The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations

  • J. Alwall
  • R. Frederix
  • S. Frixione
  • V. Hirschi
  • F. Maltoni
  • O. Mattelaer
  • H.-S. Shao
  • T. Stelzer
  • P. Torrielli
  • M. Zaro
Open Access
Article

Abstract

We discuss the theoretical bases that underpin the automation of the computations of tree-level and next-to-leading order cross sections, of their matching to parton shower simulations, and of the merging of matched samples that differ by light-parton multiplicities. We present a computer program, MadGraph5 aMC@NLO, capable of handling all these computations — parton-level fixed order, shower-matched, merged — in a unified framework whose defining features are flexibility, high level of parallelisation, and human intervention limited to input physics quantities. We demonstrate the potential of the program by presenting selected phenomenological applications relevant to the LHC and to a 1-TeV e + e collider. While next-to-leading order results are restricted to QCD corrections to SM processes in the first public version, we show that from the user viewpoint no changes have to be expected in the case of corrections due to any given renormalisable Lagrangian, and that the implementation of these are well under way.

Keywords

Monte Carlo Simulations NLO Computations 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    D.J. Gross and F. Wilczek, Ultraviolet behavior of non-Abelian gauge theories, Phys. Rev. Lett. 30 (1973) 1343 [INSPIRE].ADSGoogle Scholar
  2. [2]
    H.D. Politzer, Reliable perturbative results for strong interactions?, Phys. Rev. Lett. 30 (1973) 1346 [INSPIRE].ADSGoogle Scholar
  3. [3]
    T. Appelquist and H. Georgi, e + e annihilation in gauge theories of strong interactions, Phys. Rev. D 8 (1973) 4000 [INSPIRE].ADSGoogle Scholar
  4. [4]
    G.F. Sterman and S. Weinberg, Jets from quantum chromodynamics, Phys. Rev. Lett. 39 (1977) 1436 [INSPIRE].ADSGoogle Scholar
  5. [5]
    A.J. Buras, E.G. Floratos, D.A. Ross and C.T. Sachrajda, Asymptotic freedom beyond the leading order, Nucl. Phys. B 131 (1977) 308 [INSPIRE].ADSGoogle Scholar
  6. [6]
    W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Deep inelastic scattering beyond the leading order in asymptotically free gauge theories, Phys. Rev. D 18 (1978) 3998 [INSPIRE].ADSGoogle Scholar
  7. [7]
    G. Altarelli, R.K. Ellis and G. Martinelli, Leptoproduction and Drell-Yan processes beyond the leading approximation in chromodynamics, Nucl. Phys. B 143 (1978) 521 [Erratum ibid. B 146 (1978) 544] [INSPIRE].
  8. [8]
    W. Celmaster and R.J. Gonsalves, Fourth order QCD contributions to the e + e annihilation cross-section, Phys. Rev. D 21 (1980) 3112 [INSPIRE].ADSGoogle Scholar
  9. [9]
    R.K. Ellis, D.A. Ross and A.E. Terrano, The perturbative calculation of jet structure in e + e annihilation, Nucl. Phys. B 178 (1981) 421 [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Frixione, Z. Kunszt and A. Signer, Three jet cross-sections to next-to-leading order, Nucl. Phys. B 467 (1996) 399 [hep-ph/9512328] [INSPIRE].ADSGoogle Scholar
  11. [11]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  12. [12]
    S. Frixione, A general approach to jet cross-sections in QCD, Nucl. Phys. B 507 (1997) 295 [hep-ph/9706545] [INSPIRE].ADSGoogle Scholar
  13. [13]
    D.A. Kosower, Antenna factorization of gauge theory amplitudes, Phys. Rev. D 57 (1998) 5410 [hep-ph/9710213] [INSPIRE].ADSGoogle Scholar
  14. [14]
    J.M. Campbell, M.A. Cullen and E.W.N. Glover, Four jet event shapes in electron-positron annihilation, Eur. Phys. J. C 9 (1999) 245 [hep-ph/9809429] [INSPIRE].ADSGoogle Scholar
  15. [15]
    Z. Bern, L.J. Dixon, D.C. Dunbar and D.A. Kosower, One loop n-point gauge theory amplitudes, unitarity and collinear limits, Nucl. Phys. B 425 (1994) 217 [hep-ph/9403226] [INSPIRE].ADSMathSciNetGoogle Scholar
  16. [16]
    F. del Aguila and R. Pittau, Recursive numerical calculus of one-loop tensor integrals, JHEP 07 (2004) 017 [hep-ph/0404120] [INSPIRE].Google Scholar
  17. [17]
    Z. Bern, L.J. Dixon and D.A. Kosower, Bootstrapping multi-parton loop amplitudes in QCD, Phys. Rev. D 73 (2006) 065013 [hep-ph/0507005] [INSPIRE].ADSMathSciNetGoogle Scholar
  18. [18]
    G. Ossola, C.G. Papadopoulos and R. Pittau, Reducing full one-loop amplitudes to scalar integrals at the integrand level, Nucl. Phys. B 763 (2007) 147 [hep-ph/0609007] [INSPIRE].ADSMathSciNetGoogle Scholar
  19. [19]
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, D-dimensional unitarity cut method, Phys. Lett. B 645 (2007) 213 [hep-ph/0609191] [INSPIRE].ADSGoogle Scholar
  20. [20]
    C. Anastasiou, R. Britto, B. Feng, Z. Kunszt and P. Mastrolia, Unitarity cuts and reduction to master integrals in d dimensions for one-loop amplitudes, JHEP 03 (2007) 111 [hep-ph/0612277] [INSPIRE].ADSMathSciNetGoogle Scholar
  21. [21]
    R.K. Ellis, W.T. Giele and Z. Kunszt, A numerical unitarity formalism for evaluating one-loop amplitudes, JHEP 03 (2008) 003 [arXiv:0708.2398] [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    R.K. Ellis, W.T. Giele, Z. Kunszt and K. Melnikov, Masses, fermions and generalized D-dimensional unitarity, Nucl. Phys. B 822 (2009) 270 [arXiv:0806.3467] [INSPIRE].ADSGoogle Scholar
  23. [23]
    W.T. Giele, Z. Kunszt and K. Melnikov, Full one-loop amplitudes from tree amplitudes, JHEP 04 (2008) 049 [arXiv:0801.2237] [INSPIRE].ADSMathSciNetGoogle Scholar
  24. [24]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSGoogle Scholar
  25. [25]
    P. Mastrolia, E. Mirabella and T. Peraro, Integrand reduction of one-loop scattering amplitudes through Laurent series expansion, JHEP 06 (2012) 095 [Erratum ibid. 11 (2012) 128] [arXiv:1203.0291] [INSPIRE].
  26. [26]
    S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].ADSGoogle Scholar
  27. [27]
    P. Nason, A new method for combining NLO QCD with shower Monte Carlo algorithms, JHEP 11 (2004) 040 [hep-ph/0409146] [INSPIRE].ADSGoogle Scholar
  28. [28]
    M. Dobbs, Incorporating next-to-leading order matrix elements for hadronic diboson production in showering event generators, Phys. Rev. D 64 (2001) 034016 [hep-ph/0103174] [INSPIRE].ADSGoogle Scholar
  29. [29]
    Y.-J. Chen, J. Collins and X.-M. Zu, NLO corrections in MC event generator for angular distribution of Drell-Yan lepton pair production, JHEP 04 (2002) 041 [hep-ph/0110257] [INSPIRE].ADSGoogle Scholar
  30. [30]
    Y. Kurihara et al., QCD event generators with next-to-leading order matrix elements and parton showers, Nucl. Phys. B 654 (2003) 301 [hep-ph/0212216] [INSPIRE].ADSGoogle Scholar
  31. [31]
    Z. Nagy and D.E. Soper, Matching parton showers to NLO computations, JHEP 10 (2005) 024 [hep-ph/0503053] [INSPIRE].ADSGoogle Scholar
  32. [32]
    C.W. Bauer and M.D. Schwartz, Event generation from effective field theory, Phys. Rev. D 76 (2007) 074004 [hep-ph/0607296] [INSPIRE].ADSGoogle Scholar
  33. [33]
    Z. Nagy and D.E. Soper, Parton showers with quantum interference, JHEP 09 (2007) 114 [arXiv:0706.0017] [INSPIRE].ADSGoogle Scholar
  34. [34]
    W.T. Giele, D.A. Kosower and P.Z. Skands, A simple shower and matching algorithm, Phys. Rev. D 78 (2008) 014026 [arXiv:0707.3652] [INSPIRE].ADSGoogle Scholar
  35. [35]
    C.W. Bauer, F.J. Tackmann and J. Thaler, GenEvA. I. A new framework for event generation, JHEP 12 (2008) 010 [arXiv:0801.4026] [INSPIRE].ADSGoogle Scholar
  36. [36]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, A critical appraisal of NLO + PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].ADSGoogle Scholar
  37. [37]
    K. Hamilton, P. Nason, E. Re and G. Zanderighi, NNLOPS simulation of Higgs boson production, JHEP 10 (2013) 222 [arXiv:1309.0017] [INSPIRE].ADSGoogle Scholar
  38. [38]
    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: going beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].ADSGoogle Scholar
  39. [39]
    T. Stelzer and W.F. Long, Automatic generation of tree level helicity amplitudes, Comput. Phys. Commun. 81 (1994) 357 [hep-ph/9401258] [INSPIRE].ADSGoogle Scholar
  40. [40]
    F. Caravaglios and M. Moretti, An algorithm to compute Born scattering amplitudes without Feynman graphs, Phys. Lett. B 358 (1995) 332 [hep-ph/9507237] [INSPIRE].ADSGoogle Scholar
  41. [41]
    F. Yuasa et al., Automatic computation of cross-sections in HEP: status of GRACE system, Prog. Theor. Phys. Suppl. 138 (2000) 18 [hep-ph/0007053] [INSPIRE].ADSGoogle Scholar
  42. [42]
    A. Kanaki and C.G. Papadopoulos, HELAC: a package to compute electroweak helicity amplitudes, Comput. Phys. Commun. 132 (2000) 306 [hep-ph/0002082] [INSPIRE].ADSMATHGoogle Scholar
  43. [43]
