    • 6
    • 7
    • 8
  1. 1.Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)MunichGermany
  2. 2.Michigan Center for Theoretical Physics, Randall Laboratory of PhysicsUniversity of MichiganAnn ArborUnited States
  3. 3.Instituto de Física La Plata (IFLP) and Departamento de FísicaUniversidad Nacional de La PlataLa PlataArgentina
  4. 4.International Centre for Theoretical Physics (ICTP)TriesteItaly
  5. 5.Physics DepartmentPrinceton UniversityPrincetonUnited States
  6. 6.Physics DepartmentColumbia UniversityNew YorkUnited States
  7. 7.ITS, Graduate CenterCity University of New YorkNew YorkUnited States
  8. 8.INFN, Sezione di TriesteTriesteItaly

Personalised recommendations