    M. Moretti, T. Ohl and J. Reuter, OMega: an optimizing matrix element generator, hep-ph/0102195 [INSPIRE].
  44. [44]
    F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: a matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].ADSGoogle Scholar
  45. [45]
    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [INSPIRE].ADSGoogle Scholar
  46. [46]
    J. Fujimoto et al., GRACE/SUSY automatic generation of tree amplitudes in the minimal supersymmetric standard model, Comput. Phys. Commun. 153 (2003) 106 [hep-ph/0208036] [INSPIRE].ADSGoogle Scholar
  47. [47]
    CompHEP collaboration, E. Boos et al., CompHEP 4.4: automatic computations from Lagrangians to events, Nucl. Instrum. Meth. A 534 (2004) 250 [hep-ph/0403113] [INSPIRE].ADSGoogle Scholar
  48. [48]
    S. Tsuno, T. Kaneko, Y. Kurihara, S. Odaka and K. Kato, GR@PPA 2.7 event generator for \( pp/ p\overline{p} \) collisions, Comput. Phys. Commun. 175 (2006) 665 [hep-ph/0602213] [INSPIRE].ADSGoogle Scholar
  49. [49]
    A. Cafarella, C.G. Papadopoulos and M. Worek, Helac-Phegas: a generator for all parton level processes, Comput. Phys. Commun. 180 (2009) 1941 [arXiv:0710.2427] [INSPIRE].ADSGoogle Scholar
  50. [50]
    W. Kilian, T. Ohl and J. Reuter, WHIZARD: simulating multi-particle processes at LHC and ILC, Eur. Phys. J. C 71 (2011) 1742 [arXiv:0708.4233] [INSPIRE].ADSGoogle Scholar
  51. [51]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSGoogle Scholar
  52. [52]
    T. Gleisberg and S. Hoeche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].ADSGoogle Scholar
  53. [53]
    A. Belyaev, N.D. Christensen and A. Pukhov, CalcHEP 3.4 for collider physics within and beyond the standard model, Comput. Phys. Commun. 184 (2013) 1729 [arXiv:1207.6082] [INSPIRE].ADSMATHGoogle Scholar
  54. [54]
    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].ADSGoogle Scholar
  55. [55]
    T. Hahn, Generating Feynman diagrams and amplitudes with FeynArts 3, Comput. Phys. Commun. 140 (2001) 418 [hep-ph/0012260] [INSPIRE].ADSMATHGoogle Scholar
  56. [56]
    T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].ADSGoogle Scholar
  57. [57]
    C.F. Berger et al., An automated implementation of on-shell methods for one-loop amplitudes, Phys. Rev. D 78 (2008) 036003 [arXiv:0803.4180] [INSPIRE].ADSGoogle Scholar
  58. [58]
    R. Frederix, T. Gehrmann and N. Greiner, Automation of the dipole subtraction method in MadGraph/MadEvent, JHEP 09 (2008) 122 [arXiv:0808.2128] [INSPIRE].ADSGoogle Scholar
  59. [59]
    W.T. Giele and G. Zanderighi, On the numerical evaluation of one-loop amplitudes: the gluonic case, JHEP 06 (2008) 038 [arXiv:0805.2152] [INSPIRE].ADSGoogle Scholar
  60. [60]
    M. Czakon, C.G. Papadopoulos and M. Worek, Polarizing the dipoles, JHEP 08 (2009) 085 [arXiv:0905.0883] [INSPIRE].ADSGoogle Scholar
  61. [61]
    R. Frederix, S. Frixione, F. Maltoni and T. Stelzer, Automation of next-to-leading order computations in QCD: the FKS subtraction, JHEP 10 (2009) 003 [arXiv:0908.4272] [INSPIRE].ADSGoogle Scholar
  62. [62]
    K. Hasegawa, S. Moch and P. Uwer, AutoDipole: automated generation of dipole subtraction terms, Comput. Phys. Commun. 181 (2010) 1802 [arXiv:0911.4371] [INSPIRE].ADSMATHMathSciNetGoogle Scholar
  63. [63]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, Automating the POWHEG method in Sherpa, JHEP 04 (2011) 024 [arXiv:1008.5399] [INSPIRE].ADSGoogle Scholar
  64. [64]
    S. Alioli, P. Nason, C. Oleari and E. Re, A general framework for implementing NLO calculations in shower Monte Carlo programs: the POWHEG BOX, JHEP 06 (2010) 043 [arXiv:1002.2581] [INSPIRE].ADSGoogle Scholar
  65. [65]
    P. Mastrolia, G. Ossola, T. Reiter and F. Tramontano, Scattering amplitudes from unitarity-based reduction algorithm at the integrand-level, JHEP 08 (2010) 080 [arXiv:1006.0710] [INSPIRE].ADSGoogle Scholar
  66. [66]
    R. Frederix, T. Gehrmann and N. Greiner, Integrated dipoles with MadDipole in the MadGraph framework, JHEP 06 (2010) 086 [arXiv:1004.2905] [INSPIRE].ADSGoogle Scholar
  67. [67]
    S. Becker, C. Reuschle and S. Weinzierl, Numerical NLO QCD calculations, JHEP 12 (2010) 013 [arXiv:1010.4187] [INSPIRE].ADSGoogle Scholar
  68. [68]
    V. Hirschi et al., Automation of one-loop QCD corrections, JHEP 05 (2011) 044 [arXiv:1103.0621] [INSPIRE].ADSGoogle Scholar
  69. [69]
    G. Bevilacqua et al., HELAC-NLO, Comput. Phys. Commun. 184 (2013) 986 [arXiv:1110.1499] [INSPIRE].ADSGoogle Scholar
  70. [70]
    S. Becker, D. Goetz, C. Reuschle, C. Schwan and S. Weinzierl, NLO results for five, six and seven jets in electron-positron annihilation, Phys. Rev. Lett. 108 (2012) 032005 [arXiv:1111.1733] [INSPIRE].ADSGoogle Scholar
  71. [71]
    G. Cullen et al., Automated one-loop calculations with GoSam, Eur. Phys. J. C 72 (2012) 1889 [arXiv:1111.2034] [INSPIRE].ADSGoogle Scholar
  72. [72]
    T. Binoth et al., Automized squark-neutralino production to next-to-leading order, Phys. Rev. D 84 (2011) 075005 [arXiv:1108.1250] [INSPIRE].ADSGoogle Scholar
  73. [73]
    S. Agrawal, T. Hahn and E. Mirabella, FormCalc 7, J. Phys. Conf. Ser. 368 (2012) 012054 [arXiv:1112.0124] [INSPIRE].ADSGoogle Scholar
  74. [74]
    Z. Bern et al., Four-jet production at the Large Hadron Collider at next-to-leading order in QCD, Phys. Rev. Lett. 109 (2012) 042001 [arXiv:1112.3940] [INSPIRE].ADSGoogle Scholar
  75. [75]
    S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the standard model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].ADSGoogle Scholar
  76. [76]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, Numerical evaluation of virtual corrections to multi-jet production in massless QCD, Comput. Phys. Commun. 184 (2013) 1981 [arXiv:1209.0100] [INSPIRE].ADSGoogle Scholar
  77. [77]
    D. Goncalves-Netto, D. Lopez-Val, K. Mawatari, T. Plehn and I. Wigmore, Automated squark and gluino production to next-to-leading order, Phys. Rev. D 87 (2013) 014002 [arXiv:1211.0286] [INSPIRE].ADSGoogle Scholar
  78. [78]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, Computation of multi-leg amplitudes with NJet, J. Phys. Conf. Ser. 523 (2014) 012057 [arXiv:1312.7140] [INSPIRE].ADSGoogle Scholar
  79. [79]
    Z. Bern et al., The BlackHat library for one-loop amplitudes, J. Phys. Conf. Ser. 523 (2014) 012051 [arXiv:1310.2808] [INSPIRE].ADSGoogle Scholar
  80. [80]
    G. Cullen et al., GoSam-2.0: a tool for automated one-loop calculations within the standard model and beyond, arXiv:1404.7096 [INSPIRE].
  81. [81]
    H. van Deurzen et al., Multi-leg one-loop massive amplitudes from integrand reduction via Laurent expansion, JHEP 03 (2014) 115 [arXiv:1312.6678] [INSPIRE].ADSGoogle Scholar
  82. [82]
    T. Peraro, Ninja: automated integrand reduction via Laurent expansion for one-loop amplitudes, arXiv:1403.1229 [INSPIRE].
  83. [83]
    E. Byckling and K. Kajantie, Particle kinematics, Wiley, U.S.A. (1971).Google Scholar
  84. [84]
    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].ADSGoogle Scholar
  85. [85]
    N.D. Christensen et al., A comprehensive approach to new physics simulations, Eur. Phys. J. C 71 (2011) 1541 [arXiv:0906.2474] [INSPIRE].ADSGoogle Scholar
  86. [86]
    N.D. Christensen, C. Duhr, B. Fuks, J. Reuter and C. Speckner, Introducing an interface between WHIZARD and FeynRules, Eur. Phys. J. C 72 (2012) 1990 [arXiv:1010.3251] [INSPIRE].ADSGoogle Scholar
  87. [87]
    C. Duhr and B. Fuks, A superspace module for the FeynRules package, Comput. Phys. Commun. 182 (2011) 2404 [arXiv:1102.4191] [INSPIRE].ADSMATHGoogle Scholar
  88. [88]
    A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — a complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].ADSGoogle Scholar
  89. [89]
    A. Alloul, J. D’Hondt, K. De Causmaecker, B. Fuks and M. Rausch de Traubenberg, Automated mass spectrum generation for new physics, Eur. Phys. J. C 73 (2013) 2325 [arXiv:1301.5932] [INSPIRE].ADSGoogle Scholar
  90. [90]
    C. Degrande, Automated computation of the R 2 rational terms and ultraviolet counterterms by NLOCT: an illustration on the 2HDM, in preparation.Google Scholar
  91. [91]
    H. Murayama, I. Watanabe and K. Hagiwara, HELAS: helicity amplitude subroutines for Feynman diagram evaluations, KEK-91-11, Japan (1992) [INSPIRE].
  92. [92]
    P. de Aquino, W. Link, F. Maltoni, O. Mattelaer and T. Stelzer, ALOHA: automatic libraries of helicity amplitudes for Feynman diagram computations, Comput. Phys. Commun. 183 (2012) 2254 [arXiv:1108.2041] [INSPIRE].ADSGoogle Scholar
  93. [93]
    C. Degrande et al., UFOthe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012) 1201 [arXiv:1108.2040] [INSPIRE].ADSGoogle Scholar
  94. [94]
    J. Alwall et al., A standard format for Les Houches event files, Comput. Phys. Commun. 176 (2007) 300 [hep-ph/0609017] [INSPIRE].ADSGoogle Scholar
  95. [95]
    J.M. Butterworth et al., The tools and Monte Carlo working group summary report, arXiv:1003.1643 [INSPIRE].
  96. [96]
    E.N. Argyres et al., Stable calculations for unstable particles: restoring gauge invariance, Phys. Lett. B 358 (1995) 339 [hep-ph/9507216] [INSPIRE].ADSGoogle Scholar
  97. [97]
    W. Beenakker et al., The Fermion loop scheme for finite width effects in e + e annihilation into four fermions, Nucl. Phys. B 500 (1997) 255 [hep-ph/9612260] [INSPIRE].ADSGoogle Scholar
  98. [98]
    G. Passarino, Unstable particles and nonconserved currents: a generalization of the fermion loop scheme, Nucl. Phys. B 574 (2000) 451 [hep-ph/9911482] [INSPIRE].ADSGoogle Scholar
  99. [99]
    W. Beenakker, F.A. Berends and A.P. Chapovsky, An effective Lagrangian approach for unstable particles, Nucl. Phys. B 573 (2000) 503 [hep-ph/9909472] [INSPIRE].ADSGoogle Scholar
  100. [100]
    W. Beenakker, A.P. Chapovsky, A. Kanaki, C.G. Papadopoulos and R. Pittau, Towards an effective Lagrangian approach to fermion loop corrections, Nucl. Phys. B 667 (2003) 359 [hep-ph/0303105] [INSPIRE].ADSGoogle Scholar
  101. [101]
    M. Beneke, A.P. Chapovsky, A. Signer and G. Zanderighi, Effective theory approach to unstable particle production, Phys. Rev. Lett. 93 (2004) 011602 [hep-ph/0312331] [INSPIRE].ADSGoogle Scholar
  102. [102]
    A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Predictions for all processes e+e− → 4 fermions + γ, Nucl. Phys. B 560 (1999) 33 [hep-ph/9904472] [INSPIRE].ADSGoogle Scholar
  103. [103]
    A. Denner, S. Dittmaier, M. Roth and L.H. Wieders, Electroweak corrections to charged-current e + e → 4 fermion processes: technical details and further results, Nucl. Phys. B 724 (2005) 247 [Erratum ibid. B 854 (2012) 504] [hep-ph/0505042] [INSPIRE].
  104. [104]
    F. Staub, SARAH 3.2: Dirac gauginos, UFO output and more, Comput. Phys. Commun. 184 (2013) 1792 [arXiv:1207.0906] [INSPIRE].ADSGoogle Scholar
  105. [105]
    N.D. Christensen et al., Simulating spin- \( \frac{3}{2} \) particles at colliders, Eur. Phys. J. C 73 (2013) 2580 [arXiv:1308.1668] [INSPIRE].ADSGoogle Scholar
  106. [106]
    J. Alwall et al., Computing decay rates for new physics theories with FeynRules and MadGraph5/aMC@NLO, arXiv:1402.1178 [INSPIRE].
  107. [107]
    F.A. Berends, R. Kleiss, P. De Causmaecker, R. Gastmans and T.T. Wu, Single Bremsstrahlung processes in gauge theories, Phys. Lett. B 103 (1981) 124 [INSPIRE].ADSGoogle Scholar
  108. [108]
    P. De Causmaecker, R. Gastmans, W. Troost and T.T. Wu, Multiple Bremsstrahlung in gauge theories at high-energies. 1. General formalism for quantum electrodynamics, Nucl. Phys. B 206 (1982) 53 [INSPIRE].ADSGoogle Scholar
  109. [109]
    R. Kleiss and W.J. Stirling, Spinor techniques for calculating \( p\overline{p} \)W ± /Z 0 + jets, Nucl. Phys. B 262 (1985) 235 [INSPIRE].ADSGoogle Scholar
  110. [110]
    R. Gastmans and T. Wu, The ubiquitous photon: helicity method for QED and QCD, Int. Ser. Monogr. Phys. 80 (1990) 1 [INSPIRE].Google Scholar
  111. [111]
    Z. Xu, D.-H. Zhang and L. Chang, Helicity amplitudes for multiple Bremsstrahlung in massless non-Abelian gauge theories, Nucl. Phys. B 291 (1987) 392 [INSPIRE].ADSGoogle Scholar
  112. [112]
    J.F. Gunion and Z. Kunszt, Improved analytic techniques for tree graph calculations and the \( Ggq\overline{q} \) lepton anti-lepton subprocess, Phys. Lett. B 161 (1985) 333 [INSPIRE].ADSGoogle Scholar
  113. [113]
    K. Hagiwara and D. Zeppenfeld, Helicity amplitudes for heavy lepton production in e + e annihilation, Nucl. Phys. B 274 (1986) 1 [INSPIRE].ADSGoogle Scholar
  114. [114]
    M.L. Mangano and S.J. Parke, Multiparton amplitudes in gauge theories, Phys. Rept. 200 (1991) 301 [hep-th/0509223] [INSPIRE].ADSGoogle Scholar
  115. [115]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].ADSGoogle Scholar
  116. [116]
    F. Maltoni, K. Paul, T. Stelzer and S. Willenbrock, Color flow decomposition of QCD amplitudes, Phys. Rev. D 67 (2003) 014026 [hep-ph/0209271] [INSPIRE].
  117. [117]
    C. Duhr, S. Hoeche and F. Maltoni, Color-dressed recursive relations for multi-parton amplitudes, JHEP 08 (2006) 062 [hep-ph/0607057] [INSPIRE].ADSGoogle Scholar
  118. [118]
    K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [INSPIRE].ADSGoogle Scholar
  119. [119]
    K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Fast calculation of HELAS amplitudes using graphics processing unit (GPU), Eur. Phys. J. C 66 (2010) 477 [arXiv:0908.4403] [INSPIRE].ADSGoogle Scholar
  120. [120]
    K. Hagiwara, J. Kanzaki, N. Okamura, D. Rainwater and T. Stelzer, Calculation of HELAS amplitudes for QCD processes using graphics processing unit (GPU), Eur. Phys. J. C 70 (2010) 513 [arXiv:0909.5257] [INSPIRE].ADSGoogle Scholar
  121. [121]
    M. Bahr et al., HERWIG++ physics and manual, Eur. Phys. J. C 58 (2008) 639 [arXiv:0803.0883] [INSPIRE].ADSGoogle Scholar
  122. [122]
    J. Bellm et al., HERWIG++ 2.7 release note, arXiv:1310.6877 [INSPIRE].
  123. [123]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].ADSMATHGoogle Scholar
  124. [124]
    N. Arkani-Hamed, S. Dimopoulos and G.R. Dvali, The hierarchy problem and new dimensions at a millimeter, Phys. Lett. B 429 (1998) 263 [hep-ph/9803315] [INSPIRE].
  125. [125]
    R. Frederix et al., Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties, JHEP 02 (2012) 099 [arXiv:1110.4738] [INSPIRE].ADSGoogle Scholar
  126. [126]
    J. Alwall, Q. Li and F. Maltoni, Matched predictions for Higgs production via heavy-quark loops in the SM and beyond, Phys. Rev. D 85 (2012) 014031 [arXiv:1110.1728] [INSPIRE].ADSGoogle Scholar
  127. [127]
    R. Frederix et al., Higgs pair production at the LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142 [arXiv:1401.7340] [INSPIRE].ADSGoogle Scholar
  128. [128]
    K. Kondo, Dynamical likelihood method for reconstruction of events with missing momentum. 1: method and toy models, J. Phys. Soc. Jap. 57 (1988) 4126 [INSPIRE].ADSGoogle Scholar
  129. [129]
    R.H. Dalitz and G.R. Goldstein, The decay and polarization properties of the top quark, Phys. Rev. D 45 (1992) 1531 [INSPIRE].ADSGoogle Scholar
  130. [130]
    K. Kondo, Dynamical likelihood method and top quark mass measurement at CDF, J. Phys. Conf. Ser. 53 (2006) 202 [INSPIRE].ADSGoogle Scholar
  131. [131]
    Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].ADSGoogle Scholar
  132. [132]
    P. Avery et al., Precision studies of the Higgs boson decay channel HZZ → 4ℓ with MEKD, Phys. Rev. D 87 (2013) 055006 [arXiv:1210.0896] [INSPIRE].ADSGoogle Scholar
  133. [133]
    J.M. Campbell, W.T. Giele and C. Williams, The matrix element method at next-to-leading order, JHEP 11 (2012) 043 [arXiv:1204.4424] [INSPIRE].ADSGoogle Scholar
  134. [134]
    J.S. Gainer, J. Lykken, K.T. Matchev, S. Mrenna and M. Park, Geolocating the Higgs boson candidate at the LHC, Phys. Rev. Lett. 111 (2013) 041801 [arXiv:1304.4936] [INSPIRE].ADSGoogle Scholar
  135. [135]
    T. Plehn, P. Schichtel and D. Wiegand, MadMax, or where boosted significances come from, arXiv:1311.2591 [INSPIRE].
  136. [136]
    P. Artoisenet, V. Lemaitre, F. Maltoni and O. Mattelaer, Automation of the matrix element reweighting method, JHEP 12 (2010) 068 [arXiv:1007.3300] [INSPIRE].ADSGoogle Scholar
  137. [137]
    P. Artoisenet and O. Mattelaer, MadWeight5.0, in preparation.Google Scholar
  138. [138]
    J. Alwall, A. Freitas and O. Mattelaer, The matrix element method and QCD radiation, Phys. Rev. D 83 (2011) 074010 [arXiv:1010.2263] [INSPIRE].ADSGoogle Scholar
  139. [139]
    P. Artoisenet, P. de Aquino, F. Maltoni and O. Mattelaer, Unravelling \( t\overline{t} h \) via the matrix element method, Phys. Rev. Lett. 111 (2013) 091802 [arXiv:1304.6414] [INSPIRE].ADSGoogle Scholar
  140. [140]
    T. Gleisberg et al., SHERPA 1.α: a proof of concept version, JHEP 02 (2004) 056 [hep-ph/0311263] [INSPIRE].ADSGoogle Scholar
  141. [141]
    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].ADSGoogle Scholar
  142. [142]
    G. Corcella et al., HERWIG 6: an event generator for hadron emission reactions with interfering gluons (including supersymmetric processes), JHEP 01 (2001) 010 [hep-ph/0011363] [INSPIRE].ADSGoogle Scholar
  143. [143]
    G. Corcella et al., HERWIG 6.5 release note, hep-ph/0210213 [INSPIRE].
  144. [144]
    S. Catani, Y.L. Dokshitzer, M.H. Seymour and B.R. Webber, Longitudinally invariant K t clustering algorithms for hadron hadron collisions, Nucl. Phys. B 406 (1993) 187 [INSPIRE].ADSGoogle Scholar
  145. [145]
    L. Lönnblad, Correcting the color dipole cascade model with fixed order matrix elements, JHEP 05 (2002) 046 [hep-ph/0112284] [INSPIRE].Google Scholar
  146. [146]
    L. Lönnblad and S. Prestel, Matching tree-level matrix elements with interleaved showers, JHEP 03 (2012) 019 [arXiv:1109.4829] [INSPIRE].Google Scholar
  147. [147]
    L. Lönnblad and S. Prestel, Unitarising matrix element + parton shower merging, JHEP 02 (2013) 094 [arXiv:1211.4827] [INSPIRE].Google Scholar
  148. [148]
    J. Alwall et al., Comparative study of various algorithms for the merging of parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C 53 (2008) 473 [arXiv:0706.2569] [INSPIRE].ADSGoogle Scholar
  149. [149]
    J. Alwall, S. de Visscher and F. Maltoni, QCD radiation in the production of heavy colored particles at the LHC, JHEP 02 (2009) 017 [arXiv:0810.5350] [INSPIRE].ADSGoogle Scholar
  150. [150]
    P. de Aquino, F. Maltoni, K. Mawatari and B. Oexl, Light gravitino production in association with gluinos at the LHC, JHEP 10 (2012) 008 [arXiv:1206.7098] [INSPIRE].Google Scholar
  151. [151]
    P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11 (2013) 043 [arXiv:1306.6464] [INSPIRE].ADSGoogle Scholar
  152. [152]
    F. Maltoni and T. Stelzer, MadEvent: automatic event generation with MadGraph, JHEP 02 (2003) 027 [hep-ph/0208156] [INSPIRE].
  153. [153]
    R. Kleiss and R. Pittau, Weight optimization in multichannel Monte Carlo, Comput. Phys. Commun. 83 (1994) 141 [hep-ph/9405257] [INSPIRE].ADSGoogle Scholar
  154. [154]
    G. Passarino and M.J.G. Veltman, One loop corrections for e + e annihilation into μ + μ in the Weinberg model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].ADSGoogle Scholar
  155. [155]
    A.I. Davydychev, A simple formula for reducing Feynman diagrams to scalar integrals, Phys. Lett. B 263 (1991) 107 [INSPIRE].ADSMathSciNetGoogle Scholar
  156. [156]
    G. Ossola, C.G. Papadopoulos and R. Pittau, CutTools: a program implementing the OPP reduction method to compute one-loop amplitudes, JHEP 03 (2008) 042 [arXiv:0711.3596] [INSPIRE].ADSGoogle Scholar
  157. [157]
    G. ’t Hooft and M.J.G. Veltman, Regularization and renormalization of gauge fields, Nucl. Phys. B 44 (1972) 189 [INSPIRE].ADSMathSciNetGoogle Scholar
  158. [158]
    G. Ossola, C.G. Papadopoulos and R. Pittau, On the rational terms of the one-loop amplitudes, JHEP 05 (2008) 004 [arXiv:0802.1876] [INSPIRE].ADSMathSciNetGoogle Scholar
  159. [159]
    P. Draggiotis, M.V. Garzelli, C.G. Papadopoulos and R. Pittau, Feynman rules for the rational part of the QCD 1-loop amplitudes, JHEP 04 (2009) 072 [arXiv:0903.0356] [INSPIRE].ADSMathSciNetGoogle Scholar
  160. [160]
    M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes, JHEP 01 (2010) 040 [Erratum ibid. 10 (2010) 097] [arXiv:0910.3130] [INSPIRE].
  161. [161]
    M.V. Garzelli, I. Malamos and R. Pittau, Feynman rules for the rational part of the electroweak 1-loop amplitudes in the R x i gauge and in the unitary gauge, JHEP 01 (2011) 029 [arXiv:1009.4302] [INSPIRE].ADSGoogle Scholar
  162. [162]
    H.-S. Shao, Y.-J. Zhang and K.-T. Chao, Feynman rules for the rational part of the standard model one-loop amplitudes in thet Hooft-Veltman γ 5 scheme, JHEP 09 (2011) 048 [arXiv:1106.5030] [INSPIRE].ADSGoogle Scholar
  163. [163]
    R. Pittau, Primary Feynman rules to calculate the epsilon-dimensional integrand of any 1-loop amplitude, JHEP 02 (2012) 029 [arXiv:1111.4965] [INSPIRE].ADSMathSciNetGoogle Scholar
  164. [164]
    H.-S. Shao and Y.-J. Zhang, Feynman rules for the rational part of one-loop QCD corrections in the MSSM, JHEP 06 (2012) 112 [arXiv:1205.1273] [INSPIRE].ADSGoogle Scholar
  165. [165]
    B. Page and R. Pittau, R 2 vertices for the effective ggH theory, JHEP 09 (2013) 078 [arXiv:1307.6142] [INSPIRE].ADSGoogle Scholar
  166. [166]
    T. Binoth, J.P. Guillet and G. Heinrich, Algebraic evaluation of rational polynomials in one-loop amplitudes, JHEP 02 (2007) 013 [hep-ph/0609054] [INSPIRE].ADSGoogle Scholar
  167. [167]
    S.D. Badger, Direct extraction of one loop rational terms, JHEP 01 (2009) 049 [arXiv:0806.4600] [INSPIRE].ADSMathSciNetGoogle Scholar
  168. [168]
    H.-S. Shao, Iregi user manual, unpublished.Google Scholar
  169. [169]
    J. Fleischer, T. Riemann and V. Yundin, New developments in PJFry, PoS(LL2012)020 [arXiv:1210.4095] [INSPIRE].
  170. [170]
    V. Yundin, Massive loop corrections for collider physics, Ph.D. thesis, Humboldt-Universitat zu Berlin, Berlin Germany (2012).Google Scholar
  171. [171]
    P. Nason, MINT: a computer program for adaptive Monte Carlo integration and generation of unweighted distributions, arXiv:0709.2085 [INSPIRE].
  172. [172]
    S. Frixione, P. Nason and B.R. Webber, Matching NLO QCD and parton showers in heavy flavor production, JHEP 08 (2003) 007 [hep-ph/0305252] [INSPIRE].ADSGoogle Scholar
  173. [173]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Single-top production in MC@NLO, JHEP 03 (2006) 092 [hep-ph/0512250] [INSPIRE].ADSGoogle Scholar
  174. [174]
    P. Torrielli and S. Frixione, Matching NLO QCD computations with PYTHIA using MC@NLO, JHEP 04 (2010) 110 [arXiv:1002.4293] [INSPIRE].ADSGoogle Scholar
  175. [175]
    S. Frixione, F. Stoeckli, P. Torrielli and B.R. Webber, NLO QCD corrections in HERWIG++ with MC@NLO, JHEP 01 (2011) 053 [arXiv:1010.0568] [INSPIRE].ADSGoogle Scholar
  176. [176]
    L. Lönnblad, ARIADNE version 4: a program for simulation of QCD cascades implementing the color dipole model, Comput. Phys. Commun. 71 (1992) 15 [INSPIRE].ADSGoogle Scholar
  177. [177]
    Z. Nagy and D.E. Soper, A new parton shower algorithm: shower evolution, matching at leading and next-to-leading order level, hep-ph/0601021 [INSPIRE].
  178. [178]
    M. Dinsdale, M. Ternick and S. Weinzierl, Parton showers from the dipole formalism, Phys. Rev. D 76 (2007) 094003 [arXiv:0709.1026] [INSPIRE].ADSGoogle Scholar
  179. [179]
    S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].ADSGoogle Scholar
  180. [180]
    J.-C. Winter and F. Krauss, Initial-state showering based on colour dipoles connected to incoming parton lines, JHEP 07 (2008) 040 [arXiv:0712.3913] [INSPIRE].ADSGoogle Scholar
  181. [181]
    S. Platzer and S. Gieseke, Dipole showers and automated NLO matching in HERWIG++, Eur. Phys. J. C 72 (2012) 2187 [arXiv:1109.6256] [INSPIRE].ADSGoogle Scholar
  182. [182]
    M. Ritzmann, D.A. Kosower and P. Skands, Antenna showers with hadronic initial states, Phys. Lett. B 718 (2013) 1345 [arXiv:1210.6345] [INSPIRE].ADSGoogle Scholar
  183. [183]
    C. Friberg, G. Gustafson and J. Hakkinen, Color connections in e + e annihilation, Nucl. Phys. B 490 (1997) 289 [hep-ph/9604347] [INSPIRE].ADSGoogle Scholar
  184. [184]
    W.T. Giele, D.A. Kosower and P.Z. Skands, Higher-order corrections to timelike jets, Phys. Rev. D 84 (2011) 054003 [arXiv:1102.2126] [INSPIRE].ADSGoogle Scholar
  185. [185]
    S. Platzer and M. Sjodahl, Subleading N c improved parton showers, JHEP 07 (2012) 042 [arXiv:1201.0260] [INSPIRE].ADSGoogle Scholar
  186. [186]
    Z. Nagy and D.E. Soper, Parton shower evolution with subleading color, JHEP 06 (2012) 044 [arXiv:1202.4496] [INSPIRE].ADSGoogle Scholar
  187. [187]
    G. Altarelli and G. Parisi, Asymptotic freedom in parton language, Nucl. Phys. B 126 (1977) 298 [INSPIRE].ADSGoogle Scholar
  188. [188]
    K. Odagiri, Color connection structure of supersymmetric QCD (2 → 2) processes, JHEP 10 (1998) 006 [hep-ph/9806531] [INSPIRE].ADSGoogle Scholar
  189. [189]
    P. Nason and B. Webber, Next-to-leading-order event generators, Ann. Rev. Nucl. Part. Sci. 62 (2012) 187 [arXiv:1202.1251] [INSPIRE].ADSGoogle Scholar
  190. [190]
    S. Hoeche, F. Krauss and M. Schonherr, Uncertainties in MEPS@NLO calculations of h + jets, arXiv:1401.7971 [INSPIRE].
  191. [191]
    R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP 12 (2012) 061 [arXiv:1209.6215] [INSPIRE].ADSGoogle Scholar
  192. [192]
    S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].ADSGoogle Scholar
  193. [193]
    F. Krauss, Matrix elements and parton showers in hadronic interactions, JHEP 08 (2002) 015 [hep-ph/0205283] [INSPIRE].ADSGoogle Scholar
  194. [194]
    S. Mrenna and P. Richardson, Matching matrix elements and parton showers with HERWIG and PYTHIA, JHEP 05 (2004) 040 [hep-ph/0312274] [INSPIRE].ADSGoogle Scholar
  195. [195]
    N. Lavesson and L. Lönnblad, W + jets matrix elements and the dipole cascade, JHEP 07 (2005) 054 [hep-ph/0503293] [INSPIRE].ADSGoogle Scholar
  196. [196]
    S. Hoeche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].ADSGoogle Scholar
  197. [197]
    K. Hamilton, P. Richardson and J. Tully, A modified CKKW matrix element merging approach to angular-ordered parton showers, JHEP 11 (2009) 038 [arXiv:0905.3072] [INSPIRE].ADSGoogle Scholar
  198. [198]
    N. Lavesson and L. Lönnblad, Extending CKKW-merging to one-loop matrix elements, JHEP 12 (2008) 070 [arXiv:0811.2912] [INSPIRE].ADSGoogle Scholar
  199. [199]
    K. Hamilton and P. Nason, Improving NLO-parton shower matched simulations with higher order matrix elements, JHEP 06 (2010) 039 [arXiv:1004.1764] [INSPIRE].ADSGoogle Scholar
  200. [200]
    S. Hoche, F. Krauss, M. Schonherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].ADSGoogle Scholar
  201. [201]
    S. Alioli, K. Hamilton and E. Re, Practical improvements and merging of POWHEG simulations for vector boson production, JHEP 09 (2011) 104 [arXiv:1108.0909] [INSPIRE].ADSGoogle Scholar
  202. [202]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, QCD matrix elements + parton showers: the NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].ADSGoogle Scholar
  203. [203]
    S. Plätzer, Controlling inclusive cross sections in parton shower + matrix element merging, JHEP 08 (2013) 114 [arXiv:1211.5467] [INSPIRE].ADSGoogle Scholar
  204. [204]
    S. Alioli et al., Combining higher-order resummation with multiple NLO calculations and parton showers in GENEVA, JHEP 09 (2013) 120 [arXiv:1211.7049] [INSPIRE].ADSGoogle Scholar
  205. [205]
    L. Lönnblad and S. Prestel, Merging multi-leg NLO matrix elements with parton showers, JHEP 03 (2013) 166 [arXiv:1211.7278] [INSPIRE].ADSGoogle Scholar
  206. [206]
    K. Hamilton, P. Nason, C. Oleari and G. Zanderighi, Merging H/W/Z + 0 and 1 jet at NLO with no merging scale: a path to parton shower + NNLO matching, JHEP 05 (2013) 082 [arXiv:1212.4504] [INSPIRE].ADSGoogle Scholar
  207. [207]
    S. Alioli et al., Matching fully differential NNLO calculations and parton showers, JHEP 06 (2014) 089 [arXiv:1311.0286] [INSPIRE].Google Scholar
  208. [208]
    G. Bozzi, S. Catani, D. de Florian and M. Grazzini, Transverse-momentum resummation and the spectrum of the Higgs boson at the LHC, Nucl. Phys. B 737 (2006) 73 [hep-ph/0508068] [INSPIRE].ADSGoogle Scholar
  209. [209]
    R.G. Stuart, Gauge invariance, analyticity and physical observables at the Z 0 resonance, Phys. Lett. B 262 (1991) 113 [INSPIRE].ADSGoogle Scholar
  210. [210]
    A. Aeppli, G.J. van Oldenborgh and D. Wyler, Unstable particles in one loop calculations, Nucl. Phys. B 428 (1994) 126 [hep-ph/9312212] [INSPIRE].ADSGoogle Scholar
  211. [211]
    S. Frixione, E. Laenen, P. Motylinski and B.R. Webber, Angular correlations of lepton pairs from vector boson and top quark decays in Monte Carlo simulations, JHEP 04 (2007) 081 [hep-ph/0702198] [INSPIRE].ADSGoogle Scholar
  212. [212]
    P. Richardson, Spin correlations in Monte Carlo simulations, JHEP 11 (2001) 029 [hep-ph/0110108] [INSPIRE].ADSGoogle Scholar
  213. [213]
    P. Artoisenet, R. Frederix, O. Mattelaer and R. Rietkerk, Automatic spin-entangled decays of heavy resonances in Monte Carlo simulations, JHEP 03 (2013) 015 [arXiv:1212.3460] [INSPIRE].ADSGoogle Scholar
  214. [214]
    A.S. Papanastasiou, R. Frederix, S. Frixione, V. Hirschi and F. Maltoni, Single-top t-channel production with off-shell and non-resonant effects, Phys. Lett. B 726 (2013) 223 [arXiv:1305.7088] [INSPIRE].ADSGoogle Scholar
  215. [215]
  216. [216]
    DELPHES 3 collaboration, J. de Favereau et al., DELPHES 3, a modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].Google Scholar
  217. [217]
    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].
  218. [218]
    SM Working group collaboration, Proceedings of the workshop physics at TeV colliders, Les Houches, 2013, to appear.Google Scholar
  219. [219]
    A.D. Martin, W.J. Stirling, R.S. Thorne and G. Watt, Parton distributions for the LHC, Eur. Phys. J. C 63 (2009) 189 [arXiv:0901.0002] [INSPIRE].ADSGoogle Scholar
  220. [220]
    M. Cacciari, G.P. Salam and G. Soyez, The anti-k t jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].ADSGoogle Scholar
  221. [221]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
  222. [222]
    R. Frederix, E. Re and P. Torrielli, Single-top t-channel hadroproduction in the four-flavour scheme with POWHEG and aMC@NLO, JHEP 09 (2012) 130 [arXiv:1207.5391] [INSPIRE].ADSGoogle Scholar
  223. [223]
    J.M. Campbell and R.K. Ellis, Next-to-leading order corrections to W + 2 jet and Z + 2 jet production at hadron colliders, Phys. Rev. D 65 (2002) 113007 [hep-ph/0202176] [INSPIRE].ADSGoogle Scholar
  224. [224]
    J.M. Campbell, R.K. Ellis and D.L. Rainwater, Next-to-leading order QCD predictions for W +2 jet and Z + 2 jet production at the CERN LHC, Phys. Rev. D 68 (2003) 094021 [hep-ph/0308195] [INSPIRE].ADSGoogle Scholar
  225. [225]
    J.M. Campbell, R.K. Ellis, P. Nason and G. Zanderighi, W and Z bosons in association with two jets using the POWHEG method, JHEP 08 (2013) 005 [arXiv:1303.5447] [INSPIRE].ADSGoogle Scholar
  226. [226]
    J.M. Campbell et al., Associated production of a W boson and one b jet, Phys. Rev. D 79 (2009) 034023 [arXiv:0809.3003] [INSPIRE].ADSGoogle Scholar
  227. [227]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Associated production of a Z boson and a single heavy quark jet, Phys. Rev. D 69 (2004) 074021 [hep-ph/0312024] [INSPIRE].ADSGoogle Scholar
  228. [228]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a Z boson and two jets with one heavy-quark tag, Phys. Rev. D 73 (2006) 054007 [Erratum ibid. D 77 (2008) 019903] [hep-ph/0510362] [INSPIRE].
  229. [229]
    J.M. Campbell, R.K. Ellis, F. Maltoni and S. Willenbrock, Production of a W boson and two jets with one b quark tag, Phys. Rev. D 75 (2007) 054015 [hep-ph/0611348] [INSPIRE].ADSGoogle Scholar
  230. [230]
    J.M. Campbell, F. Caola, F. Febres Cordero, L. Reina and D. Wackeroth, NLO QCD predictions for W + 1 jet and W + 2 jet production with at least one b jet at the 7 TeV LHC, Phys. Rev. D 86 (2012) 034021 [arXiv:1107.3714] [INSPIRE].ADSGoogle Scholar
  231. [231]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO vector-boson production matched with shower in POWHEG, JHEP 07 (2008) 060 [arXiv:0805.4802] [INSPIRE].ADSGoogle Scholar
  232. [232]
    S. Alioli, P. Nason, C. Oleari and E. Re, Vector boson plus one jet production in POWHEG, JHEP 01 (2011) 095 [arXiv:1009.5594] [INSPIRE].ADSGoogle Scholar
  233. [233]
    E. Re, NLO corrections merged with parton showers for Z + 2 jets production using the POWHEG method, JHEP 10 (2012) 031 [arXiv:1204.5433] [INSPIRE].ADSGoogle Scholar
  234. [234]
    R.K. Ellis, K. Melnikov and G. Zanderighi, Generalized unitarity at work: first NLO QCD results for hadronic W + 3 jet production, JHEP 04 (2009) 077 [arXiv:0901.4101] [INSPIRE].ADSGoogle Scholar
  235. [235]
    K. Melnikov and G. Zanderighi, W + 3 jet production at the LHC as a signal or background, Phys. Rev. D 81 (2010) 074025 [arXiv:0910.3671] [INSPIRE].ADSGoogle Scholar
  236. [236]
    C.F. Berger et al., Precise predictions for W + 3 jet production at hadron colliders, Phys. Rev. Lett. 102 (2009) 222001 [arXiv:0902.2760] [INSPIRE].ADSGoogle Scholar
  237. [237]
    C.F. Berger et al., Next-to-leading order QCD predictions for W + 3-jet distributions at hadron colliders, Phys. Rev. D 80 (2009) 074036 [arXiv:0907.1984] [INSPIRE].ADSGoogle Scholar
  238. [238]
    C.F. Berger et al., Next-to-leading order QCD predictions for Z, γ * + 3-jet distributions at the Tevatron, Phys. Rev. D 82 (2010) 074002 [arXiv:1004.1659] [INSPIRE].ADSGoogle Scholar
  239. [239]
    C.F. Berger et al., Precise predictions for W + 4 jet production at the Large Hadron Collider, Phys. Rev. Lett. 106 (2011) 092001 [arXiv:1009.2338] [INSPIRE].ADSGoogle Scholar
  240. [240]
    H. Ita et al., Precise predictions for Z + 4 jets at hadron colliders, Phys. Rev. D 85 (2012) 031501 [arXiv:1108.2229] [INSPIRE].ADSGoogle Scholar
  241. [241]
    S. Hoeche, F. Krauss, M. Schonherr and F. Siegert, W + n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett. 110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].ADSGoogle Scholar
  242. [242]
    S. Catani, M. Fontannaz, J.P. Guillet and E. Pilon, Cross-section of isolated prompt photons in hadron hadron collisions, JHEP 05 (2002) 028 [hep-ph/0204023] [INSPIRE].ADSGoogle Scholar
  243. [243]
    Z. Bern et al., Driving missing data at next-to-leading order, Phys. Rev. D 84 (2011) 114002 [arXiv:1106.1423] [INSPIRE].ADSGoogle Scholar
  244. [244]
    K. Arnold et al., VBFNLO: a parton level Monte Carlo for processes with electroweak bosonsmanual for version 2.5.0, arXiv:1107.4038 [INSPIRE].
  245. [245]
    B. Jager, S. Schneider and G. Zanderighi, Next-to-leading order QCD corrections to electroweak Zjj production in the POWHEG BOX, JHEP 09 (2012) 083 [arXiv:1207.2626] [INSPIRE].ADSGoogle Scholar
  246. [246]
    B. Mele, P. Nason and G. Ridolfi, QCD radiative corrections to Z boson pair production in hadronic collisions, Nucl. Phys. B 357 (1991) 409 [INSPIRE].ADSGoogle Scholar
  247. [247]
    J. Ohnemus and J.F. Owens, An order α s calculation of hadronic ZZ production, Phys. Rev. D 43 (1991) 3626 [INSPIRE].ADSGoogle Scholar
  248. [248]
    S. Frixione, P. Nason and G. Ridolfi, Strong corrections to W Z production at hadron colliders, Nucl. Phys. B 383 (1992) 3 [INSPIRE].ADSGoogle Scholar
  249. [249]
    J. Ohnemus, An order α s calculation of hadronic W W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].ADSGoogle Scholar
  250. [250]
    J. Ohnemus, An order α s calculation of hadronic W ± Z production, Phys. Rev. D 44 (1991) 3477 [INSPIRE].ADSGoogle Scholar
  251. [251]
    S. Frixione, A next-to-leading order calculation of the cross-section for the production of W + W pairs in hadronic collisions, Nucl. Phys. B 410 (1993) 280 [INSPIRE].ADSGoogle Scholar
  252. [252]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].ADSGoogle Scholar
  253. [253]
    L.J. Dixon, Z. Kunszt and A. Signer, Vector boson pair production in hadronic collisions at order α s : lepton correlations and anomalous couplings, Phys. Rev. D 60 (1999) 114037 [hep-ph/9907305] [INSPIRE].ADSGoogle Scholar
  254. [254]
    D. De Florian and A. Signer, Wγ and Zγ production at hadron colliders, Eur. Phys. J. C 16 (2000) 105 [hep-ph/0002138] [INSPIRE].ADSGoogle Scholar
  255. [255]
    N. Greiner et al., NLO QCD corrections to the production of W + W plus two jets at the LHC, Phys. Lett. B 713 (2012) 277 [arXiv:1202.6004] [INSPIRE].ADSGoogle Scholar
  256. [256]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSGoogle Scholar
  257. [257]
    P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for Z pair hadroproduction, JHEP 08 (2006) 077 [hep-ph/0606275] [INSPIRE].ADSGoogle Scholar
  258. [258]
    T. Melia, P. Nason, R. Rontsch and G. Zanderighi, W + W , W Z and ZZ production in the POWHEG BOX, JHEP 11 (2011) 078 [arXiv:1107.5051] [INSPIRE].ADSGoogle Scholar
  259. [259]
    P. Nason and G. Zanderighi, W + W , W Z and ZZ production in the POWHEG-BOX-V 2, Eur. Phys. J. C 74 (2014) 2702 [arXiv:1311.1365] [INSPIRE].ADSGoogle Scholar
  260. [260]
    V. Del Duca, F. Maltoni, Z. Nagy and Z. Trócsányi, QCD radiative corrections to prompt diphoton production in association with a jet at hadron colliders, JHEP 04 (2003) 059 [hep-ph/0303012] [INSPIRE].ADSGoogle Scholar
  261. [261]
    T. Gehrmann, N. Greiner and G. Heinrich, Precise QCD predictions for the production of a photon pair in association with two jets, Phys. Rev. Lett. 111 (2013) 222002 [arXiv:1308.3660] [INSPIRE].ADSGoogle Scholar
  262. [262]
    S. Badger, A. Guffanti and V. Yundin, Next-to-leading order QCD corrections to di-photon production in association with up to three jets at the Large Hadron Collider, JHEP 03 (2014) 122 [arXiv:1312.5927] [INSPIRE].ADSGoogle Scholar
  263. [263]
    Z. Bern et al., Next-to-leading order diphoton + 2-jet production at the LHC, arXiv:1312.0592 [INSPIRE].
  264. [264]
    Z. Bern et al., Next-to-leading order γγ + 2-jet production at the LHC, arXiv:1402.4127 [INSPIRE].
  265. [265]
    T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, Next-to-leading order QCD predictions for W + W + jj production at the LHC, JHEP 12 (2010) 053 [arXiv:1007.5313] [INSPIRE].ADSGoogle Scholar
  266. [266]
    F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to W + W + and W W production in association with two jets, Phys. Rev. D 89 (2014) 054009 [arXiv:1311.6738] [INSPIRE].ADSGoogle Scholar
  267. [267]
    J.M. Campbell, H.B. Hartanto and C. Williams, Next-to-leading order predictions for Zγ + jet and Zγγ final states at the LHC, JHEP 11 (2012) 162 [arXiv:1208.0566] [INSPIRE].ADSGoogle Scholar
  268. [268]
    F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, Next-to-leading order QCD corrections to Wγ production in association with two jets, arXiv:1402.0505 [INSPIRE].
  269. [269]
    F. Campanario, M. Kerner, L.D. Ninh and D. Zeppenfeld, NLO QCD corrections to WZjj production at the LHC, arXiv:1310.4369 [INSPIRE].
  270. [270]
    F. Campanario, C. Englert, M. Spannowsky and D. Zeppenfeld, NLO-QCD corrections to Wγj production, Europhys. Lett. 88 (2009) 11001 [arXiv:0908.1638] [INSPIRE].ADSGoogle Scholar
  271. [271]
    F. Campanario, C. Englert and M. Spannowsky, Precise predictions for (non-standard) Wγ + jet production, Phys. Rev. D 83 (2011) 074009 [arXiv:1010.1291] [INSPIRE].ADSGoogle Scholar
  272. [272]
    F. Campanario, C. Englert, S. Kallweit, M. Spannowsky and D. Zeppenfeld, NLO QCD corrections to W Z + jet production with leptonic decays, JHEP 07 (2010) 076 [arXiv:1006.0390] [INSPIRE].ADSGoogle Scholar
  273. [273]
    B. Jager and G. Zanderighi, Electroweak W + W jj prodution at NLO in QCD matched with parton shower in the POWHEG-BOX, JHEP 04 (2013) 024 [arXiv:1301.1695] [INSPIRE].ADSGoogle Scholar
  274. [274]
    F. Schissler and D. Zeppenfeld, Parton shower effects on W and Z production via vector boson fusion at NLO QCD, JHEP 04 (2013) 057 [arXiv:1302.2884] [INSPIRE].ADSGoogle Scholar
  275. [275]
    B. Jäger, A. Karlberg and G. Zanderighi, Electroweak ZZjj production in the standard model and beyond in the POWHEG-BOX-V 2, JHEP 03 (2014) 141 [arXiv:1312.3252] [INSPIRE].ADSGoogle Scholar
  276. [276]
    G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, Zγγ production with leptonic decays and triple photon production at next-to-leading order QCD, Phys. Rev. D 84 (2011) 074028 [arXiv:1107.3149] [INSPIRE].ADSGoogle Scholar
  277. [277]
    G. Bozzi, F. Campanario, M. Rauch and D. Zeppenfeld, W +− γγ production with leptonic decays at NLO QCD, Phys. Rev. D 83 (2011) 114035 [arXiv:1103.4613] [INSPIRE].ADSGoogle Scholar
  278. [278]
    G. Bozzi, F. Campanario, M. Rauch, H. Rzehak and D. Zeppenfeld, NLO QCD corrections to W ± Zγ production with leptonic decays, Phys. Lett. B 696 (2011) 380 [arXiv:1011.2206] [INSPIRE].ADSGoogle Scholar
  279. [279]
    G. Bozzi, F. Campanario, V. Hankele and D. Zeppenfeld, NLO QCD corrections to W + W γ and ZZγ production with leptonic decays, Phys. Rev. D 81 (2010) 094030 [arXiv:0911.0438] [INSPIRE].ADSGoogle Scholar
  280. [280]
    F. Campanario, V. Hankele, C. Oleari, S. Prestel and D. Zeppenfeld, QCD corrections to charged triple vector boson production with leptonic decay, Phys. Rev. D 78 (2008) 094012 [arXiv:0809.0790] [INSPIRE].ADSGoogle Scholar
  281. [281]
    J.M. Campbell and C. Williams, Triphoton production at hadron colliders, Phys. Rev. D 89 (2014) 113001 [arXiv:1403.2641] [INSPIRE].ADSGoogle Scholar
  282. [282]
    M.K. Mandal, P. Mathews, V. Ravindran and S. Seth, Three photon production to NLO + PS accuracy at the LHC, arXiv:1403.2917 [INSPIRE].
  283. [283]
    A. Lazopoulos, K. Melnikov and F. Petriello, QCD corrections to tri-boson production, Phys. Rev. D 76 (2007) 014001 [hep-ph/0703273] [INSPIRE].ADSGoogle Scholar
  284. [284]
    F. Campanario, C. Englert, M. Rauch and D. Zeppenfeld, Precise predictions for Wγγ + jet production at hadron colliders, Phys. Lett. B 704 (2011) 515 [arXiv:1106.4009] [INSPIRE].ADSGoogle Scholar
  285. [285]
    S. Hoeche et al., Triple vector boson production through Higgs-Strahlung with NLO multijet merging, Phys. Rev. D 89 (2014) 093015 [arXiv:1403.7516] [INSPIRE].ADSGoogle Scholar
  286. [286]
    P. Nason, S. Dawson and R.K. Ellis, The total cross-section for the production of heavy quarks in hadronic collisions, Nucl. Phys. B 303 (1988) 607 [INSPIRE].ADSGoogle Scholar
  287. [287]
    W. Beenakker, H. Kuijf, W.L. van Neerven and J. Smith, QCD corrections to heavy quark production in pp collisions, Phys. Rev. D 40 (1989) 54 [INSPIRE].ADSGoogle Scholar
  288. [288]
    P. Nason, S. Dawson and R.K. Ellis, The one particle inclusive differential cross-section for heavy quark production in hadronic collisions, Nucl. Phys. B 327 (1989) 49 [Erratum ibid. B 335 (1990) 260] [INSPIRE].
  289. [289]
    W. Beenakker, W.L. van Neerven, R. Meng, G.A. Schuler and J. Smith, QCD corrections to heavy quark production in hadron hadron collisions, Nucl. Phys. B 351 (1991) 507 [INSPIRE].ADSGoogle Scholar
  290. [290]
    M.L. Mangano, P. Nason and G. Ridolfi, Heavy quark correlations in hadron collisions at next-to-leading order, Nucl. Phys. B 373 (1992) 295 [INSPIRE].ADSGoogle Scholar
  291. [291]
    S. Frixione, P. Nason and G. Ridolfi, A positive-weight next-to-leading-order Monte Carlo for heavy flavour hadroproduction, JHEP 09 (2007) 126 [arXiv:0707.3088] [INSPIRE].ADSGoogle Scholar
  292. [292]
    S. Dittmaier, P. Uwer and S. Weinzierl, NLO QCD corrections to \( t\overline{t} \) + jet production at hadron colliders, Phys. Rev. Lett. 98 (2007) 262002 [hep-ph/0703120] [INSPIRE].ADSGoogle Scholar
  293. [293]
    K. Melnikov, A. Scharf and M. Schulze, Top quark pair production in association with a jet: QCD corrections and jet radiation in top quark decays, Phys. Rev. D 85 (2012) 054002 [arXiv:1111.4991] [INSPIRE].ADSGoogle Scholar
  294. [294]
    S. Alioli, S.-O. Moch and P. Uwer, Hadronic top-quark pair-production with one jet and parton showering, JHEP 01 (2012) 137 [arXiv:1110.5251] [INSPIRE].ADSGoogle Scholar
  295. [295]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos and M. Worek, Dominant QCD backgrounds in Higgs boson analyses at the LHC: a study of pp\( t\overline{t} \) + 2 jets at next-to-leading order, Phys. Rev. Lett. 104 (2010) 162002 [arXiv:1002.4009] [INSPIRE].ADSGoogle Scholar
  296. [296]
    M. Schönherr, S. Höche, J. Huang, G. Luisoni and J. Winter, NLO merging in \( t\overline{t} \) + jets, PoS(EPS-HEP 2013)246 [arXiv:1311.3621] [INSPIRE].
  297. [297]
    S. Hoeche et al., Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower, arXiv:1402.6293 [INSPIRE].
  298. [298]
    Z. Nagy, Next-to-leading order calculation of three jet observables in hadron hadron collision, Phys. Rev. D 68 (2003) 094002 [hep-ph/0307268] [INSPIRE].ADSGoogle Scholar
  299. [299]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, NLO QCD corrections to multi-jet production at the LHC with a centre-of-mass energy of \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 718 (2013) 965 [arXiv:1209.0098] [INSPIRE].ADSGoogle Scholar
  300. [300]
    S. Badger, B. Biedermann, P. Uwer and V. Yundin, Next-to-leading order QCD corrections to five jet production at the LHC, Phys. Rev. D 89 (2014) 034019 [arXiv:1309.6585] [INSPIRE].ADSGoogle Scholar
  301. [301]
    S. Alioli, K. Hamilton, P. Nason, C. Oleari and E. Re, Jet pair production in POWHEG, JHEP 04 (2011) 081 [arXiv:1012.3380] [INSPIRE].ADSGoogle Scholar
  302. [302]
    A. Kardos, P. Nason and C. Oleari, Three-jet production in POWHEG, JHEP 04 (2014) 043 [arXiv:1402.4001] [INSPIRE].ADSGoogle Scholar
  303. [303]
    N. Greiner, A. Guffanti, T. Reiter and J. Reuter, NLO QCD corrections to the production of two bottom-antibottom pairs at the LHC, Phys. Rev. Lett. 107 (2011) 102002 [arXiv:1105.3624] [INSPIRE].ADSGoogle Scholar
  304. [304]
    G. Bevilacqua, M. Czakon, M. Krämer, M. Kubocz and M. Worek, Quantifying quark mass effects at the LHC: a study of pp\( b\overline{b} b\overline{b} \) + X at next-to-leading order, JHEP 07 (2013) 095 [arXiv:1304.6860] [INSPIRE].ADSGoogle Scholar
  305. [305]
    G. Bevilacqua, M. Czakon, C.G. Papadopoulos, R. Pittau and M. Worek, Assault on the NLO wishlist: pp\( t\overline{t} b\overline{b} \), JHEP 09 (2009) 109 [arXiv:0907.4723] [INSPIRE].ADSGoogle Scholar
  306. [306]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to pp\( t\overline{t} b\overline{b} \) + X at the LHC, Phys. Rev. Lett. 103 (2009) 012002 [arXiv:0905.0110] [INSPIRE].ADSGoogle Scholar
  307. [307]
    A. Bredenstein, A. Denner, S. Dittmaier and S. Pozzorini, NLO QCD corrections to top anti-top bottom anti-bottom production at the LHC: 2. Full hadronic results, JHEP 03 (2010) 021 [arXiv:1001.4006] [INSPIRE].ADSGoogle Scholar
  308. [308]
    G. Bevilacqua and M. Worek, Constraining BSM physics at the LHC: four top final states with NLO accuracy in perturbative QCD, JHEP 07 (2012) 111 [arXiv:1206.3064] [INSPIRE].ADSGoogle Scholar
  309. [309]
    R.K. Ellis and S. Veseli, Strong radiative corrections to \( W\ b\overline{b} \) production in \( p\overline{p} \) collisions, Phys. Rev. D 60 (1999) 011501 [hep-ph/9810489] [INSPIRE].ADSGoogle Scholar
  310. [310]
    S. Badger, J.M. Campbell and R.K. Ellis, QCD corrections to the hadronic production of a heavy quark pair and a W-boson including decay correlations, JHEP 03 (2011) 027 [arXiv:1011.6647] [INSPIRE].ADSGoogle Scholar
  311. [311]
    R. Frederix et al., W and Z/γ* boson production in association with a bottom-antibottom pair, JHEP 09 (2011) 061 [arXiv:1106.6019] [INSPIRE].ADSGoogle Scholar
  312. [312]
    C. Oleari and L. Reina, \( {W}^{\pm } b\overline{b} \) production in POWHEG, JHEP 08 (2011) 061 [Erratum ibid. 11 (2011) 040] [arXiv:1105.4488] [INSPIRE].
  313. [313]
    J.M. Campbell and R.K. Ellis, Radiative corrections to \( Zb\overline{b} \) production, Phys. Rev. D 62 (2000) 114012 [hep-ph/0006304] [INSPIRE].ADSGoogle Scholar
  314. [314]
    K. Melnikov, M. Schulze and A. Scharf, QCD corrections to top quark pair production in association with a photon at hadron colliders, Phys. Rev. D 83 (2011) 074013 [arXiv:1102.1967] [INSPIRE].ADSGoogle Scholar
  315. [315]
    A. Lazopoulos, T. McElmurry, K. Melnikov and F. Petriello, Next-to-leading order QCD corrections to \( t\overline{t} Z \) production at the LHC, Phys. Lett. B 666 (2008) 62 [arXiv:0804.2220] [INSPIRE].ADSGoogle Scholar
  316. [316]
    M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, \( t\overline{t}{W}^{+-} \) and \( t\overline{t} Z \) hadroproduction at NLO accuracy in QCD with parton shower and hadronization effects, JHEP 11 (2012) 056 [arXiv:1208.2665] [INSPIRE].ADSGoogle Scholar
  317. [317]
    J.M. Campbell and R.K. Ellis, \( t\overline{t}{W}^{+-} \) production and decay at NLO, JHEP 07 (2012) 052 [arXiv:1204.5678] [INSPIRE].ADSGoogle Scholar
  318. [318]
    T. Stelzer and S. Willenbrock, Single top quark production via \( q\overline{q}\to t\overline{b} \), Phys. Lett. B 357 (1995) 125 [hep-ph/9505433] [INSPIRE].ADSGoogle Scholar
  319. [319]
    T. Stelzer, Z. Sullivan and S. Willenbrock, Single top quark production via W-gluon fusion at next-to-leading order, Phys. Rev. D 56 (1997) 5919 [hep-ph/9705398] [INSPIRE].ADSGoogle Scholar
  320. [320]
    J.M. Campbell, R.K. Ellis and F. Tramontano, Single top production and decay at next-to-leading order, Phys. Rev. D 70 (2004) 094012 [hep-ph/0408158] [INSPIRE].ADSGoogle Scholar
  321. [321]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, NLO predictions for t-channel production of single top and fourth generation quarks at hadron colliders, JHEP 10 (2009) 042 [arXiv:0907.3933] [INSPIRE].ADSGoogle Scholar
  322. [322]
    J.M. Campbell, R. Frederix, F. Maltoni and F. Tramontano, Next-to-leading-order predictions for t-channel single-top production at hadron colliders, Phys. Rev. Lett. 102 (2009) 182003 [arXiv:0903.0005] [INSPIRE].ADSGoogle Scholar
  323. [323]
    J.M. Campbell and F. Tramontano, Next-to-leading order corrections to Wt production and decay, Nucl. Phys. B 726 (2005) 109 [hep-ph/0506289] [INSPIRE].ADSGoogle Scholar
  324. [324]
    S. Frixione, E. Laenen, P. Motylinski, B.R. Webber and C.D. White, Single-top hadroproduction in association with a W boson, JHEP 07 (2008) 029 [arXiv:0805.3067] [INSPIRE].ADSGoogle Scholar
  325. [325]
    S. Alioli, P. Nason, C. Oleari and E. Re, NLO single-top production matched with shower in POWHEG: s- and t-channel contributions, JHEP 09 (2009) 111 [Erratum ibid. 02 (2010) 011] [arXiv:0907.4076] [INSPIRE].
  326. [326]
    E. Re, Single-top Wt-channel production matched with parton showers using the POWHEG method, Eur. Phys. J. C 71 (2011) 1547 [arXiv:1009.2450] [INSPIRE].ADSGoogle Scholar
  327. [327]
    J. Campbell, R.K. Ellis and R. Rötsch, Single top production in association with a Z boson at the LHC, Phys. Rev. D 87 (2013) 114006 [arXiv:1302.3856] [INSPIRE].ADSGoogle Scholar
  328. [328]
    LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 1. Inclusive observables, arXiv:1101.0593 [INSPIRE].
  329. [329]
    LHC Higgs Cross section Working Group collaboration, S. Dittmaier et al., Handbook of LHC Higgs cross sections: 2. Differential distributions, arXiv:1201.3084 [INSPIRE].
  330. [330]
    LHC Higgs Cross section Working Group collaboration, S. Heinemeyer et al., Handbook of LHC Higgs cross sections: 3. Higgs properties, arXiv:1307.1347 [INSPIRE].
  331. [331]
    J. Baglio et al., The measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151 [arXiv:1212.5581] [INSPIRE].ADSGoogle Scholar
  332. [332]
    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [INSPIRE].
  333. [333]
    S. Dawson, S. Dittmaier and M. Spira, Neutral Higgs boson pair production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012 [hep-ph/9805244] [INSPIRE].ADSGoogle Scholar
  334. [334]
    A. Signer and L.J. Dixon, Electron-positron annihilation into four jets at next-to-leading order in α s, Phys. Rev. Lett. 78 (1997) 811 [hep-ph/9609460] [INSPIRE].ADSGoogle Scholar
  335. [335]
    A. Signer, Next-to-leading order corrections to e + e four jets, hep-ph/9705218 [INSPIRE].
  336. [336]
    Z. Nagy and Z. Trócsányi, Four jet production in e + e annihilation at next-to-leading order, Nucl. Phys. Proc. Suppl. 64 (1998) 63 [hep-ph/9708344] [INSPIRE].ADSGoogle Scholar
  337. [337]
    Z. Nagy and Z. Trócsányi, Next-to-leading order calculation of four jet shape variables, Phys. Rev. Lett. 79 (1997) 3604 [hep-ph/9707309] [INSPIRE].ADSGoogle Scholar
  338. [338]
    R. Frederix, S. Frixione, K. Melnikov and G. Zanderighi, NLO QCD corrections to five-jet production at LEP and the extraction of α s(M Z), JHEP 11 (2010) 050 [arXiv:1008.5313] [INSPIRE].ADSGoogle Scholar
  339. [339]
    M.S. Bilenky, G. Rodrigo and A. Santamaria, Three jet production at LEP and the bottom quark mass, Nucl. Phys. B 439 (1995) 505 [hep-ph/9410258] [INSPIRE].ADSGoogle Scholar
  340. [340]
    C.R. Schmidt, Top quark production and decay at next-to-leading order in e + e annihilation, Phys. Rev. D 54 (1996) 3250 [hep-ph/9504434] [INSPIRE].ADSGoogle Scholar
  341. [341]
    C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e + e collisions, hep-ph/9802431 [INSPIRE].
  342. [342]
    P. Nason and C. Oleari, Next-to-leading order corrections to the production of heavy flavor jets in e + e collisions, Nucl. Phys. B 521 (1998) 237 [hep-ph/9709360] [INSPIRE].ADSGoogle Scholar
  343. [343]
    W. Bernreuther, A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections to three jet cross-sections with massive quarks, Phys. Rev. Lett. 79 (1997) 189 [hep-ph/9703305] [INSPIRE].ADSGoogle Scholar
  344. [344]
    A. Brandenburg and P. Uwer, Next-to-leading order QCD corrections and massive quarks in e + e − → three jets, Nucl. Phys. B 515 (1998) 279 [hep-ph/9708350] [INSPIRE].ADSGoogle Scholar
  345. [345]
    A. Brandenburg, The reaction e + e \( t\overline{t} g \) at next-to-leading order in αs, hep-ph/9908383 [INSPIRE].
  346. [346]
    S. Dittmaier, M. Krämer, Y. Liao, M. Spira and P.M. Zerwas, Higgs radiation off top quarks in e + e collisions, Phys. Lett. B 441 (1998) 383 [hep-ph/9808433] [INSPIRE].ADSGoogle Scholar
  347. [347]
    S. Frixione, P. Torrielli and M. Zaro, Higgs production through vector-boson fusion at the NLO matched with parton showers, Phys. Lett. B 726 (2013) 273 [arXiv:1304.7927] [INSPIRE].ADSGoogle Scholar
  348. [348]
    ATLAS collaboration, Measurement of top-quark pair differential cross-sections in the l + jets channel in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, ATLAS-CONF-2013-099, CERN, Geneva Switzerland (2013).
  349. [349]
    CMS collaboration, Measurement of differential top-quark pair production cross sections in pp colisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 73 (2013) 2339 [arXiv:1211.2220] [INSPIRE].ADSGoogle Scholar
  350. [350]
    CMS collaboration, Measurement of differential top-quark pair production cross sections in the lepton + jets channel in pp collisions at 8 TeV, CMS-TOP-12-027, CERN, Geneva Switzerland (2012).
  351. [351]
    CMS collaboration, Measurement of the differential \( t\overline{t} \) cross section in the dilepton channel at 8 TeV, CMS-TOP-12-028, CERN, Geneva Switzerland (2012).
  352. [352]
    ATLAS collaboration, Measurement of \( t\overline{t} \) production with a veto on additional central jet activity in pp collisions at \( \sqrt{s} \) = 7 TeV using the ATLAS detector, Eur. Phys. J. C 72 (2012) 2043 [arXiv:1203.5015] [INSPIRE].ADSGoogle Scholar
  353. [353]
    CMS collaboration, Measurement of jet multiplicity distributions in top quark events with two leptons in the final state at a centre-of-mass energy of 7 TeV, CMS-TOP-12-023, CERN, Geneva Switzerland (2012).
  354. [354]
    CMS collaboration, Measurement of the jet multiplicity in dileptonic top quark pair events at 8 TeV, CMS-TOP-12-041, CERN, Geneva Switzerland (2012).
  355. [355]
    S. Dittmaier and M. Kramer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].ADSGoogle Scholar
  356. [356]
    A. Denner, Techniques for calculation of electroweak radiative corrections at the one loop level and results for W physics at LEP-200, Fortsch. Phys. 41 (1993) 307 [arXiv:0709.1075] [INSPIRE].ADSGoogle Scholar
  357. [357]
    W. Beenakker et al., NLO QCD corrections to \( t\overline{t} H \) production in hadron collisions, Nucl. Phys. B 653 (2003) 151 [hep-ph/0211352] [INSPIRE].ADSGoogle Scholar
  358. [358]
    T. Binoth, G. Ossola, C.G. Papadopoulos and R. Pittau, NLO QCD corrections to tri-boson production, JHEP 06 (2008) 082 [arXiv:0804.0350] [INSPIRE].ADSGoogle Scholar
  359. [359]
    T. Melia, K. Melnikov, R. Rontsch and G. Zanderighi, NLO QCD corrections for W + W pair production in association with two jets at hadron colliders, Phys. Rev. D 83 (2011) 114043 [arXiv:1104.2327] [INSPIRE].ADSGoogle Scholar
  360. [360]
    G. Cullen et al., Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion, Phys. Rev. Lett. 111 (2013) 131801 [arXiv:1307.4737] [INSPIRE].ADSGoogle Scholar
  361. [361]
    H. van Deurzen et al., Next-to-leading-order QCD corrections to Higgs boson production in association with a top quark pair and a jet, Phys. Rev. Lett. 111 (2013) 171801 [arXiv:1307.8437] [INSPIRE].ADSGoogle Scholar
  362. [362]
    A. Kardos and Z. Trócsányi, Hadroproduction of tt pair with a bb pair using PowHel, J. Phys. G 41 (2014) 075005 [arXiv:1303.6291] [INSPIRE].ADSGoogle Scholar
  363. [363]
    A. Kardos, Z. Trócsányi and C. Papadopoulos, Top quark pair production in association with a Z-boson at NLO accuracy, Phys. Rev. D 85 (2012) 054015 [arXiv:1111.0610] [INSPIRE].ADSGoogle Scholar
  364. [364]
    M.V. Garzelli, A. Kardos, C.G. Papadopoulos and Z. Trócsányi, Z 0 -boson production in association with a top anti-top pair at NLO accuracy with parton shower effects, Phys. Rev. D 85 (2012) 074022 [arXiv:1111.1444] [INSPIRE].ADSGoogle Scholar
  365. [365]
    A. Kardos, C. Papadopoulos and Z. Trócsányi, Top quark pair production in association with a jet with NLO parton showering, Phys. Lett. B 705 (2011) 76 [arXiv:1101.2672] [INSPIRE].ADSGoogle Scholar
  366. [366]
    M.R. Whalley, D. Bourilkov and R.C. Group, The Les Houches accord PDFs (LHAPDF) and LHAGLUE, hep-ph/0508110 [INSPIRE].
  367. [367]
    M. Cacciari, S. Frixione, M.L. Mangano, P. Nason and G. Ridolfi, Updated predictions for the total production cross sections of top and of heavier quark pairs at the Tevatron and at the LHC, JHEP 09 (2008) 127 [arXiv:0804.2800] [INSPIRE].ADSGoogle Scholar
  368. [368]
    R.D. Ball et al., A first unbiased global NLO determination of parton distributions and their uncertainties, Nucl. Phys. B 838 (2010) 136 [arXiv:1002.4407] [INSPIRE].ADSGoogle Scholar
  369. [369]
    D.E. Soper and M. Spannowsky, Finding top quarks with shower deconstruction, Phys. Rev. D 87 (2013) 054012 [arXiv:1211.3140] [INSPIRE].ADSGoogle Scholar
  370. [370]
    D.E. Soper and M. Spannowsky, Finding physics signals with event deconstruction, arXiv:1402.1189 [INSPIRE].
  371. [371]
    A. van Hameren, OneLOop: for the evaluation of one-loop scalar functions, Comput. Phys. Commun. 182 (2011) 2427 [arXiv:1007.4716] [INSPIRE].ADSMATHGoogle Scholar
  372. [372]
    R.K. Ellis and G. Zanderighi, Scalar one-loop integrals for QCD, JHEP 02 (2008) 002 [arXiv:0712.1851] [INSPIRE].ADSGoogle Scholar
  373. [373]
    A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].ADSGoogle Scholar
  374. [374]
    O.V. Tarasov, Connection between Feynman integrals having different values of the space-time dimension, Phys. Rev. D 54 (1996) 6479 [hep-th/9606018] [INSPIRE].ADSMathSciNetGoogle Scholar
  375. [375]
    G. Duplancic and B. Nizic, Reduction method for dimensionally regulated one loop N point Feynman integrals, Eur. Phys. J. C 35 (2004) 105 [hep-ph/0303184] [INSPIRE].ADSGoogle Scholar
  376. [376]
    M. Cacciari, G.P. Salam and G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].ADSGoogle Scholar
  377. [377]
    R. Kleiss, W.J. Stirling and S.D. Ellis, A new Monte Carlo treatment of multiparticle phase space at high-energies, Comput. Phys. Commun. 40 (1986) 359 [INSPIRE].ADSGoogle Scholar
  378. [378]
    L. Garren and P. Lebrun, StdHEP v5 manual, http://cepa.fnal.gov/psm/stdhep/.
  379. [379]
    G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comput. Phys. 27 (1978) 192 [INSPIRE].ADSMATHGoogle Scholar
  380. [380]
    G.P. Lepage, VEGAS: an adaptive multidimentional integration program, CLNS-80/447, (1980) [INSPIRE].

Copyright information

© The Author(s) 2014

Authors and Affiliations

  • J. Alwall
    • 1
  • R. Frederix
    • 2
  • S. Frixione
    • 2
  • V. Hirschi
    • 3
  • F. Maltoni
    • 4
  • O. Mattelaer
    • 4
  • H.-S. Shao
    • 5
  • T. Stelzer
    • 6
  • P. Torrielli
    • 7
  • M. Zaro
    • 8
    • 9
  1. 1.Department of PhysicsNational Taiwan UniversityTaipeiTaiwan
  2. 2.PH DepartmentTH Unit, CERNGeneva 23Switzerland
  3. 3.SLAC National Accelerator LaboratoryMenlo ParkU.S.A.
  4. 4.CP3, Université Catholique de LouvainLouvain-la-NeuveBelgium
  5. 5.Department of Physics and State Key Laboratory of Nuclear Physics and TechnologyPeking UniversityBeijingChina
  6. 6.University of IllinoisUrbanaU.S.A.
  7. 7.Physik-InstitutUniversität ZürichZurichSwitzerland
  8. 8.Sorbonne Universités, UPMC Univ. Paris 06, UMR 7589, LPTHEParisFrance
  9. 9.CNRS, UMR 7589, LPTHEParisFrance

Personalised recommendations